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Abstract

The energy of a graph G, denoted by E(G), is defined as the sum of the absolute
values of all eigenvalues of G . In Math. Commun. 5 (2010) 443–451, Fath-Tabar
et al. gave a lower bound for the energy E(G) of graph G. In MATCH Commun.
Math. Comput. Chem. 72 (2014) 179–182, Milovanović et al. obtained sharper
result than the lower bound on E(G) given by Fath–Tabar et al. We found some
error in these lower bounds and the characterization of extremal graphs. In this
note we have corrected these results and obtain extremal graphs.

1 Introduction

Let G be a graph of order n with m edges. Let |λ1| ≥ |λ2| ≥ · · · ≥ |λn−1| ≥ |λn| denote

the absolute eigenvalues of G arranged in non-increasing order, respectively. The energy

of graph G is defined as

E(G) =
n∑
i=1

|λi| .

For its basic properties and applications, including various lower and upper bounds, see

the book [12], the surveys [8, 9], the recent papers [5, 6, 11] and the references cited

there in. Throughout this paper we use Ka, b (a+ b = n) and Kn to denote the complete

bipartite graph and the complete graph on n vertices, respectively. The disjoint union of

(vertex-disjoint) graphs G1 and G2 will be denoted with G1 ∪G2. When more than one

graph is under consideration, then we write λi(G) ( or ρi(G)) instead of λi ( or ρi).

In [7], Fath-Tabar et al. gave a lower bound for the energy E(G) of graph G:

E(G) ≥
√

2mn− n2

4
(|λ1| − |λn|)2 . (1)
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In [11], Milovanović et al. obtained the following lower bound on E(G):

E(G) ≥
√

2mn− α(n) (|λ1| − |λn|)2 , (2)

where α(n) = n
[
n
2

] (
1− 1

n

[
n
2

])
, while [x] denotes integer part of a real number x.

Moreover, the equality holds in (2) if and only if G ∼= Kn or G ∼= C4 .

Sometimes both of the lower bounds are imaginary. For example, G ∼= Ka, b (a+ b =

n, n is even,n > 8). Then we have m = a b, |λ1| =
√
a b = |λ2|, |λ3| = |λ4| = · · · =

|λn| = 0. Now,

2mn− α(n) (|λ1| − |λn|)2 = 2mn− n2

4
(|λ1| − |λn|)2

= 2a b n− n2

4
a b = a b

[
2n− n2

4

]
< 0, n > 8,

the lower bounds in (1) and (2) are imaginary. Moreover, for G ∼= pK2 (n = 2 p), the

equality holds in (2). Hence the characterization of extremal graphs in (2) is not true.

We now give some results that will be needed for our main results.

Lemma 1.1. Let G be a connected graph of order n. Also let ρ1 ≥ ρ2 ≥ · · · ≥ ρn be

non-increasing eigenvalues of graph G. If G has diameter at least 3, then ρ1 > ρ2 > 0

and ρn < 0.

Proof: By Perron-Frobenius theorem, we have ρ1 > ρ2. Since G has diameter at least

3, P4 is an induced subgraph of G. Therefore we have ρ2(G) ≥ ρ2(P4) ≈ 0.618 and

ρn(G) ≤ ρ2(K2) = −1. This proves the lemma.

Lemma 1.2. [2] Let G be a connected graph with the largest eigenvalue λ1. Then G is

bipartite if and only if −λ1 is an eigenvalue of G.

Lemma 1.3. Let G be a graph of order n (> 1) with m edges. Then |λ1| = |λ2| = · · · =
|λk−1| = |λk| > 0 (k ≥ 2) and the remaining eigenvalues are zero (if exists) if and only if

G ∼= pK1 ∪ ∪qi=1 Kai, bi, where
q∑
i=1

(ai + bi) + p = n with ai · bi = m/q, i = 1, 2, . . . , q

(k = 2q).

Proof: If G ∼= pK1 ∪ ∪qi=1 Kai, bi , where
q∑
i=1

(ai + bi) + p = n with ai · bi = m/q, i =

1, 2, . . . , q (k = 2q), then |λ1| = |λ2| = · · · = |λk−1| = |λk| > 0 (k ≥ 2) and the remaining

eigenvalues are zero (if exists) hold. Conversely, let

|λ1| = |λ2| = · · · = |λk−1| = |λk| > 0 (k ≥ 2) (3)
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and the remaining eigenvalues are zero (if exists). Then each connected component

contain at most three distinct eigenvalues (the magnitude of the non-zero eigenvalues are

same) except isolated vertices. Let G1, G2, . . . , Gq be the q (≥ 1) connected components

in G except isolated vertices. Then by Lemma 1.2, from (3), Gi (1 ≤ i ≤ q) is bipartite.

If any one Gi (1 ≤ i ≤ q) is not complete bipartite, then the diameter of Gi is at least 3.

By Lemma 1.1, we can get a contradiction. Otherwise, each Gi (1 ≤ i ≤ q) is complete

bipartite Kai, bi , i = 1, 2, . . . , q. By (3), we conclude that ai · bi = m/q, i = 1, 2, . . . , q

with k = 2q. Therefore G ∼= pK1 ∪∪qi=1 Kai, bi , where
q∑
i=1

(ai + bi) + p = n with ai · bi =

m/q, i = 1, 2, . . . , q (k = 2q).

Corollary 1.4. Let G be a graph of order n (> 1). Then |λ1| = |λ2| = · · · = |λn−1| =

|λn| > 0 if and only if G ∼= n
2
K2 (n is even).

Proof: Setting k = n in Lemma 1.3, we get the required result.

Lemma 1.5. [1] Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers for which there exist

real constants a, b, A and B, so that for each i, i = 1, 2, . . . , n, 0 < a ≤ ai ≤ A and

0 < b ≤ bi ≤ B. Then the following inequality is valid:∣∣∣∣∣n
n∑
i=1

ai bi −
n∑
i=1

ai

n∑
i=1

bi

∣∣∣∣∣ ≤ α(n) (A− a) (B − b), (4)

where α(n) = n
[
n
2

] (
1− 1

n

[
n
2

])
. Moreover, the equality holds in (4) if and only if a1 =

a2 = · · · = an and b1 = b2 = · · · = bn.

Caporossi et al. [3] discovered the following simple lower bound:

Lemma 1.6. [3] For a graph G with m edges.

E(G) ≥ 2
√
m (5)

with equality holding if and only if G consists of a complete bipartite graph Ka, b such that

a · b = m and arbitrarily many isolated vertices.

Theorem 1.7. Let G be a graph of order n with m edges. Also let |λ1| ≥ |λ2| ≥ · · · ≥
|λk−1| ≥ |λk| (k ≤ n) be k non-zero eigenvalues of G. Then

E(G) ≥
√

max
{

4m, 2mk − α(k) (|λ1| − |λk|)2
}
, (6)

where α(k) = k
[
k
2

] (
1− 1

k

[
k
2

])
, while [x] denotes integer part of a real number x. More-

over, the equality holds in (6) if and only if G ∼= pK1∪∪qi=1 Kai, bi, where
q∑
i=1

(ai+bi)+p =

n with ai · bi = m/q, i = 1, 2, . . . , q (k = 2q).
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Proof: If G ∼= nK1 ( or k = 0), then m = 0 and E(G) = 0. Hence the equality holds in

(6). Otherwise, there is at least one edge in G, that is, k ≥ 2. Let |λ1| ≥ |λ2| ≥ · · · ≥
|λk−1| ≥ |λk| be the k (2 ≤ k ≤ n) non-zero eigenvalues of G. Then we have

E(G) =
k∑
i=1

|λi| and
k∑
i=1

|λi|2 =
n∑
i=1

|λi|2 =
n∑
i=1

λ2i = 2m. (7)

By Cauchy-Schwarz inequality with the above result, we have

E(G)2 =

(
k∑
i=1

|λi|

)2

≤ 2mk. (8)

Setting ai = |λi|, bi = |λi|, a = b = |λk| and A = B = |λ1|, i = 1, 2, . . . , k, inequality (4)

becomes ∣∣∣∣∣∣k
k∑
i=1

|λi|2 −

(
k∑
i=1

|λi|

)2
∣∣∣∣∣∣ ≤ α(k) (|λ1| − |λk|)2 .

By (7) and (8), from the above, we get

2mk − E(G)2 ≤ α(k) (|λ1| − |λk|)2 . (9)

By (5) with the above result, we get the required result in (6). The first part of the proof

is done.

By Lemma 1.5, the equality holds in (9) if and only if |λ1| = |λ2| = · · · = |λk−1| =

|λk| > 0 (k ≥ 2) and the remaining eigenvalues are zero (if exists). By Lemma 1.6, we

have E(G) = 2
√
m if and only if G consists of a complete bipartite graph Ka, b such that

a · b = m and arbitrarily many isolated vertices. From these results with Lemma 1.3,

we conclude that the equality holds in (6) if and only if G ∼= pK1 ∪ ∪qi=1 Kai, bi , where
q∑
i=1

(ai + bi) + p = n with ai · bi = m/q, i = 1, 2, . . . , q (k = 2q).

Already we have mentioned that sometimes the lower bounds on E(G) in [7, 11] are

imaginary. We now revise these lower bounds in the following:

Corollary 1.8. [7, 11] Let G be a graph of order n with m edges. Let |λ1| ≥ |λ2| ≥ · · · ≥
|λn−1| ≥ |λn| be non-increasing non-zero eigenvalues of G. Then

E(G) ≥
√

max
{

4m, 2mn− α(n) (|λ1| − |λn|)2
}

≥
√

max
{

4m, 2mn− n2

4
(|λ1| − |λn|)2

}
, (10)

where α(n) = n
[
n
2

] (
1− 1

n

[
n
2

])
, while [x] denotes integer part of a real number x.
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In [11], Milovanović et al. obtained another result on E(G):

Lemma 1.9. [11] Let G be a graph of order n with m edges. Also let |λ1| ≥ |λ2| ≥ · · · ≥
|λn−1| ≥ |λn| > 0 be a non-increasing arrangement of eigenvalues of G. Then

E(G) ≥ |λ1| |λn|n+ 2m

|λ1|+ |λn|
(11)

with equality holding if and only if G ∼= Kn .

The characterization of extremal graph is wrong. For G ∼= Kn, we have |λ1| = |λ2| =
· · · = |λn−1| = |λn| = 0 and the right side of (11) does not exist. Moreover, it is mentioned

in the statement that |λ1| = |λ2| = · · · = |λn−1| = |λn| > 0, a contradiction.

We have corrected the above result:

Theorem 1.10. Let G be a graph of order n with m edges. Let |λ1| ≥ |λ2| ≥ · · · ≥
|λn−1| ≥ |λn| > 0 be a non-increasing arrangement of eigenvalues of G. Then

E(G) ≥ |λ1| |λn|n+ 2m

|λ1|+ |λn|
(12)

with equality holding if and only if |λi| = |λn| or |λi| = |λ1| for any i = 1, 2, . . . , n.

Proof: We have |λn| ≤ |λi| ≤ |λ1|, for any i = 1, 2, . . . , n, that is,

(|λi| − |λn|) (|λi| − |λ1|) ≤ 0. (13)

From the above inequality, we get

n∑
i=1

(
|λi|2 − (|λ1|+ |λn|) |λi|+ |λ1| |λn|

)
≤ 0,

that is,

2m− (|λ1|+ |λn|)E(G) + n |λ1| |λn| ≤ 0,

which gives the required result in (12). Moreover, the equality holds in (12) if and only

if the equality holds in (13), that is, if and only if |λi| = |λn| or |λi| = |λ1| for any

i = 1, 2, . . . , n.

Remark 1.11. The equality holds in (12) if and only if |λi| = |λn| or |λi| = |λ1| for any

i = 1, 2, . . . , n. Suppose that G has either |λi| = |λn| or |λi| = |λ1| for any i = 1, 2, . . . , n.

Then G has at most four distinct eigenvalues. For two distinct eigenvalues of graph G,

each connected component is complete graph Kp in G such that p·q = n, where q (q ≥ 1) is

the number of connected components. Cvetković et al. [4, p. 166] proved that a connected
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bipartite regular graph with four distinct eigenvalues must be the incidence graph of a

symmetric 2 − (ν, k, λ) design (for definition of a 2 − (ν, k, λ) design, see [4, 10]).

Moreover, its spectrum is{
k,
√
k − ν, . . . ,

√
k − ν︸ ︷︷ ︸

ν−1

,−
√
k − ν, . . . , −

√
k − ν︸ ︷︷ ︸

ν−1

, −k

}
.
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[3] G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search
for extremal graphs. 2. Finding graphs with extremal energy, J. Chem. Inf. Comput.
Sci. 39 (1999) 984–996.
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