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Abstract

The n-tuple of Laplacian eigenvalues of a graph majorizes the n-tuple of its
degrees. This simple fact allows us to obtain a set of inequalities - some known,
some new - for several descriptors given in terms of the Laplacian eigenvectors, in
a unified manner.

1 Introduction

Let G = (V,E) be a finite simple connected graph with vertex set V = {1, 2, . . . , n},

degrees d1 ≥ d2 ≥ · · · ≥ dn, and dG = 2|E|
n

the average degree. We consider A to be the

adjacency matrix of G, D the diagonal matrix whose diagonal elements are the degrees

of G and L = D − A the Laplacian matrix of G, with eigenvalues λ1 ≥ ... ≥ λn−1 ≥

λn = 0. There are several descriptors in Mathematical Chemistry defined in terms of

these eigenvalues; among them we will work with the the Laplacian energy like invariant

introduced in [8]:

LEL(G) =
n−1∑
i=1

√
λi, (1)

and its generalization

LELβ(G) =
n−1∑
i=1

λβi , (2)
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for an arbitrary real number β 6= 0, 1; we will also look at the Kirchhoff index R(G),

introduced in [7] and defined by

R(G) =
∑
i<j

Rij,

where Rij is the effective resistance between the vertices i and j, but which can be written

as (see [4] and [14])

R(G) = n
n−1∑
i=1

1

λi
, (3)

and finally we will look at the Laplacian energy defined first in [5] as

LE(G) =
n∑
i=1

|λi − dG|. (4)

The main ideas around majorization can be summarized thus: given two n-tuples x =

(x1, . . . , xn) and y = (y1, . . . , yn) with x1 ≥ x2 . . . ≥ xn and y1 ≥ y2 . . . yn, we say that x

majorizes y and write x � y in case

k∑
i=1

xi ≥
k∑
i=1

yi, (5)

for 1 ≤ k ≤ n− 1 and
n∑
i=1

xi =
n∑
i=1

yi. (6)

A Schur-convex function Φ : R → R keeps the majorization inequality, that is, if Φ

is Schur-convex then x � y implies Φ(x) ≥ Φ(y). Likewise, a Schur-concave function

reverses the inequality: for this type of function x � y implies Φ(x) ≤ Φ(y). A simple

way to construct a Schur-convex (resp. Schur-concave) function is to consider

Φ(x) =
n∑
i=1

f(xi),

where f : R → R is a convex (resp. concave) one-dimensional real function. For more

details on majorization the reader is referred to [9].

Many descriptors in Mathematical Chemistry, as (1), (2), (3) and (4), are defined

with Schur-convex or Schur-concave functions, and this fact has been exploited in several

works (see [2], [11], and their references) in order to find a variety of upper and lower

bounds for the descriptors. In this article we use these ideas of majorization, and instead

of looking for minimal or maximal elements of appropriate subsets of Rn, we use the basic

knowledge that the n-tuple of Laplace eigenvalues majored the n-tuple of degrees in order

to find in a unified manner, with almost trivial proofs, a number of inequalities found in

the literature, as well as some new ones.
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2 The inequalities

Here is a fact that is presented in the nice review [1] and that deserves to be better known:

Lemma 1 For any G we have

(i) (λ1, . . . , λn) � (d1, . . . , dn);

(ii) (λ1, . . . , λn) � (d1 + 1, d2, . . . , dn−1, dn − 1).

Part (ii) of the previous lemma implies the following one. Notice the subtle difference

that whereas in the previous one the vectors are in Rn, in the next the vectors are in

Rn−1.

Lemma 2 If G has at least one pendant vertex then we have

(iii) (λ1, . . . , λn−1) � (d1 + 1, d2, . . . , dn−1).

Now we apply (i), (ii) and (iii) to the descriptors in the introduction. Starting with

the Laplacian energy like invariant, which is defined with a Schur-concave function, we

have that (i) implies that for all G

LEL(G) =
n∑
i=1

√
λi ≤

n∑
i=1

√
di.

Now using the Cauchy-Schwarz inequality we can bound the above with√√√√ n∑
i=1

di

n∑
i=1

1 =
√

2|E|n.

Also, applying (iii) we obtain that for any G with at least one pendant vertex we have

LEL(G) =
n−1∑
i=1

√
λi ≤

√
d1 + 1 +

n−1∑
i=2

√
di.

Applying the Cauchy-Schwartz inequality once more, we can bound the above with√√√√(d1 + 1 +
n−1∑
i=2

di

)
n−1∑
i=1

1 =
√

2|E|(n− 1). (7)

We see that in this case majorization produces a weak result, because the bound (7) is

known to hold for any G, not just for graphs with some pendant vertex (see [8]). Likewise,

when we apply (i) to LELβ(G) we reach the conclusion, via Hölder’s inequality, that for

any G and 0 < β < 1 we have

LELβ(G) ≤ (2|E|)βn1−β. (8)
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Also, using (iii) and Hölder’s inequality, we have that that for any G with at least one

pendant vertex and and 0 < β < 1 we have

LELβ(G) ≤ (2|E|)β(n− 1)1−β. (9)

We notice that (8) and (9) compare favorably with the inequality in [12] that states

that for all β > 0

LELβ(G) ≤ (n− 1)nβ,

although we require the more restrictive condition that 0 < β < 1. The inequality (9)

also recovers one of the inequalities in theorem 3.2 in [3] (setting k = 1), although we

need that the graph have a pendant vertex.

We look now at R(G). Recall that the inverse degree of a graph is defined as I(G) =
n∑
i=1

1

di
. The we can prove the following

Proposition 1 For a graph with a least one pendant vertex we have

R(G) ≥ n

(
I(G)− 1− 1

d1
+

1

d1 + 1

)
. (10)

The equality is attained by the star graph Sn.

Proof. Since the real function f(x) =
1

x
, x ≥ 0, is convex, the function defining R(G) in

(3) is Schur-convex, and applying (iii) we have

R(G) = n

n−1∑
i=1

1

λi
≥ n

(
1

d1 + 1
+

n−1∑
i=2

1

di

)
= n

(
I(G)− 1− 1

d1
+

1

d1 + 1

)
.

In the case of the star graph Sn, d1 = n− 1, R(Sn) = (n− 1)2 and I(Sn) = n− 1 +
1

n− 1
.

A bit of algebra shows that the right hand side of (9) also equals (n− 1)2•

The proposition above also yields a weak result for R(G) , because in [13] it was shown

that for all G one has

R(G) ≥ −1 + (n− 1)I(G),

and this bound is always better than (10), as can be shown with some calculations and

the fact (see [6]) that for all G

I(G) ≤ n− 1 +
1

n− 1
.

Finally for the Laplace energy we can show
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Proposition 2 For any G we have

LE(G) ≥ 2 +
n∑
i=1

|di − dG|. (11)

Proof. The function f(x) = |x− dG| is convex, and thus the function defining LE(G) is

Schur-convex. Using (ii) we have that

LE(G) =
n∑
i=1

|λi − dG| ≥ |d1 + 1− dG|+
n−1∑
i=2

|di − dG|+ |dn − 1− dG|

= 2 +
n∑
i=1

|di − dG|•

The bound (11) improves the one found in [10], which we could have obtained, had

we used (i) instead of (ii). It should be noted that applying (iii) would not improve (11)

for graphs with pendant vertices. There are not many lower bounds in the literature for

the Laplacian energy; in [5] it is found that

LE(G) ≥ 2

√√√√|E|+ 1

2

n∑
i=1

(di − dG)2, (12)

which looks like a relative of (11), but in fact these bounds are not comparable. Notice

that for a regular graph we obtain LE(G) ≥ 2 when using (11) and LE(G) ≥ 2
√
|E|

when using (12). On the other hand, for the star graph Sn the bound obtained with (12)

is

2

√
(n− 1) +

1

2
n(n− 1)

(
1− 2

n

)
∼
√

2n,

whereas the bound obtained with (11) is

2n− 4 +
4

n
.
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