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I. Z. Milentijević, E. I. Milovanović
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Abstract

Let G be a simple graph of order n ≥ 2, with m edges and with no isolated vertices.
Denote by di vertex degree, by d(ei) edge degree, by λi ordinary eigenvalues, by µi the
Laplacian eigenvalues and by ρi the normalized Laplacian eigenvalues of the graph G.
The sums Qα =

∑n
i=1 d

α
i , EQα =

∑m
i=1 d(ei)

α, Rα =
∑

i∼j(didj)
α, Eα =

∑n
i=1 |λi|α,

Sα =
∑n−1

i=1 µ
α
i and S∗

α =
∑n−1

i=1 ρ
α
i are special cases of the sum Aα =

∑t
i=1 a

α
i , where

t ∈ N, α ∈ R and ai are real numbers with the property 0 < r ≤ ai ≤ R < +∞. We first
prove new inequalities for Aα. Then some special cases are illustrated.

1 Introduction

Let G = (V,E), V = {1, 2, . . . , n}, E = {e1, e2, . . . , em} be a simple graph, without

isolated vertices, of order n and size m. Denote by d1 ≥ d2 ≥ · · · ≥ dn > 0, di = d(i),

i = 1, 2, . . . , n, and d(e1) ≥ d(e2) ≥ · · · ≥ d(em) > 0 a sequence of vertex and edge

degrees, respectively. The degree of an edge e = {i, j} is defined as d(e) = di + dj − 2. If

i-th and j-th vertices (edges) of graph G are adjacent, we denote it as i ∼ j (ei ∼ ej).

In the text that follows we give definitions of some degree-based topological indices

that are of interest for our work.

The first general Zagreb index (or general zeroth-order Randić index [26]), Qα, is

defined as

Qα = Qα(G) =
n∑
i=1

dαi =
∑
i∼j

(
dα−1
i + dα−1

j

)
,
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where α is an arbitrary real number (see [24, 25]). Particulary interesting for us are the

first Zagreb index M1 = Q2,

M1 = M1(G) = Q2 =
n∑
i=1

d2i =
∑
i∼j

(di + dj)

and so called forgotten topological index, F1 = Q3,

F1 = F1(G) = Q3 =
n∑
i=1

d3i =
∑
i∼j

(d2i + d2j),

defined in [17] (see also [11,14]).

The generalized Randić index (or connectivity index [22]), Rα, is defined as

Rα = Rα(G) =
∑
i∼j

(didj)
α,

where α is an arbitrary real number defined in [3] (see also [10, 27, 29]). Especially inter-

esting are the ordinary Randić index, R−1/2 [35], the general Randić index, R−1 [5, 42],

and the second Zagreb index M2 = R1 [17]

M2 = M2(G) = R1 =
∑
i∼j

didj.

The first reformulated general Zagreb index is defined as [41]

EQα = EQα(G) =
m∑
i=1

d(ei)
α.

Here we are interested in the reformulated first Zagreb index EM1 = EM1(G) = EQ2(G)

(see [30]) and reformulated forgotten topological index, EF1 = EF1(G) = EQ3 (see for

example [11]).

Let L(G) be a line-graph of the underlining graph G. Then in accordance with the

definition of a line-graph (see [7]) we have that

EQα(G) = Qα(L(G)). (1)

In the text that follows we recall some graph invariants that are of interest for the

subsequent considerations.

Denote by A the adjacency matrix of G. The eigenvalues of adjacency matrix A,

λ1 ≥ λ2 ≥ . . . ≥ λn, represent ordinary eigenvalues of the graph G. Some well known

properties of graph eigenvalues are [1]:

n∑
i=1

λi = 0 and
n∑
i=1

λ2i =
n∑
i=1

di = 2m.
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Denote by |λ∗1| ≥ |λ∗2| ≥ · · · ≥ |λ∗n|, λ1 = |λ∗1|, a non increasing sequence of absolute

values of the eigenvalues of G. The graph invariant called energy, E(G), of G is defined

to be the sum of the absolute values of the eigenvalues of G [15] (see also [23]), i.e.

E(G) =
n∑
i=1

|λi| =
n∑
i=1

|λ∗i |.

Denote by

Eα = Eα(G) =
n∑
i=1

|λ∗i |α

sum of degrees of non-zero ordinary eigenvalues of G, where α is an arbitrary real number.

Let G be a simple connected graph with the Laplacian eigenvalues µ1 ≥ µ2 · · · ≥

µn−1 > µn = 0. Some well known properties of the Laplacian eigenvalues are (see [7])

n−1∑
i=1

µi =
n∑
i=1

di = 2m and
n−1∑
i=1

µ2
i =

n∑
i=1

d2i +
n∑
i=1

di = M1 + 2m.

The sum of degrees of Laplacian eigenvalues of the graph G is denoted with (see [40])

Sα = Sα(G) =
n−1∑
i=1

µαi ,

where α is an arbitrary real number.

The Kirchhoff index [16] is a graph invariant defined in terms of Laplacian eigenvalues

as

Kf(G) = n

n−1∑
i=1

1

µi
= nS−1.

The normalized Laplacian eigenvalues, ρ1 ≥ ρ2 ≥ · · · ≥ ρn−1 > ρn = 0, of graph G

have the following properties [42]

n−1∑
i=1

ρi = n and
n−1∑
i=1

ρ2i = n+ 2R−1.

The sum of degrees of normalized Laplacian eigenvalues [2] of the graph G is denoted by

S∗
α = S∗

α(G) =
n−1∑
i=1

ραi ,

where α is an arbitrary real number. The degree Kirchhoff index [6] is defined in terms

of the normalized Laplacian eigenvalues as

DKf(G) = 2m
n−1∑
i=1

1

ρi
.
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Instead of considering sums Qα, EQα, Rα, Eα, Sα andS∗
α, it is enough to consider the

sum

Aα = Aα(a) =
t∑
i=1

aαi , A0 = t, (2)

where t ∈ N, while ai, i = 1, 2, . . . , t, are positive real numbers with the properties

0 < r ≤ ai ≤ R < +∞, 1 ≤ i ≤ t

or

0 < r1 ≤ ai ≤ R1 < +∞, 2 ≤ i ≤ t,

and α is an arbitrary real number. Namely, by the appropriate choice of parameter t and

real numbers ai, each of the above mentioned sums can be obtained. Therefore in the

text that follows we will prove new inequalities that are valid for the sum (2). Then, for

the sake of illustration we will point out to some special cases.

2 Main result

Theorem 1 Let a1 ≥ a2 ≥ · · · ≥ at > 0 be real numbers with the property 0 < r ≤ ai ≤

R < +∞. Then for each real α the following inequality is valid

Aα+1 ≤ (r +R)Aα − rRAα−1 (3)

with equality if and only if for some v, 1 ≤ v ≤ t, hold R = a1 = · · · = av and av+1 =

· · · = at = r.

Proof. For the positive real numbers p1, p2, . . . , pt and x1, x2, . . . , xt with the proper-

ties
t∑
i=1

pi = 1 and 0 < X ≤ xi ≤ Y < +∞, i = 1, 2, . . . , t

in [36] the following inequality was proved

t∑
i=1

pixi +XY

t∑
i=1

pi
xi
≤ X + Y. (4)

For pi =
aαi
Aα

, xi = ai, i = 1, 2, . . . , t, X = r and Y = R, where α is an arbitrary real

number, the inequality (4) transforms into

1

Aα

t∑
i=1

aα+1
i +

rR

Aα

t∑
i=1

aα−1
i ≤ r +R,
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i.e.

Aα+1 + rRAα−1 ≤ (r +R)Aα, (5)

wherefrom we obtain (3).

Equality in (4) holds if and only if for some v, 1 ≤ v ≤ t, hold Y = x1 = · · · = xv and

xv+1 = · · · = xt = X, hence the equalities in (3) hold if and only if for some v, 1 ≤ v ≤ t,

hold R = a1 = · · · = av and av+1 = · · · = at = r.

�

Corollary 1 Let a1 ≥ a2 ≥ · · · ≥ at > 0 are real numbers with the property 0 < r ≤ ai ≤

R < +∞. Then, for every real α

Aα+1 ≤
1

4

(√
R

r
+

√
r

R

)2
A2
α

Aα−1

. (6)

Equality holds if and only if r = a1 = · · · = at = R.

Proof. According to AG (arithmetic-geometric mean) inequality (see for example [34])

and (5) we have

2
√
rRAα+1Aα−1 ≤ Aα+1 + rRAα−1 ≤ (r +R)Aα,

wherefrom we obtain (6).

�

Let (Wi), W0 = 0, be a sequence of real numbers defined as

Wi =

{
Ri−ri
R−r , if r 6= R

iRi−1, if r = R,

for every i, i ≥ 1.

Using the sequence (Wi), i ∈ N0, and the sum Aα we prove the following result.

Theorem 2 Let a1 ≥ a2 ≥ · · · ≥ at > 0 be real numbers with the property 0 < r ≤ ai ≤

R < +∞. Then for each nonnegative integer k ≥ 0, the following inequalities are valid

Ak+1 ≤ Wk+1A1 − trRWk, (7)

and

Ak+1 ≤ WkA2 − rRWk−1A1. (8)

Equalities hold if and only if R = a1 = · · · = av and av+1 = · · · = at = r, for some

v, 1 ≤ v ≤ t. In addition, the equality in (7) holds if k = 0 and in (8) if k = 1.
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Proof. According to (5), for each i ≥ 1 the following is valid

Ai+1 − (r +R)Ai + rRAi−1 ≤ 0.

After multiplying the above inequality by Wk−i+1 and summing up over i, i = 1, 2, . . . , k,

we get

0 ≥
k∑
i=1

(Ai+1 − (r +R)Ai + rRAi−1)Wk−i+1 = W1Ak+1 + (W2 − (r +R)W1)Ak +

(rRWk−1 − (r +R)Wk)A1 + rRWkA0 +
k−2∑
i=1

(Wk−i+1 − (r +R)Wk−i + rRWk−i−1)Ai+1.

Since for each i ≥ 1 we have

Wi+1 − (r +R)Wi + rRWi−1 = 0,

from the above inequality we get

0 ≥ Ak+1 −Wk+1A1 + trRWk,

wherefrom we obtain (7).

�

Remark 1 If for some fixed i, 1 ≤ i ≤ k−1, values Ai and Ai−1 are known, then instead

of the inequality (7 ) (i.e. (8)), the inequality

Ak+1 ≤ Wk−i+2Ai − rRWk−i+1Ai−1

should be used. This inequality can be proved similarly as (7). It becomes stronger as i

increases.

Remark 2 If a1 is known or can be easily assessed , and for a2 ≥ a3 ≥ · · · ≥ at > 0

holds 0 < r1 ≤ ai ≤ R1 < +∞, then the following inequalities

Aα+1 ≤ aα+1
1 + (r1 +R1)(Aα − aα1 )− r1R1(Aα−1 − aα−1

1 ), (9)

Aα+1 ≤ aα+1
1 +

1

4

(√
R1

r1
+

√
r1
R1

)2
(Aα − aα1 )2

Aα−1 − aα−1
1

, (10)

Ak+1 ≤ ak+1
1 + W̄k+1(A1 − a1)− (t− 1)r1R1W̄k, (11)

Ak+1 ≤ ak+1
1 + W̄k(A2 − a21)− r1R1W̄k−1(A1 − a1), (12)
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where

W̄i =

{
Ri

1−ri1
R1−r1 , if R1 6= r1
iRi−1

1 , if R1 = r1

should be considered. Equalities in (9), (11) and (12) hold if and only if R1 = a2 = · · · =

av and av+1 = · · · = at = r1 for some v, 2 ≤ v ≤ t, whereas equality in (10) hold if and

only if R1 = a2 = · · · = at = r1. In addition, equality in (11) holds if k = 0, and in (12)

if k = 1.

Now we will illustrate obtained results on some examples.

For t = n, ai = di, i = 1, 2, . . . , n, r = dn and R = d1, the following corollaries of the

obtained results are valid.

Corollary 2 Let G be a simple graph of order n ≥ 3, with m edges and without isolated

vertices. Then

Qα+1 ≤ (d1 + dn)Qα − d1dnQα−1, (13)

Qα+1 ≤
1

4

(√
d1
dn

+

√
dn
d1

)2
Q2
α

Qα−1

, (14)

Qk+1 =
n∑
i=1

dk+1
i ≤ 2m

dk+1
1 − dk+1

n

d1 − dn
− nd1dn

dk1 − dkn
d1 − dn

, (15)

Qk+1 =
n∑
i=1

dk+1
i ≤M1

dk1 − dkn
d1 − dn

− 2md1dn
dk−1
1 − dk−1

n

d1 − dn
. (16)

Equalities in (13), (15) and (16) hold if and only if G is regular or bidegreed graph.

Equality in (14) holds if and only if G is regular. In addition, equality in (15) holds if

k = 0, and in (16) if k = 1.

Remark 3 For α = 1 from (13) (i.e. k = 1 in (15) ) we get

M1 ≤ 2m(d1 + dn)− nd1dn.

This inequality was proved in [9] (see also [18, 19, 21, 24]).

For α = 2 from (13) and k = 2 in (15) we get

F1 ≤M1(d1 + dn)− 2md1dn (17)

and

F1 ≤ 2m(d21 + d1dn + d2n)− nd1dn(d1 + dn).
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The inequality (17) was proved in [41] (see also [20]).

Since 2M2 ≤ F1 and 2R−1 ≤
∑n

i=1
1
di

, the following inequalities

M2 ≤
1

2
(M1(d1 + dn)− 2md1dn) ≤ d1M1 −md1dn,

M2 ≤ (2m(d21 + d1dn + d2n)− nd1dn(d1 + dn))

(18)

and

R−1 ≤
2m(d1 + dn)−M1

2d1dn

are also valid. The second inequality in (18) was proved in [37].

Remark 4 For α = 1 and α = 2 from (14) follows

M1 ≤
m2

n

(√
d1
dn

+

√
dn
d1

)2

, (19)

and

F1 ≤
M2

1

8m

(√
d1
dn

+

√
dn
d1

)2

,

i.e.

M2 ≤
M2

1

16m

(√
d1
dn

+

√
dn
d1

)2

.

The inequality (19) was proved in [28] (see also [12,19,38]). Additionally, for α = 0 from

(14) we get

R−1 ≤
n2

16m

(√
d1
dn

+

√
dn
d1

)2

.

Let us note that one generalization of inequality (19) was proved in [33].

Remark 5 In [8] the following inequality was proved

Qα+1 ≤
2m

n
Qα +

2m(n− 1)

n
(dα1 − dαn)− 2m

n
Q2(d

α
1 − dαn).

The inequality (13) is stronger than the above one when G ∼= Pn, G ∼= Kn
2
,n
2

(n is even),

G ∼= K1,n−1 and when G is bidegreed graph.

Remark 6 Let t = n, ai = |λ∗i |, i = 1, 2, . . . , n, r = |λ∗n|, R = |λ∗1| and α = 1. According

to (3) and (6) we get

E ≥ 2m+ n|λ∗1||λ∗n|
|λ∗1|+ |λ∗n|

, (20)

and

E ≥
2
√

2mn|λ∗1||λ∗n|
|λ∗1|+ |λ∗n|

. (21)

The inequality (20) was proved in [32], and (21) in [13].
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Remark 7 For t = n − 1, ai = µi, i = 1, 2, . . . , n − 1, r = µn−1, R = µ1 and α = 0,

according to (3) and (6) we get

Kf(G) ≤ n((n− 1)(µ1 + µn−1)− 2m)

µ1µn−1

,

and

Kf(G) ≤ n(n− 1)2

8m

(√
µ1

µn−1

+

√
µn−1

µ1

)2

.

The first inequality was proved in [31] whereas the second one in [12].

Remark 8 For t = n − 1, ai = ρi, i = 1, 2, . . . , n − 1, r = ρn−1, R = ρ1 and α = 0,

according to (3) and (6) we get

DKf(G) ≤ 2m((n− 1)(ρ1 + ρn−1)− n)

ρ1ρn−1

,

and

DKf(G) ≤ m(n− 1)2

n

(√
ρ1
ρn−1

+

√
ρn−1

ρ1

)2

.

The above inequalities were proved in [31].

Remark 9 For t = n − 1, ai = ρi, i = 1, 2, . . . , n − 1, r = ρn−1, R = ρ1 and α = 1,

according to (3) and (6) we have that

R−1 ≤
1

2
((ρ1 + ρn−1 − 1)n+ (n− 1)ρ1ρn−1)

and √
ρ1
ρn−1

+

√
ρn−1

ρ1
≥ 2

n

√
(n− 1)(n+ 2R−1).

The second inequality was proved in [4].

Remark 10 For t = 2m, ai = didj, i ∼ j, R = p = max
i∼j
{didj}, r = q = min

i∼j
{didj} and

α = 0, from (3) and (6) we get

M2 ≤ 2m(p+ q)− pqR−1 (22)

and

M2 ≤
m2

R−1

(√
p

q
+

√
q

p

)2

. (23)

Equality in (22) holds if and only if G is regular or complete bipartite graph. Equality in

(23) holds if and only if G is a regular graph.
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Remark 11 For t = n − 1, ai = µi, i = 1, 2, . . . , n − 1, r = µn−1, R = µ1 and α = 1,

from (3) and (6) we get

M1 ≤ 2m(µ1 + µn−1 − 1)− (n− 1)µ1µn−1

and

M1 ≤
m2

n− 1

(√
µ1

µn−1

+

√
µn−1

µ1

)2

− 2m.

The second inequality was proved in [13] and [39].

Remark 12 For t = m, ai = d(ei), i = 1, 2, . . . ,m, r = 2(dn − 1), R = 2(d1 − 1) and

α = 1, from (3) and (6) we get

EM1 ≤ 2(d1 + dn − 2)M1 − 4m(d1dn − 1),

and

EM1 ≤
(d1 + dn − 2)2

4m(d1 − 1)(dn − 1)
(M1 − 2m)2.

The above inequalities were proved in [10].

Remark 13 For t = n, ai = di, i = 1, 2, . . . , n, r1 = dn, R1 = d2 and α = 1, from (9)

and (10) we get

M1 ≤ d21 + (d2 + dn)(2m− d1)− d2dn(n− 1), (24)

and

M1 ≤ d21 +

(√
d2
dn

+

√
dn
d2

)2
(2m− d1)2

4
. (25)

Equality in (24) holds if and only if d2 = · · · = dv and dv+1 = · · · = dn, for some v,

2 ≤ v ≤ n, and in (25) if and only if d2 = d3 = · · · = dn. The inequality (24) was proved

in [19].
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Commun. Math. Comput. Chem. 70 (2013) 669–680.
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