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Abstract

We use a polynomial f(x) =
∑n0

j=0(−1)jm(T, j)xn0−j for calculating the energy

E(T ) of a tree T , where m(T, j) and n0 are the number of j-matchings and the

maximal matching of T , respectively. To derive the exact expression of E(T ), we

further consider a related polynomial f(x)/d(x) = c0x
m+ c1x

m−1+ · · ·+ cm, where

d(x) is the greatest common factor between f(x) and its derivative f ′(x). Let

mj = limp→∞
(f ′(xj,p))

2

(f ′(xj,p))
2−f(xj,p)f ′′(xj,p)

,
√
xj = limp→∞

√
xj,p, and xj,p = q

√
cj,p

cj−1,p

with q = 2p. We obtain the main result E(T ) =
∑m

j=1 2mj
√
xj , where cj,p for all

0 ≤ j ≤ m and p ≥ 0 is recursively defined as follows: if p = 0, cj,p = cj ; if p ≥ 1,

cj,p = c2j,p−1+2
∑

k≥1(−1)kcj−k,p−1cj+k,p−1, and the summation is over “j− k ≥ 0”

and “j + k ≤ m”. Additionally, we present a simple example to demonstrate the

effectiveness of the new method.

1 Introduction

Let G be a simple graph with n vertices, and λ1, . . . , λn its eigenvalues. Note that λj for

each 1 ≤ j ≤ n is a zero of the characteristic polynomial φ(G, x) = det(xI − A(G)) =

xn + a1x
n−1 + · · · + an, where A(G) is the adjacency matrix of G. As well known [1],
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the graph energy E(G) of G is defined as E(G) =
∑n

j=1 |λj|. It was introduced by

Gutman in 1970s [2], and used as an approximation of the total π-electron energy [3].

In the last decade, research on graph energy, including bounds [4–12], hyperenergetic

graphs [2,13,14], and equienergetic graphs [15,16], to name just a few, has not only been

a very popular topic, but resulted in over one hundred published papers [1]. The following

formula is well known

E(G) =
1

π

∫ +∞

−∞

1

x2
log |xnφ(G, i/x)| dx

where i =
√
−1. Furthermore, if G is a tree, the above equality can be expressed as the

Coulson integral:

E(G) =
2

π

∫ +∞

0

1

x2
ln

[
1 +

∑
j≥0

b2j x
2j

]
dx (1)

where b2j = (−1)j a2j. For more details on the graph energy see refs. [1,17] and references

therein.

Formula (1) makes it possible to compute the energy of trees without knowing the zeros

of the characteristic polynomial, and hence is found many applications. For instance, let

H1 and H2 be trees with n vertices, and suppose the coefficients bj of these two trees

satisfy

bj(H1) ≤ bj(H2) for all j = 1, . . . ,
⌊n
2

⌋
.

Then from formula (1), it follows immediately that E(H1) ≤ E(H2) [18]. However, it

is expressed as a complicated improper integral, and cannot show us a direct way to

compute the energy of trees. Motivated by this, we introduce an auxiliary polynomial to

calculate the energy of trees, and obtain a formula which depends on the coefficients of

the characteristic polynomial, and thus enables one to calculate the energy of trees in a

more direct way.

2 A formula for calculating the energy of trees

First, we list some preliminaries that will be used in what follows.

Lemma 2.1. [19,20] If T is a tree with n vertices, then the characteristic polynomial

φ(T, λ) can be expressed as

φ(T, λ) =

bn/2c∑
j=0

(−1)j m(T, j)λn−2j
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where m(T, j) is the number of j-matchings of T . By convention, m(T, 0) = 1.

Lemma 2.2.(See [21].) The collection of all zeros of φ(T, λ) is symmetric with respect

to the origin.

Define

f(x) =

n0∑
j=0

(−1)j m(T, j)xn0−j

where n0 is the size of the maximal matching of T .

As an example for a tree T (0) (see Fig. 1), we have f(x) = x5 − 9x4 + 26x3 − 30x2 +

13x− 1, which is directly calculated by a method similar to that in [22].

Figure 1: A tree T (0) with 10 vertices.

According to Lemmas 2.1 and 2.2, the following lemma is straightforward.

Lemma 2.3. (I) φ(T, λ) = λm0f(λ2), where m0 is the nullity (= number of zero

eigenvalues). (II) If xk is a zero of f(x), then both
√
xk and −√

xk are zeros of φ(T, λ).

(III) Each zero of f(x) is a positive real number.

For 1 ≤ j ≤ m, denote a zero of f(x) by xj, whose multiplicity ismj. As a consequence

of Lemma 2.3, we obtain

E(T ) =
m∑
j=1

2mj
√
xj . (2)

In Eq. (2), we can evaluate the quantity mj by the following method due to Guan [23].

Lemma 2.4. If mj is the multiplicity of zero xj of f(x), then

mj = lim
x→xj

(f ′(x))2

(f ′(x))2 − f(x)f ′′(x)

where f ′(x), as usual, is the derivative of f(x).
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Proof. For completeness, we provide an independent proof. Since mj is the multi-

plicity of zero xj of f(x), we can write f(x) as f(x) = f1(x)f2(x) with f1(x) = (x− xj)
mj

and f2(xj) 6= 0. As a result, we have

f(x)f ′′(x)

(f ′(x))2
=

f1(x)f2(x) [f
′′
1 (x)f2(x) + 2f ′

1(x)f
′
2(x) + f1(x)f

′′
2 (x)]

(f ′
1(x)f2(x) + f1(x)f ′

2(x))
2

=
f2(x) [mj(mj − 1)f2(x) + 2mj(x− xj)f

′
2(x) + (x− xj)

2f ′′
2 (x))]

(mjf2(x) + (x− xj)f ′
2(x))

2 .

Taking a limit gives limx→xj

f(x)f ′′(x)
(f ′(x))2

=
mj−1

mj
, and this leads to limx→xj

(f ′(x))2

(f ′(x))2−f(x)f ′′(x)
=

mj, as a desired value.

In order to obtain the quantity
√
xj in Eq. (2) for all 1 ≤ j ≤ m, let d(x) denote the

greatest common factor between f(x) and f ′(x), and set g(x) = f(x)/d(x). Notice now

that g(x) is a polynomial of order m, whose zeros are x1, . . . , xm in which xj 6= xk if and

only if j 6= k. Therefore, g(x) may read as g(x) = xm + c1x
m−1 + · · ·+ cm.

Put c0 = 1 for simplicity, and recursively define cj,p for all 0 ≤ j ≤ m and p ≥ 0 as

follows.

• If p = 0, cj,p = cj.

• If p ≥ 1, cj,p = c2j,p−1+2
∑

k≥1(−1)kcj−k,p−1cj+k,p−1, where “j− k ≥ 0” and “j+ k ≤

m” must hold.

Theorem 2.5.
√
xj = limp→∞ 2q

√
cj,p

cj−1,p
for all 1 ≤ j ≤ m, where q = 2p.

Proof. We follow Lobachevsky [24] to proceed the following equation

g(x) = xm + c1x
m−1 + · · ·+ cm = 0 (3)

and write it as

xm + c1x
m−1 + · · ·+ cm = (x− x1)(x− x2) · · · (x− xm) = 0 . (4)

Replacing x with −x gives

xm − c1x
m−1 + c2x

m−2 + · · ·+ (−1)mcm = (x+ x1)(x+ x2) · · · (x+ xm) = 0 . (5)

Combining Eq. (4) with Eq. (5) gets (x2 − x2
1)(x

2 − x2
2) · · · (x2 − x2

m) = 0, and further

becomes

(z − x2
1)(z − x2

2) · · · (z − x2
m) = 0 (6)

where z = x2.
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On the other hand, multiplying the left-hand sides of the two Eqs. (4) and (5), we

obtain (
c0x

m + c1x
m−1 + · · ·+ cm

)
×

(
c0x

m − c1x
m−1 + · · ·+ (−1)mcm

)
= c20x

2m + c0c1 x2m−1 − c21 x2m−2 − c0c3 x2m−3 + c22 x2m−4 − · · · = 0.

−c0c1 +c0c2 +c1c2 −c1c3

+c0c2 −c1c2 −c1c3

+c0c3 +c0c4

+c0c4

Then substituting z for x2 gives

c20z
m + (−c21 + 2c0c2)z

m−1 + (c22 − 2c1c3 + 2c0c4)z
m−2 + · · · = 0 .

Together with (6), we have

c20z
m + (−c21 + 2c0c2)z

m−1 + (c22 − 2c1c3 + 2c0c4)z
m−2 + · · ·

= c20(z − x2
1)(z − x2

2) · · · (z − x2
m)

= 0 .

Herein changing z into −z yields

c20z
m + (c21 − 2c0c2)z

m−1 + (c22 − 2c1c3 + 2c0c4)z
m−2 + · · ·

= c20(z + x2
1)(z + x2

2) · · · (z + x2
m)

= 0 . (7)

In Eq.(7), the coefficient of zk is obtained from the coefficients in Eq. (3) by taking

the square of the coefficient of xk, minus twice the product of two coefficients of xk−1 and

xk+1, plus twice the product of two coefficients of xk−2 and xk+2, and so on, until the

coefficient of the first item or last item appears.

If we proceed Eq. (7) analogous to Eq. (3), we shall obtain a new equation of order

m, whose roots are −x4
1, −x4

2, · · · , −x4
m. We say that the original Eq. (3) is proceeded

twice. Proceeding the original Eq. (3) p times, we arrive at a new equation

c0,px
m + c1,px

m−1 + · · ·+ cm,p = 0

whose roots are −xq
1, −xq

2, . . . , −xq
m, where cj,p for all 0 ≤ j ≤ m and p ≥ 0 is defined

as above.
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Bearing in mind that c0,px
m+c1,px

m−1+· · ·+cm,p = c0,p(x+xq
1)(x+xq

2) · · · (x+xq
m) = 0

and c0,p = 1, we obtain

xq
1 + · · ·+ xq

m = c1,p

(x1x2)
q + (x1x3)

q + · · · = c2,p

(x1x2x3)
q + (x1x2x4)

q + · · · = c3,p

· · · · · ·

(x1x2 · · · xm)
q = cm,p

.

Assume that x1 > x2 > · · · > xm > 0, and write the above equalities as

(
√
x1)

2q
[
1 + (

√
x2

x1
)2q + · · ·+ (

√
xm

x1
)2q

]
= c1,p

(
√
x1x2)

2q
[
1 + (

√
x3

x2
)2q + · · ·

]
= c2,p

(
√
x1x2x3)

2q
[
1 + (

√
x4

x3
)2q + · · ·

]
= c3,p

· · · · · ·

(
√
x1x2 · · · xm)

2q = cm,p


.

Since the absolute values of the fractions x2

x1
, x3

x1
, · · · , xm

xm−1
are less than 1, there is always

the index q such that the quantities
(√

x2

x1

)2q

,
(√

x3

x1

)2q

, . . . ,

(√
xm

xm−1

)2q

are omitted

within the error range. Thus we obtain

(
√
x1)

2q = c1,p

(
√
x1x2)

2q = c2,p

(
√
x1x2x3)

2q = c3,p

· · · · · ·

(
√
x1x2 · · ·xm)

2q = cm,p

(8)

followed by 

(
√
x1)

2q = c1,p

(
√
x2)

2q = c2,p
c1,p

· · · · · ·

(
√
xm)

2q = cm,p

cm−1,p

further implying
√
xj = lim

p→∞
2q

√
cj,p
cj−1,p

(9)

for all 1 ≤ j ≤ m.

From Lemma 2.4 and Theorem 2.5, we have obtained a novel method for calculating

a value for E(T ).
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Theorem 2.6. Suppose that f(x) =
∑n0

j=0(−1)j m(T, j)xn0−j, d(x) =the greatest

common factor between f(x) and its derivative f ′(x), and g(x) = f(x)/d(x) = c0x
m +

c1x
m−1 + · · ·+ cm. Then,

E(T ) =
m∑
j=1

2mj
√
xj = lim

p→∞

m∑
j=1

2(f ′(xj,p))
2

(f ′(xj,p))2 − f(xj,p)f ′′(xj,p)

√
xj,p (10)

where mj = limp→∞
(f ′(xj,p))

2

(f ′(xj,p))
2−f(xj,p)f ′′(xj,p)

,
√
xj = limp→∞

√
xj,p , and xj,p = q

√
cj,p

cj−1,p
in

which q is equal to 2p, and cj,p for all 0 ≤ j ≤ m and p ≥ 0 is recursively defined as

follows: if p = 0, cj,p = cj; if p ≥ 1, cj,p = c2j,p−1 + 2
∑

k≥1(−1)kcj−k,p−1cj+k,p−1, and the

summation
∑

k≥1 is over “j − k ≥ 0” and “j + k ≤ m”.

Remark 2.7. In practice, there should be a more detailed explanation how to use

Eq. (10) to get the approximate value for E(T ). First, in view of Eq. (10), we have

E(T ) ≈ E(Tp) :=
m∑
j=1

2(f ′(xj,p))
2

(f ′(xj,p))2 − f(xj,p)f ′′(xj,p)

√
xj,p (11)

and use it to obtain an approximation of E(T ) with any given precision just by choosing

the appropriate parameter p. For convenience we take c0 = 1, giving rise to c0,p =

1 for all p ≥ 1. Then from Eq. (8) when the parameter p is replaced by p + 1, it

follows that
(
(
√
x1 · · ·xj)

2q
)2

=
cj,p+1

c0,p+1
= cj,p+1 for all 1 ≤ j ≤ m. This and the relations

(
√
x1 · · ·xj)

2q =
cj,p
c0,p

= cj,p jointly produce (cj,p)
2 = cj,p+1, i.e.,

2 lg (cj,p) = lg (cj,p+1)

for all 1 ≤ j ≤ m. Thus, the quantities cj,p are desired values as suggested in [24], once

the above equations for all 1 ≤ j ≤ m are satisfied. Next, the multiplicity mj of zero xj

of f(x) is exactly equal to the integer nearest to the real number
(f ′(xj,p))

2

(f ′(xj,p))2−f(xj,p)f ′′(xj,p)
,

which follows from Lemma 2.4.

It is worth mentioning that
√
xj for each 1 ≤ j ≤ m is actually the j-th eigenvalue

[25,26] of T , and Eq. (9) is a new method for calculating the eigenvalues of T . Compared

to the existing methods [27–29], our method is of interest in its own right.

3 An example

We choose again the tree T (0) (see Fig. 1) to demonstrate the method in Eq. (11). By a

direct calculation, we obtain the related functions as follows: f(x) = (x− 1)2(x3 − 7x2 +
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11x − 1) = x5 − 9x4 + 26x3 − 30x2 + 13x − 1, f ′(x) = (x − 1)(5x3 − 31x2 + 47x − 13),

f ′′(x) = 20x3 − 108x2 + 156x − 60, d(x) = x − 1, and g(x) = f(x)/d(x) = (x − 1)(x3 −

7x2 + 11x − 1) = x4 − 8x3 + 18x2 − 12x + 1. Table 1 displays the approximate values

E(T
(0)
p ) for p = 1 through 6.

Table 1: Calculating the approximate values E(T
(0)
p ) for p = 1 through 6 with initial

conditions c0,0 = 1, c1,0 = −8, c2,0 = 18, c3,0 = −12 and c4,0 = 1.

2q

√
c1,p
c0,p

2q

√
c2,p
c1,p

2q

√
c3,p
c2,p

2q

√
c4,p
c3,p

E(T
(0)
p )

p = 1 2.3003266338 1.4790630640 0.9475011359 0.31020161970 12.0741849068

p = 2 2.1831381187 1.4804977697 0.9945006811 0.31110425063 11.9384816402

p = 3 2.1703876992 1.4811614118 0.9998834217 0.31110781732 11.9250806999

p = 4 2.1700868205 1.4811942368 0.9999998915 0.31110781747 11.9247775328

p = 5 2.1700864866 1.4811943041 1.0000000000 0.31110781747 11.9247772164

p = 6 2.1700864866 1.4811943041 1.0000000000 0.31110781747 11.9247772164
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