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Abstract
For a connected graph G, the Laplacian-energy-like invariant and Kirchhoff index of

G, are defined as LEL(G) =
n−1∑
i=1

√
µi and Kf(G) = n

n−1∑
i=1

1

µi
, respectively, where µi are

the Laplacian eigenvalues of G. In this paper, some graphs with LEL(G) > Kf(G) are
presented, which extents a result in [1]. The comparison between LEL(G) and Kf(G) of
chemical graphs is completely determined. Moreover, the comparisons between the two
variants for regular graphs and its line graphs, and graphs with given clique number are
studied.

1. Introduction

Let G be a simple graph with n vertices and m edges. The cyclomatic number of G is

c = m− n+ 1. For example, if c = 0, 1, 2, 3, 4, then G is called a tree, unicyclic, bicyclic,

tricyclic, and tetracyclic graph, respectively. Let di be the degree of a vertex vi in G.
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The maximum and minimum vertex degrees in G are denoted by ∆ and δ, respectively.

A chemical graph is a connected graph with the maximum vertex degree at most 4. The

Laplacian matrix of G is defined as L = D−A, where A is the adjacency matrix of G and

D = diag(d1, d2, . . . , dn) the diagonal matrix of vertex degrees. The Laplacian spectrum of

G is the spectrum of its Laplacian matrix, and consists of the values µ1 ≥ µ2 ≥ · · · ≥ µn.

The Laplacian-energy-like invariant of G, denoted by LEL(G), has recently been de-

fined as [2]

LEL(G) =
n−1∑
i=1

√
µi.

There are several works about the graph invariant (see [3] and the references therein).

In 1993, Klein and Randić [4] introduced resistance distance based on the electrical

network theory. The Kirchhoff index [5] is defined as Kf(G) =
∑

i<j rij, where rij is

the resistance distance between vertices vi and vj. For a connected graph G with n ≥ 2

vertices, it has been proven [6, 7] that Kf(G) = n

n−1∑
i=1

1

µi
.

Das et al. [1] established two sufficient conditions under which LEL(G) < Kf(G) and

nine graphs with LEL(G) > Kf(G) are shown.

In this paper, some graphs with LEL(G) > Kf(G) are presented, which extents

a result in [1]. The comparison between LEL(G) and Kf(G) of chemical graphs is

completely determined. Moreover, the comparisons between the two variants of regular

graphs and its line graphs, and graphs with given clique number are studied.

2. Some graphs with LEL larger than Kf

Lemma 2.1 [8] Let G+ e be obtained by adding a new edge to the connected graph G. If

LEL(G) > Kf(G), then LEL(G+ e) > Kf(G+ e) holds.

Denoted by G the complement of G. Let G∗(n) be the graph depicted in Figure A:
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Figure A. The graph G∗(n).
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Theorem 2.1 Let G be a connected graph with n ≥ 7 vertices. If G is a spanning subgraph

of G∗(n), then LEL(G) > Kf(G).

Proof. Since G is a spanning subgraph of G∗(n), G∗(n) is a spanning subgraph of G.

The Laplacian spectrum ofG∗(n) is SpecL(G∗(n)) = {4.214, 3, 3, 1.461, 0.325, 0, . . . , 0}.

Then the Laplacian spectrum of G∗(n) is SpecL(G∗(n)) = {n, . . . , n, n − 0.325, n −

1.461, n− 3, n− 3, n− 4.214, 0}.

Hence LEL(G∗(n)) = (n− 6)
√
n+
√
n− 0.325 +

√
n− 1.461 + 2

√
n− 3 +

√
n− 4.214

and Kf(G∗(n)) = n(
n− 6

n
+

1

n− 0.325
+

1

n− 1.461
+

2

n− 3
+

1

n− 4.214
).

Let f(n) := LEL(G∗(n))−Kf(G∗(n)).

Obviously, f(n) is an increasing function on n. Then f(n) ≥ f(7)
.
= 3.92698 > 0.

By Lemma 2.1, LEL(G) ≥ LEL(G∗(n)) > Kf(G∗(n)) ≥ Kf(G). �

The union of simple graphs G and H is the graph G1∪G2 with vertex set V ((G)∪V (H)

and edge set E(G)∪E(H). Let G1∨G2 be the graph obtained from G1∪G2 by connecting

all vertices of G1 by all vertices of G2.

Let G1(n) = Kn−2 ∨ (2K1); G2(n) = Kn−4 ∨ C4; G3(n) = Kn−3 ∨ (K1 ∪K2);

G4(n) = Kn−6 ∨ (C4 ∨ 2K1); G5(n) = Kn−5 ∨ ((K2 ∪K1) ∨ 2K1); G6(n) = Kn−4 ∨ P4;

G7 = Kn−3 ∨ (3K1); G8(n) = Kn−4 ∨ (K1 ∪K3).

Then G1(n) = K2 ∪ (n− 2)K1; G2(n) = 2K2 ∪ (n− 4)K1;G3(n) = K1,2 ∪ (n− 3)K1;

G4(n) = 3K2 ∪ (n− 6)K1; G5(n) = K1,2 ∪K2 ∪ (n− 5)K1; G6(n) = P4 ∪ (n− 4)K1;

G7(n) = K3 ∪ (n− 3)K1; G8(n) = K1,3 ∪ (n− 4)K1.

Note that Gi(n), i = 1, . . . , 8, are the spanning subgraphs of G∗(n).

From Theorem 2.1, we have the following corollary in [1].

Corollary 2.1 [1]. For any graph G ∈ {Kn, G1(n), . . . , G8(n)}, the inequality LEL(G) >

Kf(G) holds.

3. Chemical graphs

Lemma 3.1 [9]. Let G be a connected graph with n ≥ 2 vertices. Then

Kf(G) ≥ −1 + (n− 1)
∑

vi∈V (G)

1

di

with equality attained if and only if G ∼= Kn or Kt,n−t 1 ≤ t ≤ bn
2
c.
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Lemma 3.2 [2]. Let G be a connected graph with n ≥ 2 vertices, m ≥ 1 edges and

maximum degree ∆. Then LEL(G) ≤
√

∆ + 1 +
√

(n− 2)(2m−∆− 1) with equality if

and only if G ∼= Kn or G ∼= Sn.

Lemma 3.3 [1]. Let G be a connected graph of order n with m edges and minimum degree

δ. If 2m ≤ (n− 1)n2/3, then LEL(G) < Kf(G).

Theorem 3.1 Let G be a chemical graph with n ≥ 10 vertices. Then LEL(G) < Kf(G).

Proof. Note that 2m ≤ 4n. Let f(n) := (n− 1)n
2
3 − 4n. f(n) is an increasing function

for n ≥ 10. Then (n − 1)n
2
3 − 2m ≥ f(n) ≥ f(10)

.
= 1.7743 > 0. By Lemma 3.3, then

LEL(G) < Kf(G) for n ≥ 10. �

Theorem 3.2 Let G be a chemical graph with n = 9 vertices. Then LEL(G) < Kf(G).

Proof. There are two cases:

Case 1: δ ≤ 2 or δ = 3.

If δ ≤ 2, then 2m ≤ 4(9− 1) + 2 = 34 < (n− 1)n
2
3 = (9− 1)9

2
3 ≈ 34.614.

If δ = 3, and note that there are at least two vertices with degree 3, then

2m ≤ 4(9− 2) + 3 · 2 = 34 < (9− 1)9
2
3 ≈ 34.614.

By Lemma 3.3, the case holds.

Case 2: δ = 4.

Then G is a connected 4-regular graph. By Lemmas 3.1 and 3.2, LEL(G) ≤
√

4 + 1+√
(9− 2)(36− 4− 1) =

√
5 +
√

217 ≈ 16.967 < 17 = −1 + (9− 1)
∑

vi∈V (G)

1

4
≤ Kf(G).

By all the cases exhausted, the theorem holds. �

Lemma 3.4 Let G be a chemical graph with n = 8 vertices and degree sequence π =

(4, 4, 4, 4, 4, 4, 3, 3). Then LEL(G) < Kf(G).

Proof. Since G has degree sequence π = (4, 4, 4, 4, 4, 4, 3, 3), G is connected and with

degree sequence π′ = (4, 4, 3, 3, 3, 3, 3, 3). Let v1 and v2 be the two vertices with degree 4

in G. There are two cases:

Case 1: v1 ∼ v2 in G.

G is obtained by adding an edge from a graph with degree sequence π∗ = (3, 3, 3, 3, 3,

3, 3, 3). A graph with degree sequence π∗ is a cubic graph. From [10] (P.293, 3.4-3.8)

and the symmetry of vertices, there are 18 graphs with degree sequence π′, and their

complement graphs Gi (i = 1, . . . , 18) with degree sequence π are depicted in Figure B.

-144-



tt ttt tt

t

G1

�
�
��

Q
Q

Q
Q
QQ

PPPPPP

Q
Q
Q
Q
QQ

��
��

��

A
A
AA

�
�
�
�
��

�
�
�
�
��

��
��

��

�
�
��A
A
AA

tt ttt tt

t

G2

PPPPPP

�
�
��

Q
Q
Q
Q
QQ

��
��
��

A
A
AA

�
�
�
�
��

�
�
�
�
��

��
��
��

PP
PP

PP

�
�
��A
A
AA

tt ttt tt

t

G3

PPPPPP

Q
Q

Q
Q
QQJ
J
J
J
JJ

Q
Q
Q
Q
QQ

A
A
AA

�
�
�
�
��

���
���

�

�
�
�
�
��

��
��

��

PP
PP

PP

A
A
AA

tt ttt tt

t

G4

J
J
J
J
JJ

Q
Q
Q
Q
QQ

Q
Q
Q
Q
QQ

��
��
��

A
A
AA

�
�
�
�
��

���
���

�

PPPPPP�
�
�
�
��

��
��
��

PP
PP

PP

A
A
AA

tt ttt tt

t

G5

Q
Q
Q
Q
QQ

Q
Q
Q
Q
QQ

��
��
��

A
A
AA

�
�
�
�
��

���
���

�

PPPPPP�
�
�
�
��

��
��
��

PP
PP

PP

A
A
AA

tt ttt tt

t

G6

PPPPPPJ
J
J
J
JJ

Q
Q
Q
Q
QQ

��
��

��

A
A
AA

�
�
�
�
��

���
���

�

�
�
�
�
��

��
��

��

PP
PP

PP

A
A
AA

tt ttt tt

t

G7

PPPPPP

J
J
J
J
JJ

Q
Q

Q
Q

QQ

Q
Q
Q
Q
QQ

��
��
��

A
A
AA

�
�
�
�
��

���
���

�

�
�
�
�
��

��
��
��A
A
AA

tt ttt tt

t

G8

�
�
��

J
J
J
J
JJ

XXXXXXX
Q
Q
Q
Q
QQ

A
A
AA

�
�
�
�
��

���
���

�

�
�
�
�
��

��
��

��

�
�
��
PP

PP
PP

A
A
AA

tt ttt tt

t

G9

�
�
��

J
J
J
J
JJ

XXXXXXX
Q
Q
Q
Q
QQ

��
��
��

A
A
AA

���
���

�

�
�
�
�
��

��
��
��

PP
PP

PP

�
�
��A
A
AA

tt ttt tt

t

G10

J
J
J
J
JJ

XXXXXXX
Q
Q
Q
Q
QQ

��
��
��

A
A
AA

�
�
�
�
��

���
���

�

�
�
�
�
��

��
��
��

PP
PP

PP

�
�
��A
A
AA

tt ttt tt

t

G11

�
�
��

J
J
J
J
JJ

XXXXXXX
Q
Q
Q
Q
QQ

��
��
��

A
A
AA

�
�
�
�
��

��
���

��

�
�
�
�
��

��
��

��

�
�
��A
A
AA

tt ttt tt

t

G12

�
�
��

J
J
J
J
JJ

Q
Q
Q
Q
QQ

��
��
��

A
A
AA

�
�
�
�
��

��
���

��

�
�
�
�
��

��
��
��

PP
PP

PP

�
�
��A
A
AA

tt ttt tt

t

G13

PPPPPP

�
�
��

J
J
J
J
JJ

A
A
AA

��
���

��













��
��

��

�
�
��
PP

PP
PP

XX
XXX

XX

A
A
AA

tt ttt tt

t

G14

�
�
��

J
J
J
J
JJ

PPPPPPXXXXXXX

��
��
��

A
A
AA

��
���

��

PPPPPP











��
��
��

�
�
��A
A
AA

tt ttt tt

t

G15

Q
Q
Q
Q
QQ

J
J
J
J
JJ

XXXXXXX
Q
Q
Q
Q
QQ

A
A
AA

PPPPPP

��
���

��

�
�
�
�
��












PP

PP
PP

A
A
AA

tt ttt tt

t

G16

J
J
J
J
JJ

�
�
��

Q
Q

Q
Q
QQ

Q
Q
Q
Q
QQ

XXXXXXX
A
A
AA

�
�
�
�
��

�
�
�
�
��













�
�
��A
A
AA

tt ttt tt

t

G17

PPPPPP

Q
Q

Q
Q

QQJ
J
J
J
JJ

Q
Q
Q
Q
QQ

XXXXXXX
A
A
AA

�
�
�
�
��

���
���

�

�
�
�
�
��












PP

PP
PP

A
A
AA

tt ttt tt

t

G18

PPPPPP
Q
Q
Q
Q
QQ

XXXXXXX
Q
Q
Q
Q
QQ

A
A
AA

�
�
�
�
��

���
���

�

PPPPPP�
�
�
�
��













A
A
AA

tt ttt tt

t

G19

�
�
�
�
��

PPPPPP
A
A
AA

���
���

�

@
@��

��
��

�
�
A
A
AA@
@

tt ttt tt

t

G20

�
�
Q
Q
Q
Q
QQ

PPPPPP��
��
��

���
���

�

@
@��

��
��

�
�

@
@

tt ttt tt

t

G21

�
�
��
Q
Q
Q
Q
QQ

XXXXXXX
A
A
AA

@
@ �

�
��Q

Q
Q

Q
QQ

@
@

tt ttt tt

t

G22

�
�
�
�
��

PPPPPP
Q
Q
Q
Q
QQ

A
A
AA

��
���

��

@
@

PPPPPP











�
�
A
A
AA

tt ttt tt

t

G23

�
�
��

PPPPPP
Q
Q
Q
Q
QQ

XXXXXXX

��
��
��

PPPPPP
@
@��

��
��

�
�
��
@
@

tt ttt tt

t

G24

�
�
��

J
J
J
J
JJ

Q
Q
Q
Q
QQ

A
A
AA

��
��
��

��
���

��

�
�
�
�
��

��
��
��

�
�
A
A
AA@
@

tt ttt tt

t

G25

�
�
��

J
J
J
J
JJ

Q
Q
Q
Q
QQ

Q
Q
Q
Q
QQ

A
A
AA

��
��
��

��
���

��

�
�
�
�
��

��
��
��













�
�

@
@

tt ttt tt

t

G26

�
�
��

Q
Q
Q
Q
QQ

Q
Q
Q
Q
QQ

XXXXXXX
@
@

PPPPPP�
�
�
�
��

�
�
A
A
AA@
@

tt ttt tt

t

G27

Q
Q
Q
Q
QQ

�
�
��

J
J
J
J
JJ

A
A
AA

XXXXXXX

��
��
��

���
���

�

�
�
�
�
��

��
��

��

�
�
�
�
��

�
�
��A
A
AA

tt ttt tt

t

G28

�
�
��

J
J
J
J
JJ

Q
Q
Q
Q
QQ

PPPPPPXXXXXXX

��
��
��

�
�
�
�
��

@
@��

��
��

�
�
�
�
��

�
�
��

Figure B. Graphs with degree sequence π = (4, 4, 4, 4, 4, 4, 3, 3).
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Graphs G1 G2 G3 G4 G5 G6 G7 G8 G9

LEL 14.2335 14.2511 14.2548 14.2718 14.2412 14.2596 14.2623 14.2607 14.2451
Kf 15.5569 15.1419 15.1719 14.7933 15.4797 15.0283 14.9448 14.9804 15.3419

Table 1. The LEL and Kf of graphs Gi (i = 1, . . . , 9).

Graphs G10 G11 G12 G13 G14 G15 G16 G17 G18

LEL 14.2478 14.2737 14.2607 14.2481 14.2003 14.2874 14.2569 14.1011 14.2661
Kf 15.2517 14.7456 14.9804 15.2381 16.6667 14.5714 15.25 15.3983 14.9697

Table 2. The LEL and Kf of graphs Gi (i = 10, . . . , 18).

By direct calculations, and Tables 1 and 2, LEL(G) < Kf(G).

G19 G20 G21 G22 G23 G24 G25 G26 G27 G28

14.2113 14.228 14.2461 14.2537 14.2669 14.2455 14.2478 14.2613 14.2706 14.2728
16.2 15.7583 15.3112 152079 14.9207 15.3 15.2328 14.9733 14.8261 14.7667

Table 3. The LEL and Kf of graphs Gi (i = 19, . . . , 28).

Case 2: v1 � v2 in G.

Note that G has the degree sequence π′ = (4, 4, 3, 3, 3, 3, 3, 3). By discussing the

subcases |N(v1)∩N(v2)| = 4, 3 or 2, and adding the edges gradually, we search 10 graphs

with degree sequence π′ and the complement graphs Gi (i = 19, . . . , 28) are depicted in

Figure B. By direct calculations, from Table 3, LEL(G) < Kf(G).

The result holds. �

Theorem 3.3 Let G be a chemical graph with n = 8 vertices.

Then LEL(G) < Kf(G) except the graphs depicted in Figure 1.

Proof. There are four cases:

Case 1: δ ≤ 2.

Then 2m ≤ 4(8 − 1) + 2 = 30. By Lemmas 3.1 and 3.2, LEL(G) ≤
√

∆ + 1 +√
(8− 2)(30−∆− 1) ≤

√
3 + 1 +

√
(8− 2)(30− 3− 1) ≈ 14.49 < 14.75 = −1 + (8 −

1)(
7

4
+

1

2
) ≤ Kf(G).

Case 2: δ = 3 and ∆ = 3.

By Lemmas 3.1 and 3.2, LEL(G) ≤
√

3 + 1 +
√

(8− 2)(24− 3− 1) ≈ 12.9545 <

17.6667 ≈ −1 + (8− 1)
8

3
≤ Kf(G).

Case 3: δ = 3 and ∆ = 4.

Subcase 3.1: The number of vertices with degree 3 is equal to 2.
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By Lemma 3.4, LEL(G) < Kf(G).

Subcase 3.2: The number of vertices with degree 3 is more than 2.

Note that the degrees are 3 or 4, and the number of odd degrees is even. If there are

6 vertices with degree 3, by Lemmas 3.1 and 3.2, then

LEK(G) ≤
√

4 + 1 +
√

(8− 2)(26− 4− 1) ≈ 13.461 < 16.5 = −1 + (8 − 1)(
2

4
+

6

3
) ≤ Kf(G). If there are 4 vertices with degree 3, by Lemmas 3.1 and 3.2, LEL(G) ≤
√

3 + 1 +
√

(8− 2)(28− 4− 1) ≈ 13.9834 < 15.3333 ≈ −1 + (8− 1)(
4

4
+

4

3
) ≤ Kf(G).

Case 4: δ = 4 and ∆ = 4.

Then G is a connected 4-regular graph and G is 3-regular graph. If G is disconnected,

then G ∼= K4 ∪K4, and G ∼= H1 (Figure 1). If G is connected, then G is a cubic graph.

By [10], there are 5 cubic graphs with n = 8 vertices. The complement graphs (H2–H6)

of cubic graphs are depicted in Figure 1.

By direct calculations, from Table 4, LELG > Kf(G).

The result holds. �tt ttt tt
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Figure 1. Chemical graphs with n = 8 vertices,δ = ∆ = 4 and LEL > Kf .

Graphs H1 H2 H3 H4 H5 H6

LEL 14.8284 14.7687 14.7867 14.7777 14.7627 14.802
Kf 13 13.8095 13.5411 13.6789 14 13.3333

Table 4. The LEL and Kf of chemical graphs with n = 8 vertices and δ = ∆ = 4.
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Theorem 3.4 Let G be a chemical graph with n = 7 vertices.

Then LEL(G) < Kf(G) except the graphs depicted in Figures 2 and 3.

Proof. Let t be the number of vertices with degree 4. There are three cases:

Case 1: t = 0.

Note that 2m ≤ 7× 3 = 21 < (7− 1)7
2
3 ≈ 21.9958.

By Lemma 3.3, LEL(G) < Kf(G).

Case 2: 1 ≤ t ≤ 5.

There are two subcases.

Subcase 2.1: δ ≤ 2.

By Lemma 3.1, Kf(G) ≥ −1 + (7− 1)(
5

4
+

2

2
) = 12.5 or Kf(G) ≥ −1 + (7− 1)(

5

4
+

1

3
+ 1) = 14.5. By Lemma 3.2, LEL ≤

√
4 + 1 +

√
(7− 2)(25− 4− 1) ≈ 12.2361.

This subcase holds.

Subcase 2.2: δ ≥ 3.

Note that 1 ≤ t ≤ 5, δ ≥ 3 and n = 7. Then there are three degree sequences:

π1 = (4, 3, 3, 3, 3, 3, 3), π2 = (4, 4, 4, 3, 3, 3, 3) and π3 = (4, 4, 4, 4, 4, 3, 3).

For degree sequence π1, by Lemmas 3.1 and 3.2, LEL(G) ≤
√

4 + 1+√
(7− 2)(22− 4− 1) ≈ 11.4556 < 12.5 = −1 + (7− 1)(

1

4
+

6

3
) ≤ Kf(G).

For degree sequence π2, there are 11 chemical graphs, which are No. 489, 490, 491,

492, 495, 496, 497, 498, 514, 515, 516 in [11]. By direct calculations, from Table 5, we

have LEL(G) < Kf(G) except the two graphs No. 489 and 490 (H7, H8 in Figure 2).

For degree sequence π3, there are 7 chemical graphs, which are No. 615, 616, 618,

619, 622, 623, and 624 (Hi, i = 9, . . . , 15 in Figure 2) in [11]. By direct calculations, from

Table 6, LEL(G) > Kf(G) holds for the graphs in Figure 2.

Graphs 489 490 491 492 495 496 497 498 514
LEL 11.8419 11.8208 11.8122 11.8128 11.8001 11.8047 11.7934 11.7993 11.7729
Kf 11.5 11.8186 11.9348 11.91 12.1243 12 12.3289 12.1403 12.65

Graphs 515 516
LEL 11.784 11.7788
Kf 12.4456 12.6316

Table 5. The LEL and Kf of chemical graphs with n = 7 and m = 12.
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Graphs 615 616 618 619 622 623 624
LEL 12.3459 12.3373 12.3289 12.3248 12.3152 12.3193 12.162
Kf 10.5667 10.6818 10.7896 10.8853 11.0226 10.9167 11.0015

Table 6. The LEL and Kf of chemical graphs with n = 7 and m = 13.
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Figure 2. Chemical graphs with degree sequences (4, 4, 4, 3, 3, 3, 3) and (4, 4, 4, 4, 4, 3, 3).

Case 3: t = 6 or t = 7.

If t = 6, then G and G have the degree sequences π4 = (4, 4, 4, 4, 4, 4, 2) and π′4 =

(4, 2, 2, 2, 2, 2, 2), respectively. From π′4, the graphs with degree sequence π4 are depicted

in Figure 3. By direct calculations, LEL(H16) = 12.8439 > 9.69231 = Kf(H16) and

LEL(H17) = 12.2587 > 11.8435 = Kf(H17).

If t = 7, then G is the 4-regular graphs with n = 7 vertices and G ∼= H18 in Figure 3.

Then LEL(H18) = 12.277 > 11.4408 = Kf(H18). �
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Figure 3. Chemical graphs with degree sequence (4, 4, 4, 4, 4, 4, 2).
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Theorem 3.5 Let G be a chemical graph with n = 6 vertices.

Then LEL(G) < Kf(G) except the graphs in Figure 4.

Proof. If m ≤ 8, then 2m ≤ 16 < 16.5096 ≈ (6 − 1)6
2
3 = (n − 1)n

2
3 . By Lemma 3.3,

LEL(G) < Kf(G). It is only need to consider the cases that 9 ≤ m ≤ 12.

Case 1: m = 9.

By [12], there are 14 chemical graphs with degree sequences π1 = (4, 4, 4, 3, 2, 1), π2 =

(4, 4, 4, 2, 2, 2), π3 = (4, 4, 3, 3, 3, 1), π4 = (4, 4, 3, 3, 2, 2), π5 = (4, 3, 3, 3, 3, 2) and π6 =

(3, 3, 3, 3, 3, 3). For degree sequences π1, π2, π3, and π4, by Lemma 3.2, LEL(G(πi)) ≤
√

4 + 1 +
√

(6− 2)(18− 4− 1) ≈ 9.44717, i = 1, . . . 4. By Lemma 3.1, Kf(G(π1)) ≥

−1 + (6 − 1)(
3

4
+

1

3
+

1

2
+ 1) ≈ 11.9167, Kf(G(π2)) ≥ −1 + (6 − 1)(

3

4
+

3

2
= 10.25,

Kf(G(π3)) ≥ −1+(6−1)(
2

4
+

3

3
++1) = 11.5, and Kf(G(π4)) ≥ −1+(6−1)(

2

4
+

2

3
+

2

2
) ≈

9.83333. Then LEL(G(πi)) < Kf(G(πi)) (i = 1, . . . , 4).

By [12], there are three graphs with degree sequence π5 and two graphs with degree

sequence π6, which are No. 47, 48, 50, 51, 52 graphs in [12]. By direct calculations, from

Table 7, LEL(G) < Kf(G) holds except the graph No. 52 (H19 in Figure 4).

Graphs 47 48 50 51 52
LEL 9.29787 9.2897 9.31319 9.35045 9.37769
Kf 9.98485 10.25 9.73913 9.4 9

Table 7. The LEL and Kf of chemical graphs with degree sequences (4, 3, 3, 3, 3, 2)
and (3, 3, 3, 3, 3, 3).

Case 2: m = 10.

By [12], there are 8 chemical graphs. By direct calculations, from Table 8, LEL(G) >

Kf(G) holds for the graphs No. 23, 26, 27, 29, 30, 31, and 32 (H20–H26 in Figure 4)

in [12].

Graphs 20 23 26 27 29 30 31 32
LEL 9.66629 9.76183 9.8172 9.8148 9.83182 9.86826 9.8637 9.88171
Kf 11.7333 9.64999 8.93913 9.00878 8.7 8.39231 8.5 8.2

Table 8. The LEL and Kf of chemical graphs with n = 6 vertices and m = 10
edges.
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Figure 4. Chemical graphs with n = 6 vertices and LEL > Kf .

Case 3: m = 11 or 12.

By [12], there are 4 chemical graphs H27–H30, which are depicted in Figure 4. By

direct calculations, LEL(H27) ≈ 10.899 > 6.5 = Kf(H27), LEL(H28) ≈ 10.3358 > 7.4 =

Kf(H28), LEL(H29) ≈ 10.3857 > 7.42857 ≈ Kf(H29), and LEL(H30) ≈ 9.66629 >

7.42857 ≈ Kf(H30).

The result holds. �

Lemma 3.5 [1]. Let T be a tree of order n. Then LEL(T ) > Kf(T ) for n = 2 and

LEL(T ) < Kf(T ) for n > 2.

Lemma 3.6 [1]. Let G be a unicyclic graph of order n. Then LEL(G) > Kf(G) for

n = 3 and LEL(G) < Kf(G) for n ≥ 4.

Lemma 3.7 [1]. Let G be a bicyclic graph of order n. Then LEL(G) > Kf(G) for n = 4

and LEL(G) < Kf(G) for n ≥ 5.

Lemma 3.8 [8]. The only connected tricyclic graphs with order n ≤ 5 for which LEL(G) >

Kf(G) holds are G ∼= H34, H35, H36, H37, depicted in Figure 5.

Lemma 3.9 [8]. The only connected tetracyclic graphs with order n ≤ 5 for which

LEL(G) > Kf(G) holds are G ∼= H38, H39, depicted in Figure 5.

Theorem 3.6 Let G be a chemical graph with n ≤ 5 vertices.

Then LEL(G) < Kf(G) except the graphs in Figure 5.
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Proof. Let G be a chemical graph with n ≤ 5 vertices. Then m ≤ 10 holds. By [10],

there are 30 graphs with n ≤ 5. By Lemmas 3.5–3.9, we only need to compare LEL and

Kf for K5 and K5− e (H40, H41 in Figure 5). By direct calculations, LEL(K5) = 4
√

5 >

Kf(K5) = 4 and LEL(K5 − e) ≈ 8.44025 > 4.66667 ≈ Kf(K5 − e). �
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Figure 5. Chemical graphs with n ≤ 5 vertices and LEL > Kf .

By Theorems 3.1–3.6, the following holds:

Theorem 3.7 Let G be a chemical graph with n vertices. Then LEL(G) < Kf(G) except

the graphs Hi (i = 1, . . . , 41) in Figures 1-5.

4. Regular graphs and line graphs

Theorem 4.1 Let G be a connected r-regular graph with n vertices. If r ≤ (n−1
n

)n2/3,

then LEL(G) < Kf(G).

Proof. Note that 2m = nr. If nr ≤ (n− 1)n2/3, i.e., r ≤ (n−1
n

)n2/3, by Lemma 3.1, then

LEL(G) < Kf(G). �

Remark 4.1 For a r-regular graphs with r = n
2
3 , let r = 4 = 8

2
3 = n

2
3 , by the proof of

Theorem 3.3, then there exit graphs with LEL(G) > Kf(G).

The line graph of G, denoted by l(G), is the graph whose vertices correspond to the

edges of G, with two vertices of l(G) being adjacent if and only if the corresponding edges

of G share a common vertex.

Lemma 4.1 [13]. Let G be a r-regular graph with n vertices, m edges. Then Pl(G) =

(x− 2r)m−nPG(x).
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Theorem 4.2 Let G be a r-regular graph with r ≤ (n−1
n

)n2/3.

Then LEL(l(G)) < Kf(l(G)), where l(G) is the line graph of G.

Proof. By Lemma 4.1, the Laplacian spectrum of l(G) is

SpecL(l(G)) = {(2r)m−n, µ1, . . . , µn−1, 0}.

Then LEL(l(G))−Kf(l(G)) = (m− n)
√

2r +
n−1∑
i=1

√
µi −m[

n−1∑
i=1

1

µi
+ (m− n)

1

2r
]

= LEL(G)−Kf(G) + (m− n)
√

2r − (m− n)
n−1∑
i=1

1

µi
−m(m− n)

1

2r

≤ LEL(G)−Kf(G) + (m− n)
√

2r − (m− n) · (n− 1)

2r
−m(m− n)

1

2r

= LEL(G)−Kf(G) + (m− n)(
√

2r − n− 1

2r
− n

4
).

Let f(r) =
√

2r − n− 1

2r
− n

4
. Obviously, f(r) is an increasing function on r.

Then f(r) ≤ f(
n− 1

n
n

2
3 ) =

√
2
n− 1

n
n

2
3 − 1

2
n

1
3 − n

4

<
√

2n
2
3 − 1

2
n

1
3 − n

4

=
√

2n
1
3 − 1

2
n

1
3 − n

4
= n

1
3 (
√

2− 1

2
− 1

4
n

2
3 ) < 0 for n ≥ 3.

Additionally, by Theorem 4.1, LEL(G) < Kf(G).

Then LEL(l(G)) < Kf(l(G)). �

5. Graphs with given vertices and clique number

The independent number of a graphs G, denoted by α, is the number of vertices in

the largest independent set of G.

Let CS(n, n−α) := Kα ∪ (n−α)K1. It is easy to see that the Laplacian spectrum of

the complete split graph CS(n, n−α) is SpecL(CS(n, n−α)) = {n(n−α), (n−α)(α−1), 0}.

Lemma 5.1 [14]. Let G be a graph of order n with independent number α. Then

LEL(G) ≤ (n− α)
√
n+ (α− 1)

√
n− α.

Lemma 5.2 [15]. Let G be a non-complete connected graph. If G+ e is obtained from G

by adding and edge, then Kf(G+ e) < Kf(G).

Lemma 5.3 Let G be a connected graph with n vertices and independent number α. Then

Kf(G) ≥ (n− α) +
n(α− 1)

n− α
.

Proof. Note that G is a graph with the independent number α. Then the most edges of
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G is from Kn−α and αK1 by connecting each vertex of αK1 and each vertex of Kn−α. By

Lemma 5.2, Kf(G) ≥ Kf(CS(n, n− α)) = (n− α) +
n(α− 1)

n− α
. �

Theorem 5.1 Let G be a connected graph with n vertices and independent number α. If

α > n−
√
n, then LEL(G) < Kf(G) holds except the graphs in Figure 6.

Proof. It is discussed on n.

Case 1: n ≥ 9.

Let f(α) = (n − α) +
n(α− 1)

n− α
− [(n − α)

√
n + (α − 1)

√
n− α]. Consider the first

derivative of f(α),

f ′(α) = −1 +
n(n− 1)

(n− α)2
+
√
n −
√
n− α +

α− 1

2
√
n− α

> 0. Then f(α) is an increasing

function on α. For α ≥ n− n 1
2 and n ≥ 9,

f(α) ≥ f(n− n 1
2 ) = n(n

1
2 − n 1

4 − 2) + n
3
4 + n

1
4 := g(n) ≥ g(9) ≈ 0.339746 > 0.

Then LEL(G) < Kf(G).

Case 2: n = 8, 7 or 6.

When n = 8, noting that α ≥ n−
√
n = 8−

√
8 ≈ 5.57, we have α = 6 or 7. If α = 6, by

Lemmas 5.1 and 5.3, then LEL(G) ≤ (8−6)
√

8+(6−1)
√

2 = 9
√

2 < (8−6)+
8(6− 1)

8− 6
=

22 ≤ Kf(G). If α = 7, then G ∼= S8. By Lemma 3.5, LEL(G) < Kf(G).

When n = 7 or 6, similar to n = 8 and by direct calculations, LEL(G) < Kf(G).

Case 3: n = 5.

Note that α ≥ n−
√
n = 5−

√
5 ≈ 2.76. Then α = 3 or 4. If α = 3 and G ∼= CS(5, 2),

by direct calculation, LEL(G) = (5− 3)
√

5 + (3− 1)
√

2 ≈ 7.3 > 7 = (5− 3) +
5(3− 1)

5− 3
=

Kf(CS(5, 2)). Let CS(5, 2) − e be a graph with independent number 3 by deleting

an edge e from CS(5, 2). If G � CS(5, 2), by Lemmas 5.1 and 5.3, then LEL(G) ≤

LEL(CS(5, 2)− e) ≤ 6.65028 < 7.667 ≤ Kf(CS(5, 2)− e) < Kf(G).

If α = 4, then G ∼= S5. By Lemma 3.5, LEL(G) < Kf(G).

Case 4: n = 4.

This case is similar to Case 3. By direct calculations, LEL(G) < Kf(G) except

LEL(CS(4, 2)) = (4−2)
√

4+(2−1)
√

2 = 4+
√

2 > 4 = (4−2)+
4(2− 1)

4− 2
= Kf(CS(4, 2)).

Case 5: n = 3 or 2.

If n = 3 and α ≥ 3− 3
1
3 ≈ 1.26795, then G ∼= S3. By Lemma 3.5, LEL(G) < Kf(G).

If n = 2 and α ≥ 2− 2
1
3 , then G ∼= S2. By Lemma 3.5, LEL(G) > Kf(G).
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The result holds. �
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Figure 6. Graphs with independent number α ≥ n− n 1
2 and LEL > Kf .
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[10] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs – Theory and Application,

Academic Press, New York, 1980.

-155-
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