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Abstract

The energy of a graph G is defined as the sum of the absolute values of all eigen-

values of the adjacency matrix of G. A graph is said to be borderenergetic if

its energy is equal to that of the complete graph of the same order. In the first

part of the paper, we study the existence of borderenergetic chemical graphs (a

graph is chemical if it has a maximum degree at most 4). We show that there is

no borderenergetic graph with maximum degree at most 3. We then provide five

necessary conditions for borderenergetic graphs with maximum degree 4, and as

a result, we show that there is no borderenergetic graph with maximum degree

4 and order n ≥ 22. In the second part, we consider a problem contrary to the

first part, i.e., borderenergetic graphs with large minimum degrees. We show that

there is no borderenergetic graph of order n with minimum degree n− 2. We then

construct two families of borderenergetic graphs with minimum degree n − 3 and

n − 4, respectively, the former is for all integers n ≥ 7 while the latter is for all

even numbers n ≥ 8.

1 Introduction

In this paper, all graphs are simple, undirected and finite. For notation and terminology

we follow the book [2]. The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of the adjacency matrix of a

graph G are said to be the eigenvalues of the graph G. These eigenvalues together with

their multiplicities form the spectrum of the graph G, which is abbreviated as Sp(G) in

the following. We refer the book [3] for further details.

The energy of a graph G, denoted by E(G), is defined as the sum of the absolute values

of the eigenvalues of G. This concept has aroused wide attention owing to its remarkable

practical application value in chemistry. It is also closely related to many aspects in
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graph theory and has been deeply studied. Tremendous results have been obtained and

displayed in books [9] and [14], together with the paper [7].

It is well known that the complete graph of order n has energy 2n− 2. A graph G of

order n is said to be borderenergetic if E(G) = 2n− 2 = E(Kn). A borderenergetic graph

is called noncomplete if it is not a complete graph. This concept was introduced in [8] for

the first time. Plenty of basic properties on the borderenergetic graphs have been derived

in recent papers; see [5, 8, 11]. In [8], all noncomplete borderenergetic graphs of orders

7, 8 and 9 were presented. Furthermore, they also put forward effective tools to build

borderenergetic graphs. In addition, we in [15] and Shao and Deng in [20] searched out

all the borderenergetic graphs on 10 and 11 vertices by computers. Nikiforov [17] in 2007

showed that for almost all graphs,

E =
( 4

3π
+ o(1)

)
n

3
2 .

Thus the ratio of borderenergetic graphs is rather small according to the above equation.

Many results on graph energy are closely related to their maximum or minimum

degrees. For instance, Nikiforov [18] obtained the following result: Let G be a graph

of order n with at least n edges and no isolated vertices. If G is C4-free and ∆(G) ≤ 3,

then E(G) > n. In [13], Li and Ma proved that there are exactly 4 connected graphs with

maximum degree ∆ ≤ 3 whose energies are equal to the number of vertices. This reminds

us that we can think over the problem of borderenergetic graphs in view of maximum and

minimum degrees. Moreover, chemical graphs also have the restriction on the maximum

degrees, i.e., their maximum degrees are at most 4. So, results on graphs with small

maximum degrees would have some chemical applications.

After the preliminary Section 2, we show in Section 3 that there is no borderenergetic

graph with maximum degree at most 3. We then provide five necessary conditions for

borderenergetic graphs with maximum degree 4, and as a result, we show that there is no

borderenergetic graph with maximum degree 4 and order n ≥ 22. So, a borderenergetic

graph with maximum degree 4 must have an order n such that n ≤ 21. Unfortunately, we

cannot search out all of them because we do not have fast enough computers. In Section

4, we consider a problem contrary to that in Section 3, i.e., borderenergetic graphs with

large minimum degrees. We show that there is no borderenergetic graph of order n with

minimum degree n − 2. We then construct two families of borderenergetic graphs with

minimum degree n − 3 and n − 4, respectively, the former is for all integers n ≥ 7 while

the latter is for all even numbers n ≥ 8.
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2 Preliminaries

The following are some elementary results on the spectra or energy of graphs, which will

be used in the sequel.

Lemma 2.1 [16] For an (n,m)-graph G,

E(G) ≤
√

2mn

with equality if and only if G is either an empty graph or a regular graph of degree 1, i.e.,

G ∼= (n/2)K2.

Lemma 2.2 [14] Let G be an (n,m)-graph. If 2m ≥ n, then

E(G) ≤ 2m

n
+

√√√√(n− 1)

[
2m−

(
2m

n

)2
]
.

Moreover, equality holds if and only if G consists of n/2 copies of K2, or G ∼= Kn or

G is a noncomplete connected strongly regular graph with two nontrivial eigenvalues both

having absolute values equal to
√

2m− (2m/n)2/(n− 1).

Lemma 2.3 [14] For a partitioned matrix C =

[
A X

Y B

]
where both A and B are

square matrices, we have∑
j

sj(A) +
∑
j

sj(B) ≤
∑
j

sj(C) .

Equality holds if and only if there exist unitary matrices U and V such that the matrix[
UA UX

V Y V B

]
is positive semidefinite, where sj(M) denotes the singular values of matrix

M .

Lemma 2.4 [4] Let k ≥ 2, and let Γ be a k-regular graph of order n. Then the energy

per vertex of Γ (the average energy E(Γ)
n

) is at most

k + (k2 − k)
√
k − 1

k2 − k + 1
,

with equality if and only if Γ is the disjoint union of incidence graphs of projective planes

of order k − 1 or, in case k = 2, the disjoint union of triangles and hexagons. For

n = q2 + q+ 1, let π be a finite projective plane of order q with point set P = {p1, · · · , pn}

and line set L = {l1, · · · , ln}. A bipartite graph G with partitions (P,L) is said to be the

incidence point-line graph of the projective plane π if for all i, j ∈ {1, · · · , n}, pilj is an

edge of G if and only if pi ∈ lj.
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Lemma 2.5 [1] (i) A graph Γ is bipartite if and only if for each eigenvalue θ of Γ, −θ

is also an eigenvalue, with the same multiplicity.

(ii) If Γ is connected with largest eigenvalue θ1, then Γ is bipartite if and only if −θ1

is an eigenvalue of Γ.

Lemma 2.6 [1] Let Γ be a connected graph with largest eigenvalue θ1. If Γ is regular of

valency k, then θ1 = k. Otherwise, we have kmin < k < θ1 < kmax where kmin, kmax and

k are the minimum, maximum and average degree.

Another little trick which will be used in our proof is stated as follows:

Lemma 2.7 [21] We set fk(x1, x2, · · · , xt) = xk1 + xk2 + · · · + xkt , where k is a positive

integer, x1 ≥ x2 ≥ x3 · · · ≥ xt ≥ 0 and
∑t

i=1 xi = m. If xi − xj ≥ 2α > 0 for some i and

j, then for k ≥ 2 we have

fk(x1, x2, · · · , xi, · · · , xj, · · · , xt) > fk(x1, x2, · · · , xi − α, · · · , xj + α, · · · , xt) .

Lemma 2.8 [6] Let G = (V,E) be the given graph and for any S ⊆ V , we denote by

emin(S) the minimum number of edges that need to be removed from the induced subgraph

on S to make it bipartite. Also, we denote by cut(S) the set of edges with one end in S

and the other in V − S, and we define the parameter Ψ as

Ψ = min
S⊆V

emin(S) + |cut(S)|
|S|

.

Suppose Ψ is the parameter defined as above. Then if G is d-regular, the smallest eigen-

value of its adjacency matrix A is bounded above as µ1(A) ≤ −d + 4Ψ, where µ1(A)

denotes the smallest eigenvalue of the adjacency matrix A.

We denote by m = e(Γ) the number of edges of graph Γ, i.e, the size of Γ, and n = |Γ|

the order of Γ, similarly hereafter. It is well known that for the graph Γ, the sum of its

eigenvalues is equal to the trace of Γ, that is,
∑n

i=1 λi = 0, and the sum of the square

of its eigenvalues is equal to two times of its size, that is,
∑n

i=1 λ
2
i = 2m, which is an

essential tool in the proof.

3 Borderenergetic chemical graphs

This section is to consider borderenergetic graphs with small maximum degrees, i.e.,

∆ ≤ 4. This kind of graphs are also addressed as chemical graphs. Our results are as

follows.
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Theorem 3.1 There is no noncomplete borderenergetic graph with maximum degree ∆ =

2 or 3.

Proof. We distinguish two cases according to different maximum degrees.

Case 1. Let K be a borderenergetic (n,m)-graph with maximum degree ∆ = 2. Then

2m ≤ 2n. We only need to make use of Lemma 2.1, after simple calculation, we obtain

that E(K) ≤
√

2n. For n ≥ 4,
√

2n < 2n − 2, then certainly there is no borderenergetic

graphs in this scope. Since ∆ = 2, |K| ≥ 3, so we only need to examine P3. The energy

of P3 is 2
√

2, which do not meet our expectation, and the proof of this part is done.

Case 2. Let N be a borderenergetic (n,m)-graph with maximum degree ∆ = 3. Then

2m ≤ 3n. Similarly we use Lemma 2.1 and get E(N) ≤
√

3n. For n ≥ 8,
√

3n < 2n− 2,

so we only need to examine graphs with order 4 ≤ n ≤ 7. As the spectrum of a graph

is the union of the spectrum of all its connected components, so we first suppose the

graph N we considered is connected and then 2m ≥ n. As the inequality in Lemma 2.2,

F (m) = 2m
n

+
√

(n− 1)[2m− (2m
n

)2] is an increasing function in the variable m ∈ [0, 3n
2

].

Set m = 3
2
n, we obtain that E(N) ≤ 3 +

√
(n− 1)(3n− 9), which is strictly less than

2n− 2 except for the situation n = 4, whereas n = 4 suggests that it is a complete graph

so we now finish the circumstance when N is connected. If N is not connected, there

certainly exists a connected component J with energy no less than 2|J | − 2. According

to the above discussion, none of these graphs exist so the analysis is done.

Theorem 3.2 (1) Let G be a noncomplete borderenergetic graph of order n with ∆ = 4.

Then G must have the following properties:

(i) e(G) = 2n or 2n− 1;

(ii) |G| ≤ 21;

(iii) G is non-bipartite;

(iv) the nullity, i.e., the multiplicity of eigenvalue 0, of G is 0.

(2) Let G be a 4-regular noncomplete borderenergetic graph of order n and H is a maximal

bipartite subgraph of G. Then e(G)− e(H) ≥ 3.

We will successively prove the four properties of borderenergetic graph G with maxi-

mum degree 4. Obviously, we have n ≥ 5.

Proof of (i): Since G has maximum degree 4, it has size m ≤ 2n. By Lemma

2.2, we have 2n − 2 ≤ 2m
n

+
√

(n− 1)[2m− (2m
n

)2]. This inequality implies that m ∈

{2n− 2, 2n− 1, 2n} and the equality holds when m = 2n− 2. However, a borderenergetic
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graph satisfying the conditions listed in Lemma 2.2 is no doubt impossible to exist because

the borderenergetic graph G with 2n−2 edges can neither be n/2 copies of K2 nor a non-

complete connected strongly regular graph. Hence m ∈ {2n − 1, 2n} and G is either

4-regular or have size one smaller than 4-regular graph.

Proof of (ii): Firstly we deal with the case when G is 4-regular. Substitute 4 for

k in the inequality of Lemma 2.4, we get that the energy per vertex in G is no more

than 12
√

3+4
13

, which implies that E(G) ≤ 12
√

3+4
13

n. Since 12
√

3+4
13

n < 2n − 2 when n ≥ 22,

naturally |G| ≤ 21. As for the non-regular graphs with 2n− 1 edges, they must have all

vertices of degree 4 except for two vertices of degree 3 or one vertex of degree 2. Thus we

distinguish borderenergetic graphs of size 2n− 1 into two subclasses to analyze.

Suppose G is a borderenergetic (n,m)-graph with all vertices of degree 4 except for two

vertices of degree 3. Take a copy of G and denote it by G′. Let u and v be the two vertices

of degree 3 in G and the corresponding ones in G′ are called u′ and v′, respectively. As is

depicted in Figure 3.1, we join an edge between u and u′, v and v′, respectively. Clearly

we have constructed a new 4-regular graph called P with G and G′ being its two disjoint

induced subgraph. According to Lemma 2.3, we have E(G)+E(G′) ≤ E(P ) ≤ 12
√

3+4
13

(2n).

As a result, E(G) ≤ 12
√

3+4
13

n. Applying the above analysis we know that graphs with all

vertices of degree 4 except for two vertices of degree 3 can also be limited to the same

scope with 4-regular graphs.

Suppose G is a borderenergetic (n,m)-graph with all vertices of degree 4 except for

one vertex of degree 2 denoted by ω. Similarly we take a copy of G denoted by G′ with the

corresponding vertex ω′. Following the above procedure we join an edge between ω and

ω′ (see Figure 3.1). Then we obtain a new graph Q of order 2n with all vertices of degree

4 except for two vertices of degree 3. The above analysis suggests E(Q) ≤ 12
√

3+4
13

(2n)

and then E(G) ≤ 12
√

3+4
13

n. Therefore, we come to a conclusion that |G| ≤ 21 in whatever

cases.

Proof of (iii): We can notice from Lemma 2.7 that if the sum of a group of positive

numbers is a constant, then the more average these numbers are, the smaller the sum of

their square can be. Here we consider the singular values {s1, s2, · · · , sn} of G instead of

{λ1, λ2, · · · , λn} and denote by S+ the sum of all positive eigenvalues apart from λ1, S−

the sum of all absolute value of non-positive eigenvalues except λn. Next we will come to

the property that G is non-bipartite by contradiction. Inspired from (i), we consider this

part depending on e(G) = 2n, 2n− 1, respectively.
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G G′

u

v

u′

v′

w

P

G G′

Q

w′

Figure 3.1: Two classes of graphs constructed in the proof of (ii)

Firstly, we assume that G is a 4-regular bipartite borderenergetic (n,m)-graph. Ob-

viously, we have m = 2n and λ1(G) = 4. According to Lemma 2.5, λn(G) = −4. As∑n
k=1 λk(G) = 0 and E(G) = 2n − 2, the sum of all positive eigenvalues of G is n − 1

and the sum of all negative eigenvalue is −n + 1, so S+(G) = S−(G) = n − 5. We then

distribute these sums such that the singular values are as average as possible. For n even,

surely G have singular eigenvalue 4 with multiplicity 2, 2n−10
n−2

with multiplicity n − 2,

and then
∑n

i=1 λ
2
i =

∑n
i=1 s

2
i = 4(n−5)2

n−2
+ 32 which is strictly greater than 2m = 4n, a

contradiction. We claim that there is no (X, Y )-bipartite regular graph with odd order.

Suppose not, since the sums of the degrees of vertices in X and Y are equal which implies

|X| = |Y |, we obtain that n = 2|X| = 2|Y | is even, a contradiction.

Suppose G is a bipartite borderenergetic graph of order n and size m = 2n − 1. We

adopt the same method as the above situation. According to Lemma 2.6, λ1(G) > 2m
n

=

4 − 2
n
. In order to achieve our goal of distributing the singular values as average as

possible, we set λ1(G) = 4 − 2
n

and λn(G) = −4 + 2
n
. When n is even, similar to the

way we distribute above,
∑
λ2
i =

∑
s2
i >

4(n−5+ 2
n

)2

n−2
+ 2(4− 2

n
)2, which is strictly greater

than 2m = 4n−2, a contradiction. Next we claim that there is no (X, Y )-bipartite graph

with odd order n and size 2n − 1. If not, we denote by j the sum of degrees of vertices

in X while l in Y . Then it is well known that j = l = 2n − 1. Consider that G have

all vertices of degree 4 except for a vertex of degree 2 or two vertices of degree 3. In the

former case, without loss of generality, assume that the vertex of degree 2 is in X, then

j = 2 (mod 4) 6= 0 (mod 4) = l, a contradiction. While in the latter case, X and Y must

each contains one vertex of degree 3 and the same number of vertices of degree 4 which

imply that |X| = |Y |, also a contradiction.

Proof of (iv): Firstly, we assume that G is a 4-regular borderenergetic (n,m)-graph

containing 0 as its eigenvalue with multiplicity k. Then on the basis of the rule of “av-
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erage”, we figure out the possible smallest value for
∑n

i=1 λ
2
i is when G has eigenvalue 4

with multiplicity 1 and 0 with multiplicity k, and all others with absolute value 2n−6
n−k−1

.

Hence in this case
∑n

i=1 λ
2
i = 4(n2−6n+9)

n−k−1
+16, which is strictly greater than 2m = 4n when

k ≥ 1, a contradiction. Thus we come to a conclusion that the nullity of G is 0. Next we

assume that G is non-regular, again Lemma 2.6 suggests that λ1(G) > 2m
n

= 4− 2
n
. Then

the most average distribution is eigenvalue 4− 2
n

with multiplicity 1, 0 with multiplicity

k and all others with absolute value
2n−6+ 2

n

n−k−1
, while G can not reach this. Then

∑n
i=1 λ

2
i >

(4− 2
n
)2+

(2n−6+ 2
n

)2

n−k−1
= 4n−2+ 2

n−k−1

[
2nk−n−9k− 2

n
+ 8k

n
− 2k

n2 +5
]
. Since 0 < 2k

n2 < 1, then

4n−2+ 2
n−k−1

[
2nk−n−9k− 2

n
+ 8k

n
− 2k

n2 +5
]
> 4n−2+ 2

n−k−1

[
2nk−n−9k+4+ 8k−2

n

]
.

Set f(k) = 2nk − n − 9k + 4 + 8k−2
n

, then f ′(k) = 2n − 9 + 8
n
> 0 and so f(k) is

an increasing function on k ≥ 1. Therefore, f(k) ≥ f(1) = n − 5 + 6
n
> 0 and thus∑n

i=1 λ
2
i > 4n− 2 + 2

n−k−1

[
2nk − n− 9k + 4 + 8k−2

n

]
> 4n− 2, which contradicts to that∑n

i=1 λ
2
i = 2m = 4n− 2. To sum up, G must have nullity 0 in all cases we talk about.

Proof of (2): For a 4-regular borderenergetic (n,m)-graph G with λn(G) = x, the

most average distribution for the eigenvalues of G is to have eigenvalue 4 with multi-

plicity 1, x with multiplicity 1 and all others with absolute value 2n−6+x
n−2

. Then we have

(2n−6+x)2

n−2
+ x2 + 16 ≤

∑n
i=1 λ

2
i = 2m = 4n. Solve this inequality and we obtain that

x ∈
(

6−2n−2
√
n2−7n+10

n−1
, 6−2n+2

√
n2−7n+10

n−1

)
. Obviously, x = 6−2n−2

√
n2−7n+10

n−1
is absolutely

the smallest possible value for x. According to Lemma 2.8, 6−2n−2
√
n2−7n+10

n−1
≤ −4 + 4Ψ,

whereas Ψ ≤ emin(V )+|cut(V )|
|V | = emin(V )

n
, hence 6−2n−2

√
n2−7n+10

n−1
≤ −4 + 4emin(V )

n
. Solve

this inequality and we get emin(V ) > 9
4

+ 11
4(n−4)

, which suggests that emin(V ) ≥ 3. This

suggests that e(G)− e(H) ≥ 3.

The proof is now complete.

Remark 1 The noncomplete borderenergetic graphs of order n ≤ 11 can be singled out

from [8, 15, 20]. There are only two of them with maximum degree ∆ = 4; see G1, G2

(depicted in Figure 3.2). In addition, Theorem 3.2 implies that a noncomplete borderen-

ergetic graph with ∆ = 4 except for G1, G2 must be non-bipartite and has an order n such

that 12 ≤ n ≤ 21, and a size m such that m = 2n or 2n − 1, and has nullity 0. Unfor-

tunately, we cannot completely give all noncomplete borderenergetic graphs with ∆ = 4

because our computers are not fast enough to search out all of them. The reader(s) can

try to search them with some better computers and computing techniques.

-32-



G1 G2

Figure 3.2: Two noncomplete borderenergetic graphs of order n ≤ 11 and ∆ = 4.

4 Borderenergetic graphs with δ ≥ n− 4

The above section only considered borderenergetic graphs with small maximum degrees,

which has applications for chemical graphs. This section is to consider borderenergetic

graphs with large minimum degrees.

Lemma 4.1 [12] Let A ∈ M0
n, n ≥ 2, where M0

n = {A = (aij) ∈ Rn : A = AT , 0 ≤

aij ≤ 1 and aii = 0 for 1 ≤ i, j ≤ n, } Set A′ = Jn − In −A, where Jn denotes the n× n

matrix of all ones and In the identity matrix of order n. Then

λ2(A) ≤ λ1(A′)− 1 .

Furthermore, equality holds if and only if either A = Jn− In, i.e, A′ = 0, or, for a certain

nonempty subset K ⊆ 〈n〉 = {1, 2, · · · , n}, the following conditions are fulfilled:

(i) A′[K] is an irreducible component of A′, where A′[K] denotes the principle submatrix

of A′ with row and column indices in K;

(ii) λ1(A′[K]) = λ1(A′);

(iii) A′[K] is a 2-cyclic matrix, i.e, for a certain nonempty subset S ⊆ 〈n〉 and S = 〈n〉\S,

then we have A[S] = 0 and A[S] = 0 ;

(iv) there is a nonzero vector x ∈ Rn such that

A′x = λn(A′)x and eTx = 0

where e = [1, 1, · · · , 1]T ∈ Rn.

Lemma 4.2 [10] Let G be a k-regular graph of order n with spectrum Sp(G) ={k, λ2, · · · , λn}.

Then the spectrum of the complement G of G is Sp(G) = {n−1−k,−1−λ2, · · · ,−1−λn}.

Lemma 4.3 [8] Let p, q and r be non-negative integers, and let p + q = 2. Then

pC4

⋃
qC6

⋃
rC3 is borderenergetic.
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Lemma 4.4 [8] The smallest noncomplete borderenergetic graph has n = 7 vertices and

is unique. There exist (exactly) six noncomplete borderenergetic graphs of order 8, five of

which have minimum degree δ = 4 = n− 4 and one noncomplete borderenergetic graph of

order 9 with minimum degree δ = 6 = n− 3.

Theorem 4.5 No borderenergetic graphs have minimum degree n− 2. Besides, for each

integer n ≥ 7, there exists a connected noncomplete borderenergetic graph of order n

with minimum degree n − 3 and for each even integer n ≥ 8, there exists a noncomplete

borderenergetic graph of order n with minimum degree n− 4.

Proof. We distinguish three cases according to different minimum degrees.

Case 1. Let G be a borderenergetic (n,m)-graph with minimum degree n − 2. Ap-

plying Lemma 2.6, we have n− 2 ≤ λ1(G) < n− 1 because its maximum degree can not

exceed n − 1. Taking Lemma 4.1 into consideration, we know that λ2(G) ≤ λ1(G) − 1.

Since G has minimum degree n−2, then G must be a matching. Additionally, a matching

has half of its eigenvalues 1 and the other half −1, so we have λ2(G) ≤ 0. It is well known

that
∑n

i=1 λi(G) = 0, so the sum of the absolute values for all positive and negative eigen-

values should be equal, that is, the sum of all positive values is n − 1 = λ1(G), which is

a contradiction.

Case 2. What the construction given in Lemma 4.3 produces are all (n− 3)-regular

graphs. Notice that the case for p = 1 and q = 1 constructs graphs with order n ≥ 10 and

n = 1 (mod 3), p = 2 and q = 0 contributes to graphs with order n ≥ 8 and n = 2 (mod 3),

p = 0 and q = 2 obtains graphs with order n ≥ 12 and n = 0 (mod 3). From Lemma

4.4 we know that for orders 7 and 9, there also exists graphs satisfying the demands, and

then we finish this part.

Case 3. Now we concentrate our minds on constructing (n−4)-regular borderenergetic

integral graphs. Similar to our discussion above, G must have sum of all its positive

eigenvalues n− 1, whereas it has λ1 = n− 4 so the addition of other positive eigenvalues

is 3. Obviously G is a union of cubic graphs and it must have the smallest eigenvalue −2

with multiplicity 3 or eigenvalues −2 and −3 both with multiplicity 1. Referring to [19],

we know that there are three integral cubic graphs having the above property. These

three graphs are depicted in Figure 4.3, denoted by G1, G2 and G3. Easy to see that

|V (G1)| = |V (G2)| = 10 and |V (G3)| = 12. Now we construct a class of new graphs

as G = pG1

⋃
qG2

⋃
rG3

⋃
sK4, where p, q, r and s are all non-negative integers and

p+ q + r = 1. One can easily check that G is borderenergetic.
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G1 G2

G3

Sp(G1) = {3, 2, 12, 02,−12,−2,−3} Sp(G2) = {3, 2, 13,−12,−23}

Sp(G3) = {3, 23, 02,−13,−23}

Figure 4.3: Graphs for Theorem 4.5.

Put r = 0 and p = 1 or q = 1, we construct borderenergetic graphs with order n ≥ 10

and n = 2 (mod 4), the condition of r = 1, p = q = 0 create borderenergetic graphs with

order n ≥ 12 and n = 0 (mod 4). According to Lemma 4.4, borderenergetic graph of

order 8 with desired property also exists. Graphs of order 6 can certainly be ignored since

the smallest noncomplete borderenergetic graph has order 7 due to Lemma 4.4. Thus the

proof is complete.
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