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Abstract

The aim of this paper is to first establish some new bounds for the resolvent
Estrada index of graphs. Finally, we introduce the resolvent signless Laplacian
Estrada index of a graph and the extremal trees together with some bounds in
general with respect to this new invariant are presented.

1 Introduction

Let G be a finite simple graph with vertex set V (G) = {v1, · · · , vn}. The adjacency

matrix of G is denoted by A(G) and D(G) = diag(d1, d2, . . . , dn) is the diagonal matrix

of G, where di = deg(vi), 1 ≤ i ≤ n. The matrix Q(G) = D(G) + A(G) is called the

signless Laplacian matrix of G. The set of all eigenvalues of A(G) and Q(G) are denoted

by Spec(G) and Q−Spec(G), respectively.

Suppose Spec(G) = {λ1, . . . , λn}, Q−Spec(G) = {q1, . . . , qn}, λ1 ≥ λ2 ≥ . . . ≥ λn and

q1 ≥ q2 ≥ . . . ≥ qn ≥ 0. The resolvent Estrada index of G was put forward by Estrada

and Higham [15] as EEr(G) =
∑n

i=1(1− λi
n−1

)−1.

It is well known that λ1 = n− 1 if and only if G is isomorphic to the complete graph

Kn [7, 8]. Thus, for all non-complete graphs of order n, | λi
n−1
| < 1. Consequently, for all
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non-complete graphs, due to the Taylor series, we have:

EEr(G) =
∑
k≥0

Mk(G)

(n− 1)k
(1)

where Mk(G) is the k−th spectral moment of G, i.e. Mk(G) =
∑n

i=1 λ
k
i . It is well known

that M0(G) = n, M1(G) = 0, M2(G) = 2m, M3(G) = 6 t and Mk(G) is the number of

closed walks of length k in G [7, 8].

In [3], Chen and Qian proved that if G is a non-complete graph and e ∈ E(G), then

EEr(G) > EEr(G− e). As an immediate consequence, the graph Kn − e and the empty

graph Kn have maximal and minimal resolvent Estrada index, respectively. Chen and

Qian also determined the first thirteen trees with the greatest resolvent Estrada index,

and characterized the multipartite graphs having the maximal resolvent Estrada index.

The extremal trees with respect to EEr−values are investigated in [3, 19] and several

bounds for this quantity in terms of the number of vertices and edges are presented

in [5, 20]. On the other hand, Gutman et al. [20] found trees, unicyclic, bicyclic, and

tricyclic graphs with minimum and maximum values of EEr.

In this paper, we intend to further pursue the development of the work done on this

issue. In Section 2, we recall some important inequalities that are crucial throughout this

article. Afterwards, in Section 3, we will give several bounds for resolvent Estrada index

of graphs, and specially for the cases of trees and bipartite graphs. Finally, in the last

section we introduce the resolvent signless Laplacian Estrada index (SLEEr) of graphs

and present the extremal trees together with some bounds in general with respect to it.

2 Preliminaries

In this section, some important analytical inequalities are presented. The first result is

the Grüss type discrete inequality [2].

Remark 2.1 Suppose ā = (a1, a2, . . . , an) and b̄ = (b1, b2, . . . , bn) such that there are real

numbers m1,M1,m2,M2 with m1 ≤ ai ≤M1,m2 ≤ bi ≤M2, 1 ≤ i ≤ n. Then

|Cn(ā, b̄)| ≤ 1

n2

[
n2

4

]
(M1 −m1)(M2 −m2) ,

where

Cn(ā, b̄) :=
1

n

n∑
i=1

aibi −
1

n2

n∑
i=1

ai.

n∑
i=1

bi .
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The Diaz−Metcalf inequality is a reverse for the well-known Cauchy−Schwarz inequal-

ity. Diaz and Metcalf proved their inequality in the more general case of an inner product

space over the real or complex number field, but its simple form is as follows:

Remark 2.2 (Diaz−Metcalf inequality) [13]

If (a1, . . . , an) and (b1, . . . , bn) are n-tuples of real numbers with ai 6= 0, and if m ≤ bi
ai
≤

M, 1 ≤ i ≤ n, then

n∑
i=1

b2
i +mM

n∑
i=1

a2
i ≤ (M +m)

n∑
i=1

aibi ,

with equality if and only if for all i, 1 ≤ i ≤ n, either bi = mai or bi = Mai.

The Pólya−Szegö, Shisha−Mond and Ozeki−Izumino−Mori−Seo inequalities are three

other reverses for the Cauchy−Schwarz inequality which is important throughout this pa-

per.

Remark 2.3 If (a1, . . . , an) and (b1, . . . , bn) are n-tuples of real numbers with 0 < m1 ≤

ai ≤M1, 0 < m2 ≤ bi ≤M2, 1 ≤ i ≤ n, then we have the following classical inequalities:

• Pólya−Szegö inequality [12, 25]∑n
i=1 a

2
i

∑n
i=1 b

2
i

(
∑n

i=1 aibi)
2
≤ 1

4

(√
M1M2

m1m2

+

√
m1m2

M1M2

)2

.

with equality if and only if ν = nM1m2

M1m2+M2m1
is an integer and if ν of the ai are equal to

m1 and the others equal to M1, with the corresponding bi being M2,m2 respectively.

• Shisha−Mond inequality [26]∑n
i=1 a

2
i∑n

i=1 aibi
−
∑n

i=1 aibi∑n
i=1 b

2
i

≤

(√
M1

m2

−
√
m1

M2

)2

.

• A Grüss type inequality( n∑
i=1

a2
i

) 1
2
( n∑
i=1

b2i

) 1
2 −

n∑
i=1

aibi ≤
√
M1M2

(√
M1M2 −

√
m1m2

)2
2
√
m1m2

min

{
M1

m1
,
M2

m2

}
.

• Ozeki−Izumino−Mori−Seo inequality [22, 24]

n∑
i=1

a2
i

n∑
i=1

b2
i −

( n∑
i=1

aibi

)2

≤ n2

3

(
M1M2 −m1m2

)2
.
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3 Bounds on resolvent Estrada index

Let G be a simple graph of order n and size m. The first Zagreb index, Zg1(G), and

second Zagreb index, Zg2(G), of the graph G is defined as Zg1(G) =
∑

v∈V (G) d
2(v) and

Zg2(G) =
∑

e=uv∈E(G) d(u)d(v), where d(u) denotes the degree of vertex u in G [18]. In

this section, some upper bounds for the resolvent Estrada index of graphs are presented.

For the sake of completeness we mention here a result of Chen and Qian [4] as follows:

Lemma 3.1 (Bounds of Closed Walks) Let Mk(G) be the k-th spectral moment of G

with degree sequence (d1, d2, . . . , dn). Then

1. Mk(G) ≤ n∆k−1, for each k ≥ 2.

2. Mk(G) ≤ 2m∆k−2, for each k ≥ 2.

3. Mk(G) ≤ Zg1(G) ∆k−3, for each k ≥ 3.

4. Mk(G) ≤ 2Zg2(G) ∆k−4, for each k ≥ 4.

5. Mk(G) ≤
∑n

i=1 d
k−1
i , for each k ≥ 2.

Each of the equalities holds in (1)−(5) if and only if k is even and each component of G

is the complete bipartite graph K∆,∆.

Lemma 3.2 Let G be a graph with degree sequence (d1, d2, . . . , dn) and ∆ < n−1. Then,

1. EEr(G) < n
(
1 + ∆

(n−1)(n−1−∆)

)
.

2. EEr(G) < n+ 2m
(n−1)(n−1−∆)

.

3. EEr(G) < n+ 2m
(n−1)2

+ Zg1(G)
(n−1)2(n−1−∆)

.

4. EEr(G) < n+ 2m
(n−1)2

+ 6 t
(n−1)3

+ 2Zg2(G)
(n−1)3(n−1−∆)

.

5. EEr(G) < n+ 1
n−1

∑n
i=1

di
n−1−di

= n− n
n−1

+
∑n

i=1
1

n−1−di
.

Proof. The proof of all parts are independent from others and so we first prove part

(5), then (4), (3), (2) and (1).
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1. By (1), Lemma 3.1 (5) and the fact that M0(G) = n,M1(G) = 0, we have:

EEr(G) = M0(G) +
M1(G)

(n− 1)
+
∑
k≥2

Mk(G)

(n− 1)k
< n+

∑
k≥2

∑n
i=1 d

k−1
i

(n− 1)k

= n+
n∑
i=1

∑
k≥2

dk−1
i

(n− 1)k
= n+

n∑
i=1

di
(n−1)2

1− di
n−1

= n+
1

n− 1

n∑
i=1

di
n− 1− di

= n− n

n− 1
+

n∑
i=1

1

n− 1− di
.

This completes the proof of part 5.

2. To prove part 4, we apply (1), Lemma 3.1 (4), and the fact thatM0(G) = n,M1(G) =

0,M2(G) = 2m,M3(G) = 6 t. So,

EEr(G) =M0(G) +
M1(G)

(n− 1)
+

M2(G)

(n− 1)2
+

M3(G)

(n− 1)3
+
∑
k≥4

Mk(G)

(n− 1)k

<n+
2m

(n− 1)2
+

6 t

(n− 1)3
+

2Zg2(G)

∆4

∑
k≥4

(
∆

n− 1
)k

=n+
2m

(n− 1)2
+

6 t

(n− 1)3
+

2Zg2(G)

∆4

( ∆4

(n−1)4

1− ∆
n−1

)
=n+

2m

(n− 1)2
+

6 t

(n− 1)3
+

2Zg2(G)

(n− 1)3 (n− 1−∆)
,

as desired.

3. Again by (1) and Lemma 3.1 (3),

EEr(G) =M0(G) +
M1(G)

(n− 1)
+

M2(G)

(n− 1)2
+
∑
k≥3

Mk(G)

(n− 1)k

<n+
2m

(n− 1)2
+
Zg1(G)

∆3

∑
k≥3

(
∆

n− 1
)k

=n+
2m

(n− 1)2
+
Zg1(G)

∆3

( ∆3

(n−1)3

1− ∆
n−1

)
=n+

2m

(n− 1)2
+

Zg1(G)

(n− 1)2(n− 1−∆)
.

Hence the part 3.

4. The parts (1) and (2) are similar and can be deduced as follows:

EEr(G) =M0(G) +
M1(G)

(n− 1)
+
∑
k≥2

Mk(G)

(n− 1)k
< n+

2m

∆2

∑
k≥2

(
∆

n− 1
)k
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=n+
2m

∆2

( ∆2

(n−1)2

1− ∆
n−1

)
= n+

2m

(n− 1)(n− 1−∆)
,

EEr(G) =M0(G) +
M1(G)

(n− 1)
+
∑
k≥2

Mk(G)

(n− 1)k
< n+

n

∆

∑
k≥2

(
∆

n− 1
)k

=n+
n

∆

( ∆2

(n−1)2

1− ∆
n−1

)
= n+

n∆

(n− 1)(n− 1−∆)

=n(1 +
∆

(n− 1)(n− 1−∆)
).

This completes our argument. �

Since the star graph Sn is the unique n−vertex bipartite graph with ∆ = n − 1, all

other bipartite graphs are having ∆ < n− 1. In the following result, some upper bounds

for EEr of such graphs are presented.

Lemma 3.3 Let G be a bipartite graph such that ∆ < n− 1. Then,

1. EEr(G) ≤ n
(
1 +

∆

(n− 1)2 −∆2

)
,

2. EEr(G) ≤ n+
2m

(n− 1)2 −∆2
,

3. EEr(G) ≤ n+
2m

(n− 1)2
+

∆Zg1(G)

(n− 1)4 −∆2(n− 1)2
,

4. EEr(G) ≤ n+
2m

(n− 1)2
+

2Zg2(G)

(n− 1)4 −∆2(n− 1)2
,

5. EEr(G) ≤ n+
∑n

i=1

di
(n− 1)2 − d2

i

.

In each part, the equality is satisfied if and only if all components of G are the complete

bipartite graph K∆,∆.

Proof. It is clear that if G is a bipartite graph, then it does not have closed walks of

odd length and so, M2k+1(G) = 0, k ≥ 0. To prove part (1), we apply Lemma 3.1 (1).

Then,

EEr(G) = M0(G) +
∑
k≥1

M2k(G)

(n− 1)2k
≤ n+ n

∑
k≥1

∆2k−1

(n− 1)2k

= n+ n(

∆
(n−1)2

1− ∆2

(n−1)2

) = n
(
1 +

∆

(n− 1)2 −∆2

)
.

Other parts can be deduced by a similar argument. �
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If G is connected then in each part of Lemma 3.3, the equality is satisfied if and only

if n is even and G ∼= Kn
2
,n
2
. On the other hand, all inequalities of Lemma 3.3 are strict,

when G is acyclic. In [4], it is shown that if G is a tree (or a forest) with ∆ ≥ 2, then for

any positive integer k with k ≥ 3,

Mk(G) < n
(√

4(∆− 1)
)k−1

. (2)

So, (2) holds for k = 1, 2.

Lemma 3.4 Let G be a tree (or a forest) with ∆ ≥ 2. Then,

EEr(G) < n

(
1 +

n
√

4(∆− 1)

(n− 1)2 − 4(∆− 1)

)
.

Proof. The result can be proved directly by a similar argument as Lemma 3.3(1) and

Equations (1) and (2). �

Up to now, many lower and upper bounds for the largest and least eigenvalues of

graphs were given. In [23,28], bounds on the spectral radius λ1(G) of a connected graph

G in terms of n and m are reported as:

2m

n
≤
√
Zg1(G)

n
≤ λ1(G) ≤ min{∆,

√
n− 1} (3)

In [27], it is proved that for the least eigenvalue λn(G), we have:

−n
2
≤ λn(G) < −

1 +
√

1 + 4(n−3)
n−1

2
(4)

The empty graph Kn is the only graph with exactly one eigenvalue. Moreover, the

graph G has spectrum {[λ1]m1 , [λ2]m2}, λ1 > λ2, if and only if G is the direct sum of m1

complete graphs of order λ1 + 1. It is well-known that a connected graph with exactly

two distinct eigenvalues is isomorphic to the complete graph Kn. In the following next

three lemmas, some upper bounds for the resolvent Estrada index of graphs are obtained.

Lemma 3.5 Let G be a non-complete connected graph or empty graph with n vertices,

then

EEr(G) ≤
[
n2

4

]
(λ1 − λn)2

n(n− 1− λ1)(n− 1− λn)
+ n

with equality if and only if G ∼= Kn.
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Proof. Define ai = 1
n−1−λi

and bi = n − 1 − λi, 1 ≤ i ≤ n. Note that M1(G) = 0 and

n = EEr(Kn) ≤ EEr(G). This shows that if M−1
1 = m2 = n− 1− λ1 and m−1

1 = M2 =

n− 1− λn then by Remark 2.1, we have

|Cn(ā, b̄)| ≤ 1

n2

[
n2

4

](
1

n− 1− λ1

− 1

n− 1− λn

)
(λ1 − λn) .

On the other hand,

∣∣Cn(ā, b̄)
∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

1− 1

n2

n∑
i=1

1

n− 1− λi

n∑
i=1

(n− 1− λi)

∣∣∣∣∣
=

∣∣∣∣1− 1

n2

EEr(G)

n− 1
.n(n− 1)

∣∣∣∣ =

∣∣∣∣1− EEr(G)

n

∣∣∣∣ =
EEr(G)

n
− 1,

as desired. �

Lemma 3.6 Let G be a non-complete connected or empty graph with n vertices, then

(1). EEr(G) ≤ n(n− 1)(n− 1− λ1 − λn)

(n− 1− λ1)(n− 1− λn)
,

(2). EEr(G) ≤ n(2n− 2− λ1 − λn)2

4(n− 1− λ1)(n− 1− λn)
,

(3). EEr(G) ≤ n(n− 1)

n− 1−
(√

n− 1− λn −
√
n− 1− λ1

)2 ,

(4). EEr(G) ≤
(
√
n+

1

2
√
n
.

√
n− 1− λn
n− 1− λ1

(√n− 1− λn
n− 1− λ1

− 1
)2)2

,

(5). EEr(G) ≤ n(λ1 − λn)2

3(n− 1− λ1)(n− 1− λn)
+ n.

In each par the equality holds if and only if G ∼= Kn.

Proof. In Remarks 2.2 and 2.3, we define ai =
√
n− 1− λi, bi = 1√

n−1−λi
, 1 ≤ i ≤ n,

m = 1
n−1−λn

,M = 1
n−1−λ1

,m1 = M−1
2 =

√
n− 1− λ1 and M1 = m−1

2 =
√
n− 1− λn.

We prove each part separately as follows:

1. Applying Diaz-Metcalf inequality, we have

n∑
i=1

1

n− 1− λi
+

∑n
i=1(n− 1− λi)

(n− 1− λ1)(n− 1− λn)
≤ n

( 1

n− 1− λ1

+
1

n− 1− λn

)
.

So,

EEr(G)

n− 1
+

n(n− 1)

(n− 1− λ1)(n− 1− λn)
≤ n

( 2n− 2− λ1 − λn
(n− 1− λ1)(n− 1− λn)

)
.
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Therefore,

EEr(G) ≤ n(n− 1)(n− 1− λ1 − λn)

(n− 1− λ1)(n− 1− λn)

which completes part (1).

2. By Pólya−Szegö inequality, we have

1

n2

n∑
i=1

(n− 1− λi)
n∑
i=1

1

n− 1− λi
≤ 1

4

(√n− 1− λn
n− 1− λ1

+

√
n− 1− λ1

n− 1− λn

)2

.

Therefore,

EEr(G) ≤ n(2n− 2− λ1 − λn)2

4(n− 1− λ1)(n− 1− λn)
.

This proves part (2).

3. Apply Shisha−Mond inequality, we can see that

1

n

n∑
i=1

(n− 1− λi)− n
( n∑
i=1

1

n− 1− λi

)−1
≤
(√

n− 1− λn −
√
n− 1− λ1

)2
.

Therefore,

n− 1− n
(EEr(G)

n− 1

)−1

≤
(√

n− 1− λn −
√
n− 1− λ1

)2

and hence,

EEr(G) ≤ n(n− 1)

n− 1−
(√

n− 1− λn −
√
n− 1− λ1

)2 ,

proving part (3).

4. By Grüss inequality,(
n∑

i=1

(n− 1− λi)

) 1
2
(

n∑
i=1

1

n− 1− λi

) 1
2

− n

≤

4

√
n− 1− λn
n− 1− λ1

(
4

√
n− 1− λn
n− 1− λ1

− 4

√
n− 1− λ1
n− 1− λn

)2

2 4

√
n− 1− λ1
n− 1− λn

√
n− 1− λn
n− 1− λ1

.

Therefore,

EEr(G) ≤
(√

n+
1

2
√
n
.

√
n− 1− λn
n− 1− λ1

(√n− 1− λn
n− 1− λ1

− 1
)2)2

,

as desired.
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5. By Ozeki−Izumino−Mori−Seo inequality, we have

n∑
i=1

(n− 1− λi)
n∑
i=1

1

n− 1− λi
− n2 ≤ n2

3

(n− 1− λn
n− 1− λ1

+
n− 1− λ1

n− 1− λn
− 2
)
.

Therefore,

EEr(G) ≤ n(λ1 − λn)2

3(n− 1− λ1)(n− 1− λn)
+ n.

which completes part (5). Finally, the above equalities hold when G has at most

two distinct eigenvalues and so G is the empty graph Kn.

�

Lemma 3.7 Let G be a non-complete connected or empty graph with n vertices, then

(1). EEr(G) <

[
n2

4

]
.

(n+ 2γ)2

2n(3n− 2)(n− 1− γ)
+ n,

(2). EEr(G) <
n(n− 1)(3n− 2− 2γ)

(3n− 2)(n− 1− γ)
,

(3). EEr(G) <
n(5n− 2γ − 4)2

8(3n− 2)(n− 1− γ)
,

(4). EEr(G) <
n(n− 1)

n− 1−
(√

3
2
n− 1−

√
n− 1− γ

)2 ,

(5). EEr(G) <

(
√
n+

√
2

8
√
n
.
√

3n−2
n−1−γ

(√
3n−2
n−1−γ −

√
2
)2
)2

,

(6). EEr(G) <
n(2γ + n)2

6(3n− 2)(n− 1− γ)
+ n,

where, γ = min{∆,
√
n− 1}.

Proof. Define

f(λ1, λn) =
(λ1 − λn)2

(n− 1− λ1)(n− 1− λn)

By Equations (3) and (4), one can see that f
′

λ1
≥ 0 and f

′

λn
≤ 0. Therefore, f(λ1, λn) <

f(γ,−n
2
). Now the proof of part (1) can be deduced by applying Lemma 3.5. Define:

g(λ1, λn) =
n− 1− λ1 − λn

(n− 1− λ1)(n− 1− λn)
.

By a simple calculations and applying Equations 3 and 4, we obtain g
′

λ1
> 0 and g

′

λn
< 0.

Therefore, g(λ1, λn) < g(γ,−n
2
). Finally, we apply Lemma 3.5 to prove of part (2). Other

parts can be proved in a similar way as parts (1) and (2). �
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4 Resolvent signless Laplacian Estrada index

In this section, some bounds for a new resolvent Estrada index so-called resolvent sign-

less Laplacian Estrada index are presented. To do this, we assume that G is a simple

graph with signless Laplacian eigenvalues q1 ≥ q2 ≥ . . . ≥ qn. It is well-known that

q1 = 2n − 2 if and only if G is a complete graph Kn. Hence, we have to consider non-

complete graphs in definition of resolvent signless Laplacian Estrada index of G. Define:

SLEEr(G) =
n∑
i=1

(
1− qi

2n− 2

)−1

. (5)

Notice that if G 6∼= Kn, then for each i = 0, 1, . . . , n, qi < 2n − 2, and therefore

0 ≤ qi
2n−2

< 1. Thus, we may use the Maclaurin series for (1 − qi
2n−2

)−1 to evaluate

SLEEr(G). In an exact phrase,

SLEEr(G) =
∑
k≥0

Tk(G)

(2n− 2)k
, (6)

where Tk(G) denotes to the k−th signless Laplacian spectral moment of the graph G,

i.e. Tk(G) =
∑n

i=1 q
k
i . It is well-known that Tk(G) equals to the number of closed semi-

edge walks of length k [9] and so for some small values of k, it is possible to evaluate

Tk(G) in terms of some graph parameters. For example, T0(G) = n, T1(G) = 2m,

T2(G) = Zg1(G) + 2m and T3(G) = 6 t+ 3Zg1(G) +
∑

v∈V (G) d
3(v).

In the following Lemma, resolvent signless Laplacian Estrada index SLEEr is com-

puted by the characteristic polynomial of Q.

Lemma 4.1 Let G be a non-complete n−vertex graph. Then,

SLEEr(G) = (2n− 2)
Φ
′
G(2n− 2)

ΦG(2n− 2)
,

where ΦG(x) is the characteristic polynomial of the matrix Q.

Proof. By definition,

Φ
′
G(x)

ΦG(x)
=

n∑
i=1

(x− qi)−1 .

The proof can be completed by substituting x = 2n− 2 in above formula. �
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4.1 SLEEr of Trees

In this subsection, the quantity SLEEr for some trees are computed. We start by an

example applicable in chemistry.

Example 4.2 Apply Lemma 4.1 to calculate the resolvent signless Laplacian Estrada

index of the molecular graphs of Methane and Ethane molecules. It can easily seen that

ΦCH4(x) = x5−8x4 +18x3−16x2 +5x and ΦC2H6(x) = x8−14x7 +73x6−182x5 +244x4−

182x3 + 73x2 − 14x+ 1. Hence, by Lemma 4.1,

SLEEr(CH4) = 8.
5x4 − 32x3 + 54x2 − 32x+ 5

x5 − 8x4 + 18x3 − 16x2 + 5x

∣∣∣
x=8
' 7.09524

SLEEr(C2H6) = 14.
8x7 − 98x6 + 438x5 − 910x4 + 976x3 − 546x2 + 146x− 14

x8 − 14x7 + 73x6 − 182x5 + 244x4 − 182x3 + 73x2 − 14x+ 1

∣∣∣
x=14

' 9.37856.

From (6), we can see that if G1 and G2 are two non-complete graphs on the same

number of vertices and Tk(G1) ≤ Tk(G2), for all k ≥ 0, then SLEEr(G1) ≤ SLEEr(G2).

On the other hand, it is proved in [14] that Tk(G−e) < Tk(G), for each k ≥ 1. Therefore,

the next result immediately follows.

Lemma 4.3 Let G be a graph and e ∈ E(G). Then SLEEr(G− e) < SLEEr(G).

Lemma 4.4 Let T be an n−vertex tree on n. Then,
n∑
i=1

n− 1

n− 2− cos(πi
n

)
≤ SLEEr(T ) ≤ 2n3 − 4n2 − n+ 4

2n2 − 7n+ 6

with left equality if and only if T ∼= Pn and right equality if and only if T ∼= Sn.

Proof. By [14], if T is a tree on n vertices, then SLEEr(Pn) ≤ SLEEr(T ) ≤ SLEEr(Sn).

It is well-known that the Laplacian eigenvalues of Pn are equal to 2
(
1 + cos(πi

n
)
)
, i =

1, ..., n. Since the Laplacian and signlees Laplacian spectra of bipartite graphs coincide,

the signlees Laplacian eigenvalues of Pn are equal to 2
(
1 + cos(πi

n
)
)
, i = 1, ..., n. Also,

Q−spectrum of Sn is {[n]1, [1]n−2, [0]1}. Thus the proof is a direct consequence of (5). �

Apply Lemmas 4.3 and 4.4 to prove the following result:

Lemma 4.5 Let G be an n−vertex non-complete graph on n. Then,

n = SLEEr(Kn) ≤ SLEEr(G) ≤ SLEEr(Kn − e).

Furthermore, if G is a connected then

SLEEr(Pn) ≤ SLEEr(G) ≤ SLEEr(Kn − e).
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4.2 Lower Bounds on SLEEr

Up to now, many lower and upper bounds for the largest and least signless Laplacian

eigenvalues q1 and qn were given. In [9, 10], bounds on the signless Laplacian spectral

radius q1(G) of a connected graph G in terms of n and m are given. One of the important

bounds are as follows:
4m

n
≤ q1(G) ≤ 2m

n− 1
+ n− 2 (7)

in which left equality holds if and only if G is a regular graph and right equality holds

if and only if G is Sn or Kn. The following bounds are also presented for the least

Q−eigenvalue qn(G) [11, 17]:

2m

n− 2
− n+ 1 ≤ qn(G) < δ. (8)

It is well known that the empty graphKn is the unique graph with exactly one Q−eigenvalue.

Cvetković [6] proved that if G is a connected graph with r distinct signless Laplacian eigen-

values and diameter d, then d ≤ r − 1. On the other hand, the complete graph Kn is

the unique connected graph with exactly two Q−eigenvalues. In the following Lemma,

connected graphs with three distinct Q−eigenvalues are characterized.

Lemma 4.6 [1] Let G be a connected graph of order n ≥ 4. Then G has exactly three

distinct Q−eigenvalues if and only if G is one of the graphs Kn − e, Sn, Kn
2
,n
2
, K3 + S4

or K1 + 2K3.

In what follows, we apply previous Lemma to compute the signless laplacian spectrum

of some graphs.

Q−Spec(Kn − e) =
{

[
3n− 6±

√
n2 + 4n− 12

2
]1, [n− 2]n−2

}
Q−Spec(Sn) = {[n]1, [1]n−2, [0]1}

Q−Spec(Kn
2
,n
2
) = {[n]1, [

n

2
]n−2, [0]1}

Q−Spec(K3 + S4) = {[9]1, [4]n−2, [1]1} ;n = 7

Q−Spec(K1 + 2K3) = {[9]1, [4]n−2, [1]1} ;n = 7

We are now ready to present some lower bounds for the resolvent signless Laplacian

Estrada index of graphs.
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Lemma 4.7 Let G be a graph with n vertices and m edges, and let I ⊆ {1, 2, . . . , n},

then

SLEEr(G) ≥
∑
j∈I

2n− 2

2n− 2− qj
+

(2n− 2)(n− n′)2

(2n− 2)(n− n′)− 2m+
∑

j∈I qj

where n′ = n(I), and equality holds if and only if qi = qj, for all i, j /∈ I.

Proof. Apply the Cauchy-Schwarz inequality,

SLEEr(G) =
∑
i∈I

2n− 2

2n− 2− qi
+
∑
i/∈I

2n− 2

2n− 2− qi

≥
∑
i∈I

2n− 2

2n− 2− qi
+

(2n− 2)(n− n′)2∑
i/∈I(2n− 2− qi)

=
∑
j∈I

2n− 2

2n− 2− qj
+

(2n− 2)(n− n′)2

(2n− 2)(n− n′)− 2m+
∑

j∈I qj
,

proving the result. �

Theorem 4.8 Let G be a non-complete connected or empty graph with n vertices and m
edges, and let 1 ≤ s < r ≤ n. Then,

(1). SLEEr(G) ≥ n2 (n− 1)

n (n− 1)−m
,

(2). SLEEr(G) ≥ n (n− 1)

n (n− 1)− 2m
+

n (n− 1)3

n (n− 1)2 + 2m−mn
,

(3). SLEEr(G) ≥ 2n− 2

2n− 2− q2

+
2n− 2

2n− 2− qs
+

(2n− 2) (n− 2)2

(2n− 2)(n− 2)− 2m+ qr + qs
,

(4). SLEEr(G) >
2n− 2

2n− 2− 2 d
+

2n− 2

2n− 1− d
+

(2n− 2) (n− 2)2

(2n− 2) (n− 2)− 2m+ n− 2 + 2 ∆

≥ 2n− 2

2n− 2− 2 δ
+

2n− 2

2n− 1− δ
+

(2n− 2) (n− 2)2

(2n− 2) (n− 2)− 2m+ n− 2 + 2 ∆
.

The equalities in parts (1) and (2) hold if and only if G ∼= Kn, and in (3) the equality

is satisfied if and only if G ∼= Kn, Kn − e, Sn, Kn
2
,n
2
, K3 + S4 or K1 + 2K3.

Proof. Apply Lemma 4.7. Our main proof will consider four separate parts as follows:

1. By setting I as a empty set, the inequality in part (1) is obtained, and the equality

holds only when q1 = q2 = · · · = qn. On the other hand, Kn is the unique graph

with exactly one Q−eigenvalue, as desired.

2. By considering I = {1}, we have SLEEr(G) ≥ 2n−2
2n−2−q1

+ 2 (n−1)3

2 (n−1)2+q1−2m
. The equality

in part (2) holds when either q1 = q2 = · · · = qn or q1 6= q2 = · · · = qn. As already

mentioned above, Kn is the unique graph with exactly two distinct Q−eigenvalues,
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a contradiction. Therefore, the equality in this part holds if and only if G ∼= Kn.

On the other hand, by Equation (7), q1 ≥ 4m
n

with equality if and only if G is a

regular graph. Define:

f(x) =
2n− 2

2n− 2− x
+

2 (n− 1)3

2 (n− 1)2 + x− 2m
;

4m

n
≤ x < 2n− 2

Then f is an increasing function on the interval
[

4m
n
, 2n− 2

)
. Therefore, f(q1) ≥

f(4m
n

), which completes part (2).

3. By setting I = {r, s}, 1 ≤ s < r ≤ n, the inequality in part (3) is gained. The

equality holds when qi = qj, for all 1 ≤ i < j ≤ n and i, j 6= r, s. Assume that

qi = qj = c, for all 1 ≤ i < j ≤ n and i, j /∈ I. Thus, three cases can be occurred as

follows:

(i) qr = qs = c ( G has exactly one Q−eigenvalue).

(ii) qr = qs 6= c ( G has exactly two Q−eigenvalues).

(iii) c 6= qr 6= qs 6= c ( G has exactly three Q−eigenvalues).

The case (ii) is satisfied if and only if G ∼= Kn, a contradiction. Also, the case (i) is

satisfied if and only if G ∼= Kn. On the other hand, by Lemma 4.6, our calculations

before this Lemma and the fact that q1 ≥ q2 ≥ · · · ≥ qn, the equality in (iii) holds

when G ∼= Kn − e, Sn, Kn
2
,n
2
, K3 + S4 or K1 + 2K3, and also s = 1, r = n.

4. We know that if G is a connected graph of order n with minimum degree δ, average

degree d and second largest signless Laplacian eigenvalue q2, then d−1 ≤ q2 ≤ n−2,

with equalities if and only if G ∼= Kn [11,16]. Also, it is well-known that 2 δ ≤ 2 d ≤

q1 ≤ 2 ∆, with equality if and only if G is a regular graph. Thus by setting s = 1

and r = 2 in part (3), one can easily see that part (4) holds.

�

4.3 Upper bounds on SLEEr

In this section, we apply Equations (7) and (8) to obtain some upper bounds for the

resolvent signless Laplacian Estrada index of graphs.
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Lemma 4.9 Let G be a non-complete connected or empty graph with n vertices and m

edges. Then,

SLEEr(G) ≤ n2(n− 1)

n(n− 1)−m
+

[
n2

4

]
(n− 1)(q1 − qn)2

(n2 − n−m)(2n− 2− q1)(2n− 2− qn)

with equality if and only if G ∼= Kn.

Proof. Substitute ai = 2n − 2 − qi and bi = 1
2n−2−qi

in Remark 2.1 to obtain M−1
1 =

m2 = 2n−2−q1 and m−1
1 = M2 = 2n−2−qn. Since T1(G) = 2m and n = SLEEr(Kn) ≤

SLEEr(G),

|Cn(ā, b̄)| ≤ 1

n2

[
n2

4

]
(

1

2n− 2− q1

− 1

2n− 2− qn
)(q1 − qn)

=
1

n2

[
n2

4

]
(q1 − qn)2

(2n− 2− q1)(2n− 2− qn)
.

On the Other hand,

∣∣Cn(ā, b̄)
∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

1− 1

n2

n∑
i=1

1

2n− 2− qi

n∑
i=1

(2n− 2− qi)

∣∣∣∣∣
=

∣∣∣∣1− 1

n2

SLEEr(G)

2n− 2

(
n(2n− 2)− 2m

)∣∣∣∣
=

1

n2(n− 1)

∣∣n2(n− 1)−
(
n(n− 1)−m

)
SLEEr(G)

∣∣ .
Therefore,∣∣n2(n− 1)−

(
n2 − n−m

)
SLEEr(G)

∣∣ ≤ [n2

4

]
(n− 1)(q1 − qn)2

(2n− 2− q1)(2n− 2− qn)
,

as desired. �

Lemma 4.10 Let G be a non-complete connected or empty graph with n vertices and m

edges. Then,

(1). SLEEr(G) ≤
2(n− 1)

(
2m+ n(2n− 2− q1 − qn)

)
(2n− 2− q1)(2n− 2− qn)

,

(2). SLEEr(G) ≤ n2(n− 1)(4n− 4− q1 − qn)2

4
(
n2 − n−m

)
(2n− 2− q1)(2n− 2− qn)

,

(3). SLEEr(G) ≤ n2(2n− 2)

n(2n− 2)− 2m− n
(√

2n− 2− qn −
√

2n− 2− q1

)2 ,

(4). SLEEr(G) ≤ n− 1

n(n− 1)−m

(
n+ 1

2
.

√
2n− 2− qn
2n− 2− q1

(√2n− 2− qn
2n− 2− q1

− 1
)2
)2

,
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(5). SLEEr(G) ≤ n2(n− 1)

n(n− 1)−m

( (q1 − qn)2

3(2n− 2− q1)(2n− 2− qn)
+ 1
)

.

In each part the equality is satisfied if and only if G ∼= Kn.

Proof. Substitute ai =
√

2n− 2− qi and bi = 1√
2n−2−qi

in Remarks 2.2, 2.3 and 2.3, and

m = 1
2n−2−qn

,M = 1
2n−2−q1

,m1 = M−1
2 =

√
2n− 2− q1 and M1 = m−1

2 =
√

2n− 2− qn.

Our main proof will consider five separate parts as follows:

1. Apply Diaz−Metcalf inequality, we have:

n∑
i=1

1

2n− 2− qi
+

∑n
i=1(2n− 2− qi)

(2n− 2− q1)(2n− 2− qn)
≤ n

( 1

2n− 2− q1

+
1

2n− 2− qn

)
.

So,

SLEEr(G)

2n− 2
+

n(2n− 2)− 2m

(2n− 2− q1)(2n− 2− qn)
≤ n.

4n− 4− q1 − qn
(2n− 2− q1)(2n− 2− qn)

.

Therefore,

SLEEr(G) ≤
2(n− 1)

(
2m+ n(2n− 2− q1 − qn)

)
(2n− 2− q1)(2n− 2− qn)

which completes part (1).

2. By Pólya−Szegö inequality, we have:

1

n2

n∑
i=1

(2n− 2− qi)
n∑
i=1

1

2n− 2− qi
≤ 1

4

(√2n− 2− qn
2n− 2− q1

+

√
2n− 2− q1

2n− 2− qn

)2

.

Therefore,

SLEEr(G) ≤ n2(n− 1)(4n− 4− q1 − qn)2

4
(
n2 − n−m

)
(2n− 2− q1)(2n− 2− qn)

,

proving part (2).

3. Apply Shisha−Mond inequality to see that

1

n

n∑
i=1

(2n− 2− qi)− n
( n∑
i=1

1

2n− 2− qi

)−1

≤
(√

2n− 2− qn −
√

2n− 2− q1

)2

.

Therefore,

n(2n− 2)− 2m

n
− n(2n− 2)

SLEEr(G)
≤
(√

2n− 2− qn −
√

2n− 2− q1

)2

.

And so,

SLEEr(G) ≤ n2(2n− 2)

n(2n− 2)− 2m− n
(√

2n− 2− qn −
√

2n− 2− q1

)2 ,

as desired.
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4. By Grüss inequality, we can see that

( n∑
i=1

(2n− 2− qi)
) 1

2
( n∑

i=1

1

2n− 2− qi

) 1
2 − n ≤

4

√
2n−2−qn
2n−2−q1

(
4

√
2n−2−qn
2n−2−q1

− 4

√
2n−2−q1
2n−2−qn

)2
2. 4

√
2n−2−q1
2n−2−qn

√
2n− 2− qn
2n− 2− q1

Therefore,

SLEEr(G) ≤ n− 1

n(n− 1)−m

(
n+

1

2
.

√
2n− 2− qn
2n− 2− q1

(√2n− 2− qn
2n− 2− q1

− 1
)2
)2

which proves part (4).

5. By Ozeki−Izumino−Mori−Seo inequality, we have

n∑
i=1

(2n− 2− qi)
n∑
i=1

1

2n− 2− qi
− n2 ≤ n2

3

(2n− 2− qn
2n− 2− q1

+
2n− 2− q1

2n− 2− qn
− 2
)
.

Therefore,

SLEEr(G) ≤ n2(n− 1)

n(n− 1)−m

( (q1 − qn)2

3(2n− 2− q1)(2n− 2− qn)
+ 1
)
,

proving part (5). Clearly, the equalities in above parts hold when G has at most

two distinct Q−eigenvalues and since G � Kn, G is isomorphic to the empty graph

Kn.

�

Lemma 4.11 Let G be a non-complete connected or empty graph with n vertices and m

edges. Then,

(1). SLEEr(G) < n2(n−1)
n(n−1)−m +

[
n2

4

]
(2n3−9n2+13n−2m−6)2

(n−2)(n2−n−m)(n2−n−2m)(3n2−9n−2m+6)

(2). SLEEr(G) < (n−1)(4n4−14n3−4mn2+14n2+8m−4n)
(n2−n−2m)(3n2−9n−2m+6)

(3). SLEEr(G) < n2(4n3−15n2+17n−4mn+6m−6)2

4(n−2)(n2−n−m)(n2−n−2m)(3n2−9n−2m+6)

(4). SLEEr(G) < 2n2(n−1)

2n(n−1)−2m−n
(√

3n−3− 2m
n−2
−
√
n− 2m

n−1

)2

(5). SLEEr(G) < n−1
n(n−1)−m

(
n+ 1

2 .

√
3n−3− 2m

n−2

n− 2m
n−1

(√3n−3− 2m
n−2

n− 2m
n−1

− 1
)2)2

(6). SLEEr(G) < n2(n−1)
n(n−1)−m

(
(2n3−9n2+13n−2m−6)2

3(n−1)(n−2)(n2−n−2m)(3n2−9n−2m+6)
+ 1
)

Proof. The proof is similar to Lemma 3.7 and so it is omitted. �
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5 Concluding Remarks

In this paper, some new bounds for the resolvent Estrada index of graphs are pre-

sented. In the same line as the resolvent Estrada index, the resolvent signless Laplacian

Estrada index together with the extremal trees with respect to this new invariant, are

also presented. Gutman et al. [21], in a recently published paper introduced the con-

cept of “resolvent energy” of an n−vertex graph G as ER(G) =
∑n

i=1

(
1− λi

n

)−1
, where

Spec(G) = {λ1, λ2, · · · , λn}. In the mentioned paper, it is explained why ER is in fact

a new kind of “graph energy”, whereas the resolvent Estrada index EEr is by no way

related to the ordinary Estrada index. On the other hand, EEr is not defined for all

graphs, whereas ER is. Finally, the interested readers can change easily the results of

this paper in the language of graph energy.
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