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Departamento de Matemática, UFSM, Santa Maria, RS, 97105-900, Brazil
ftura@smail.ufsm.br

(Received April 2, 2016)

Abstract

The energy of a graph is defined as the sum the absolute values of the eigenvalues
of its adjacency matrix. A graph G on n vertices is said to be borderenergetic if
its energy equals the energy of the complete graph Kn. In this paper, we promote
this concept for the Laplacian matrix. The Laplacian energy of G, introduced by
Gutman and Zhou [5], is given by LE(G) =

∑n
i=1 |µi−d|, where µi are the Laplacian

eigenvalues of G and d is the average degree of G. In this way, we say G to be L-
borderenergetic if LE(G) = LE(Kn). Several classes of L-borderenergetic graphs
are obtained including result that for each integer r ≥ 1, there are 2r+ 1 graphs, of
order n = 4r + 4, pairwise L-noncospectral and L-bordernergetic graphs.

1 Introduction

Throughout this paper, all graphs are assumed to be finite, undirected and without loops

or multiple edges. If G is a graph of order n and M is a real symmetric matrix associated

with G, then the M - energy of G is

EM(G) =
n∑

i=1

∣∣∣∣λi(M)− tr(M)

n

∣∣∣∣ . (1)

The energy of a graph simply refers to using the adjacency matrix in (1). There are many

results on energy [1,10–13,16] and its applications in several areas, including in chemistral

see [9] for more details and the references therein.

It is well known that the complete graph Kn has E(Kn) = 2n − 2. In this context,

several authors have been presented families of graphs with same energy of the complete

graph Kn. Recently, Gong, Li, Xu, Gutman and Furtula [3] introduced the concept of

bordernergetic. A graph G on n vertices is said to be borderenergetic if its energy equals

the energy of the complete graph Kn.
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In [3], it was shown that there exits borderenergetic graphs on order n for each integer

n ≥ 7, and all borderenergetic graphs with 7, 8, and 9 vertices were determined.

In [7] considered the eigenvalues and energies of threshold graphs. For each n ≥

3, they determined n − 1 threshold graphs on n2 vertices, pairwise non-cospectral and

equienergetic to the complete graph Kn2 . Recently, Hou and Tao [6], showed that for each

n ≥ 2 and p ≥ 1 (p ≥ 2 if n = 2), there are n − 1 threshold graphs on pn2 vertices,

pairwise non-cospectral and equienergetic with the complete graph Kpn2 , generalizing the

results in [7].

The Laplacian energy of G, introduced by Gutman and Zhou [5], is given by

LE(G) =
n∑

i=1

|µi − d| (2)

where µi are the Laplacian eigenvalues of G and d is the average degree of G. Similarly

for the laplacian energy, we have that LE(Kn) = 2n− 2.

The first purpose of this paper is to promote the concept of borderenergetic to the

laplacian matrix. In this way, we say G to be L-borderenergetic if LE(G) = LE(Kn).

The second is to present several classes of L-borderenergetic graphs.

The paper is organized as follows. In Section 2 we describe some known results

about the Laplacian spectrum of graphs. In Section 3 we present four classes of L-

borderenergetic. We finalize this paper, showing that for each integer r ≥ 1, there are

2r+1 graphs, of order n = 4r+4, pairwise L-noncospectral and L-bordernergetic graphs.

2 Premilinares

Let G1 = (V1, E1) and G2 = (V2, E2) be undirected graphs without loops or multiple

edges. The union G1 ∪ G2 of graphs G1 and G2 is the graph G = (V,E) for which

V = V1 ∪ V2 and E = E1 ∪ E2. We denote the graph G ∪G ∪ . . . ∪G︸ ︷︷ ︸
m

by mG. The join

G1∇G2 of graphs G1 and G2 is the graph obtained from G1 ∪G2 by joining every vertex

of G1 with every vertex of G2.

The Laplacian spectrum of G1∪. . .∪Gk is the union of Laplacian spectra of G1, . . . , Gk,

while the Laplacian spectra of the complement of n- vertex graph G consists of values

n− µi, for each Laplacian eigenvalue µi of G, except for a single instance of eigenvalue 0

of G.
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Lemma 1 Let G be a graph on n vertices with Laplacian matrix L. Let 0 = µ1 ≤ µ2 ≤

. . . ≤ µn be the eigenvalues of L. Then the eigenvalues of G are

0 ≤ n− µn ≤ n− µn−1 ≤ n− µn−2 ≤ . . . ≤ n− µ2

with the same corresponding eigenvectors.

Proof: Note that the Laplacian matrix of G satisfies L(G) = nI + J − L, where I is

the identity matrix and J is the matrix each of whose entries is equal 1. Therefore, for

i = 2, . . . , n, if x is an eigenvector of L corresponding to µi, then Jx = 0. Therefore

L(G)x = (nI + J − L)x = nIx+ Jx− Lx = (n− µi)x.

Thus n−µi is an eigenvalue with xi as a corresponding eigenvector. Finally, e = (1, . . . , 1)

is an eigenvector of L(G) corresponding to 0. �

Recall that G is laplacian integral if its spectrum consists entirely of integers [8, 14].

Follows from Lemma 1 that G is laplacian integral if and only if G is laplacian integral.

Theorem 1 Let G1 and G2 be graphs on n1 and n2 vertices, respectively. Let L1 and L2

be the Laplacian matrices for G1 and G2, respectively, and let L be the Laplacian matrix

for G1∇G2. If 0 = α1 ≤ α2 ≤ . . . ≤ αn1 and 0 = β1 ≤ β2 ≤ . . . ≤ βn2 are the eigenvalues

of L1 and L2, respectively. Then the eigenvalues of L are

0, n2 + α2, n2 + α3, . . . , n2 + αn1

n1 + β2, n1 + β3, . . . , n1 + βn2 , n1 + n2.

Proof: Since that the join of graphs G1 and G2 is given by G1∇G2 = G1 ∪G2 (see [5]), the

proof follows immediately from the Lemma 1. �

3 L-Borderenergetic graphs

Recall that the L-energy of a graph G is obtained by LE(G) =
∑n

i=1 |µi − d|, where µi

are the laplacian eigenvalues of G and d is the average degree of G. It is known that

the complete graph Kn has Laplacian energy 2(n − 1). We exhibit four infinite classes

Ωi = {G1, G2, . . . , Gr, . . .} for i = 1, . . . , 4 such that each Gr, of order n = 4r+ 4, satisfies

LE(Gr) = LE(K4r+4).
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3.1 The class Ω1

For each integer r ≥ 1, we define the graph Gr ∈ Ω1 to be the following join

Gr = (rK1 ∪ (K1∇(r + 1)K1))∇(rK1 ∪ (K1∇(r + 1)K1)).

Gr has order n = 4r + 4. We let µm denote the laplacian eigenvalue µ with multiplicity

equals to m.

Lemma 2 Let Gr ∈ Ω1 be a graph of order n = 4r + 4. Then the Laplacian spectrum of

Gr is given by

0; (2r + 2)2r; (2r + 3)2r; (3r + 4)2; 4r + 4.

Proof: Let Gr ∈ Ω1. Let’s denote H = rK1∪ (K1∇(r+1)K1). By definition we have that

Gr = H∇H. According by Theorem 1, we just need to determine the Laplacian spectrum

of the H and add its order. By direct calculus follows that the Laplacian spectrum of H

is equal to

0r; 1r; r + 2.

SinceH has order 2r+2, by Theorem 1 the result follows. �

Theorem 2 For each r ≥ 1, Gr is L-borderenergetic and L-noncospectral graph with

K4r+4.

Proof: Clearly Gr and K4r+4 are L-noncospectral. Let d be the average degree of Gr.

Since that d is equal to average of Laplacian eigenvalues ofGr then d = 2r(4r+5)+2(3r+4)+4r+4
4r+4

= 2r+3. Using Lemma 2, LE(Gr) = 4r+4−(2r+3)+2(3r+4−2r−3)+2r(2r+3−2r−3)+

2r(2r+3−2r−2)+2r+3 = 8r+6 = LE(K4r+4). �

3.2 The class Ω2

For each integer r ≥ 1, we define the graph Gr ∈ Ω2 to be the following join

Gr = (r + 1)K2∇(r + 1)K2 .

Gr has order n = 4r + 4. We let µm denote the laplacian eigenvalue µ with multiplicity

equals to m.
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Lemma 3 Let Gr ∈ Ω2 be a graph of order n = 4r + 4. Then the Laplacian spectrum of

Gr is given by

0; (2r + 2)2r; (2r + 4)2r+2; 4r + 4.

Proof: Let Gr ∈ Ω2. Let’s denote H = (r+1)K2. By definition we have that Gr = H∇H.

According by Theorem 1, we just need to determine the Laplacian spectrum of the H and

add its order. By direct calculus follows that the Laplacian spectrum of H is equal to

0r+1; 2r+1.

SinceH has order 2r+2, by Theorem 1 the result follows. �

Theorem 3 For each r ≥ 1, Gr is L-borderenergetic and L-noncospectral graph with

K4r+4.

Proof: Clearly Gr and K4r+4 are L-noncospectral. Let d be the average degree of Gr.

Since that d is equal to average of Laplacian eigenvalues of Gr then d = (2r+2)(4r+4)+4r+4
4r+4

=

2r+ 3. Using Lemma 2, LE(Gr) = 4r+ 4− (2r+ 3) + (2r+ 2)(2r+ 4− 2r− 3) + 2r(2r+

3− 2r − 2) + 2r + 3 = 8r + 6 = LE(K4r+4). �

3.3 The classes Ω3 and Ω4

For each integer r ≥ 1, we define the following two graphs Gr ∈ Ω3 and G′r ∈ Ω4 :

Gr = (K2 ∪ (2r + 1)K1)∇(2r + 1)K1,

G′r = ((2r + 1)K1)∇(2r + 2)K1∇K1,

where Gr and G′r have order n = 4r + 4.

The proof of following results are similar to others above, then we will omite them.

Lemma 4 Let Gr ∈ Ω3 and G′r ∈ Ω4 be graphs of order n = 4r + 4. Then the Laplacian

spectrum of Gr and G′r are given by

0; (2r + 1)2r+1; (2r + 3)2r+1; 4r + 4,

0; (2r + 2)2r+1; (2r + 3)2r; (4r + 4)2,

respectively.

Theorem 4 For each r ≥ 1, Gr and G′r are L-borderenergetic and L-noncospectral graphs

with K4r+4.
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4 More L-Borderenergetic graphs

In this Section we obtain more L-borderenergetic graphs including result that for each

integer r ≥ 1, there are 2r + 1 graphs, of order n = 4r + 4, pairwise L-noncospectral and

L-bordernergetic graphs. Consider the following graphs:

H1 = rK1 ∪ (K1∇(r + 1)K1)

H2 = (r + 1)K2

H3 = rK2 ∪ 2K1

H4 = ((2r + 1)K1)∇K1.

The proof of following results are similar to others above, then we will omite them.

Lemma 5 Let G1,2 be a graph of order n = 4r + 4 obtained by the following join G1,2 =

H1∇H2. Then the Laplacian spectrum of G1,2 is given by

0; (2r + 2)2r; (2r + 3)r; (2r + 4)r+1; 3r + 4; 4r + 4.

Lemma 6 Let G1,3 be a graph of order n = 4r + 4 obtained by the following join G1,3 =

H1∇H3. Then the Laplacian spectrum of G1,3 is given by

0; (2r + 2)2r+1; (2r + 3)r; (2r + 4)r; 3r + 4; 4r + 4.

Lemma 7 Let G2,3 be a graph of order n = 4r + 4 obtained by the following join G2,3 =

H2∇H3. Then the Laplacian spectrum of G2,3 is given by

0; (2r + 2)2r+1; (2r + 4)2r+1; 4r + 4.

Lemma 8 Let G2,4 be a graph of order n = 4r + 4 obtained by the following join G2,4 =

H2∇H4. Then the Laplacian spectrum of G2,4 is given by

0; (2r + 2)r; (2r + 3)2r; (2r + 4)r+1; (4r + 4)2.

Lemma 9 Let G3,4 be a graph of order n = 4r + 4 obtained by the following join G3,4 =

H3∇H4. Then the Laplacian spectrum of G3,4 is given by

0; (2r + 2)r+1; (2r + 3)2r; (2r + 4)r; (4r + 4)2.
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Theorem 5 For each integer r ≥ 1, G1,2, G1,3, G2,3, G2,4 and G3,4 are L-borderenergetic

and L-noncospectral graphs.

For integers r ≥ 1 and i = 0, 1, . . . , 2r, consider the following 2r + 1 graphs:

Gi,r = ((2r + 1)K1)∇((2r + 1− i)K1) ∪ (K1∇(i+ 1)K1),

of order n = 4r + 4.

Lemma 10 For integers r ≥ 1 and i = 0, 1, . . . , 2r, let Gi,r be a graph of order n = 4r+4.

Then the Laplacian spectrum of Gi,r is given by

0; (2r + 1)2r+1−i; (2r + 2)i; (2r + 3)2r; (2r + 3 + i); (4r + 4).

Theorem 6 For integers r ≥ 1 and i = 0, 1, . . . , 2r, Gi,r are L-borderenergetic and L-

noncospectral graphs.
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