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Abstract

The energy of a graph is defined as the sum of the absolute values of the eigenvalues
of its adjacency matrix. In this paper, we characterize the tetracyclic graph of order n
with minimal energy. By this, the validity of a conjecture for the case e = n + 3 proposed
by Caporossi et al. (1999) has been confirmed.

1 Introduction

Let G be a simple graph with n vertices and A(G) the adjacency matrix of G. The
eigenvalues Aj, A, ..., A\, of A(G) are said to be the eigenvalues of the graph G. The
energy of G is defined as .
E=E(G)=> |\l

The characteristic polynomial of A(G) is also clallled the characteristic polynomial of G,
denoted by ¢(G,z) = det(z] — A(G)) = Zf:o a;(G)xz" . Using these coefficients of
¢(G, x), the energy of G can be expressed as the Coulson integral formula [14]:
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For convenience, write by (G) = (—1)%ag;(G) and by (G) = (—1)'ag41(G) for 0 < i <
).

Since the energy of a graph can be used to approximate the total m-electron energy of
the molecular, it has been intensively studied. For details on graph energy, we refer the
readers to the book [24], two reviews [11,13] and some recent papers [5-10, 12, 15-23,
25-37].

A connected graph on n vertices with e edges is called an (n,e)-graph. We call an
(n, e)-graph a unicyclic graph, a bicyclic graph, a tricyclic graph, and a tetracyclic graph
if e=n,n+1,n+2 and n + 3, respectively. Follow [35], let S, . be the graph obtained
by the star S,, with e — n + 1 additional edges all connected to the same vertex, and B, .
be the bipartite (n, e)-graph with two vertices on one side, one of which is connected to
all vertices on the other side.

In [1], Caporossi et al. gave the following conjecture:

Conjecture 1.1. [1] Connected graphs G with n > 6 vertices, n —1 < e < 2(n —2) edges

and minimum energy are Sy, . for e <n+[(n—7)/2|, and B, otherwise.

This conjecture is true when e =n—1, 2(n —2) [1], and when e = n for n > 6 [15]. Li
et al. [26] showed that B, . is the unique bipartite graph of order n with minimal energy
for e < 2n — 4. Hou [16] proved that for n > 6, B, , 11 has the minimal energy among all
bicyclic graphs of order n with at most one odd cycle. Let G, . be the set of connected
graphs with n vertices and e edges. Let g}hc be the subset of G, . which contains no
disjoint two odd cycles of length p and ¢ with p + ¢ = 2 (mod 4), and QZ,C =Gne\Gno
Zhang and Zhou [36] characterized the graphs with minimal, second-minimal and third-
minimal energy in G} ., for n > 8. Combining the results (Lemmas 5-9) in [36] with the

fact that E(Bpni1) < E(Spnt1) for 5 <n <7, we can deduce the following theorem.

Theorem 1.2. [36] The graph with minimal energy in Q}er 18 Spny1 forn=4orn > 8§,
and By ny1 for 5 <n <7, respectively.

Li et al. [22] proved that B ;42 has minimal energy in G}, ., for 7 < n < 9, and
for n > 10, they wanted to characterize the graphs with minimal and second-minimal
energy in g}w 42, but left four special graphs without determining their ordering. Huo
et al. solved this problem in [18], and the results on minimal energy can be restated as

follows.
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Theorem 1.3. The graph with minimal energy in G, 5 i Bunyo for 7<n <9 [22],
and Sy ny2 for n > 10 [18], respectively.

In [35], the authors claimed that they gave a complete solution to conjecture 1.1 for
e=n+1 and e = n + 2 by showing the following two results.

Theorem 1.4. (Theorem 1 of [35]) Let G be a connected graph with n vertices and n+ 1
edges. Then

E(G) 2 E(Snn+1)
with equality if and only if G = Sy 1.
Theorem 1.5. (Theorem 2 of [35]) Let G be a connected graph with n vertices and n+ 2
edges. Then

E(G) > E(Snn+2)
with equality if and only if G = Sy pyo.

Note that E(Bynt1) < E(Spni1) for 5 < n < 7, and E(Byny2) < E(Spnte) for
6 <n < 9. Hence Theorems 1.4 and 1.5 do not hold for smaller n, respectively. Moreover,
even for large n, there is a little gap in the original proofs of Theorems 1.4 and 1.5 in [35],
respectively. For completeness, we will prove the following two results in Section 2.
Theorem 1.6. S, 11 if n =4 orn > 8, Bypy1 if 5 < n < 7 has minimal energy in
Gnnti-

Theorem 1.7. The complete graph Ky if n = 4, Sppyo if n =15 orn > 10, By pqo if
6 < n <9 has minimal energy in Gy nio. Furthermore, Sgg has second-minimal energy
in Ges.

Li and Li [21] discussed the graph with minimal energy in G}, .5, and claimed that
the graph with minimal energy in Q}L,HH is By pts for 9 <mn <17, and Sy, 43 for n > 18,
respectively. Note that E(S,,+3) < E(Bynts) for n > 12. In Section 3, we will first
illustrate the correct version of this result, and then we will show the following theorem.
Theorem 1.8. The wheel graph W5 if n = 5, the complete bipartite graph Kz 3 if n =6,
Bpnys if T <n <11, Sy pqs if n > 12 has minimal energy in Gy ny3. Furthermore, Sy ni3
has second-minimal energy in G, 13 for 6 <n <7.

Lemma 1.9. [35] E(Sye) < E(Bne) if n —1 < e < 3n—3; E(By.) < E(Sn.) if
%n—%ﬁeﬁ?n—4.

From Lemma 1.9, we know that the bound e < n + [(n — 7)/2] in Conjecture 1.1

should be understood that e < n+ [(n —7)/2]. With Theorems 1.6, 1.7 and 1.8, we give

a complete solution to Conjecture 1.1 for e =n+ 1,7+ 2 and n + 3.
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2 The graphs with minimal energy in G, ,;; and G, ;12

The following three lemmas are needed in the sequel.

Lemma 2.1. [9] If F is an edge cut of a simple graph G, then E(G — F) < E(G), where
G — F is the subgraph obtained from G by deleting the edges in F.

Lemma 2.2. [35] (1) Suppose that ny,ne > 3 and n = ny +ny. Then
E(Snl,nl U Sng,n;) 2 E(Sn—B,n—3 U C‘%)

with equality if and only if {n1,na} = {3,n — 3}.
(2) E(Sy—3n—3UC5) > E(Synq1) forn > 6.
(8) E(Spni1) > E(Snn) forn > 4.

(4) E(Sp-3n-3U C3) > E(Spni2) forn > 6.

Lemma 2.3. (1) [15] S,,,, has minimal energy in G, , forn =3 orn > 6.
(2) B and S, have, respectively, minimal and second-minimal energy in G, . for
4 < n < 5. In particular, Sy, is the unique non-bipartite graph in G, , with minimal

energy for 4 <n <5.

Proof. By Table 1 of [3], there are two (4, 4)-graphs and five (5,5)-graphs. By simple

computation, we can obtain the result (2). |

Proof of Theorem 1.6: By Theorem 1.2, it suffices to prove that E(G) > E(Syn+41)
when n =4 or n > 8, and E(G) > E(Bpn41) when 5 <n <7for GeG: ..

Suppose that G € sz +1- As there is nothing to prove for the case n < 5, we suppose
that n > 6. Then G has a cut edge f such that G — f contains exactly two components,

say G and G, which are non-bipartite unicyclic graphs. Let [V (G1)| = ny, |V(G2)| = na,

and n; + ng = n. By Lemmas 2.1, 2.2 and 2.3, we have

E(G) > E(G1UG) (2)
> E(Snym USnym) (3)
> BE(Sn 33U Cs) (4)
> E(Spni1)- (5)

In particular, E(G) > E(Synt1) > E(Bynt1) for 6 <n < 7. The proof is thus complete.
|
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Remark 2.4. The proof of Theorem 1.6 (for large n) is similar to that of Theorem
1.4 except that in [35], the authors did not point out that Gi and Gy are non-bipartite
unicyclic graphs. Without this assumption, we know that the inequality (3) does not hold
when ny or ny equals to 4 or'5 by Lemma 2.3 (2). Moreover, the inequality E(G;UG2) >
E(Sy—3n-3UC3) does not hold. For example: E(CyU Sp_4p-1) < E(Sp—3,-3UC3) for
n > 17, since E(Cy) = E(Cs) =4 and E(Sp—4n-1) < E(Sn—3n—3) by Lemma 2.1.
Lemma 2.5. S, 11 is the unique non-bipartite graph in G, 41 with minimal energy for
5 <n < 7. Furthermore, S, 11 has second-minimal energy in G, ,+1 forn=2>5 or7, and
Se,7 has third-minimal energy in Ge 7.

Proof. By Table 1 of [3], there are five (5,6)-graphs. By simple calculation, we can
prove the theorem for n = 5. By Table 1 of [4], there are 19 (6, 7)-graphs. By direct
computation, we can prove the theorem for n = 6. By the results (Lemmas 5-9) in [36],
we can obtain that S7g has second-minimal energy in g7178. On the other hand, from the
proof of Theorem 1.6, E(G) > E(S7g) for G € G24. Therefore Srg has second-minimal

energy in Gr g, and so the theorem is true for n = 7. |

Proof of Theorem 1.7: Since K} is the unique graph in G, 6, the theorem holds for
n = 4. By Table 1 of [3], there are four (5,7)-graphs. By simple calculation, we can
prove the theorem for n = 5. By Table 1 of [4], there are 22 (6, 8)-graphs. By direct
computation, we can prove the theorem for n = 6. Now suppose that n > 7. By Theorem
1.3, it suffices to prove that E(G) > E(S,n+2) when n > 10, and E(G) > E(Bpni2)
when 7 <n <9for GeGh,,,

Suppose that G € gfwﬁ and C,, C, are two disjoint odd cycles with p+ ¢ = 2 (mod
4). Then there are at most two edge disjoint paths in G connecting C, and C,,.

Case 1. There exists exactly an edge disjoint path P connecting C, and C,;. Then
there exists an edge e of P such that G—e = G;UG3, where (G is an non-bipartite bicyclic
graph with n; > 4 vertices and G is an non-bipartite unicyclic graph with ny > 3 vertices.
By Lemmas 2.1, 2.2, 2.3, 2.5 and Theorem 1.6, we have

E(G) > E(G1UGa) 2 E(Spymi 11U Snyny) > E(Snyny U Snym,)
> E(Sn-3n-3UC3) > E(Spni2)-
In particular, E(G) > E(Synt2) > E(Bpnie) for 7<n <9.
Case 2. There exist exactly two edge disjoint paths P! and P? connecting C, and

Cy. Then there exist two edges e; and e; such that e; is an edge of Pifor i = 1,2,
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and G — {ej,ea} = G3 U Gy, where G3 and G, are non-bipartite unicyclic graphs. Let
|[V(G3)| = nq and |V (G4)| = ng. Then by Lemmas 2.1, 2.2 and 2.3, we have
E(G) > E(G5 U G4) > E(Snl,nl U] SnQ,ng) > E(Sn,&n,;; u] 03) > E(Sn17l+2).
In particular, E(G) > E(Synt2) > E(Bynt2) for 7<n < 9. The proof is thus complete.
[ |

Remark 2.6. The proof of Theorem 1.7 (for large n) is similar to that of Theorem 1.5
except that in [35], the authors did not point out that Gy and Gy are non-bipartite graphs.

3 The graph with minimal energy in G, 3

Li and Li [21] discussed the graph with minimal energy in G, .4, and we first restate

their results.

Rk R TR R e g &

Figure 1. Graphs G1, Ge, G3, G4, G5, Gg, G7 and Gs.

Follow [21], let G4, Gs, ..., G5 be eight special graphs in G, ,+3 as shown in Figure 1.

Let &, = {Snnt3: Brnts: G1, G2, G3, G4, G5, Gg, G7, Gs .
Lemma 3.1. 21] If G € G, .5 and G & Iy, then E(G) > E(Bynys) forn > 9.
In fact, Lemma 3.1 is also true for n = 8.

Lemma 3.2. If G € Gg,, and G € I5\ {G1}, then E(G) > E(Bs11).

Proof. By the results (see the proofs of Lemma 2.2 and Proposition 2.3) of [21], all we
need is to show that by(G) —bs(Bs11) > 0 when G contains exactly 7 (i = 10, 12, 13, 14, 15)

cycles (see Case 7 of Lemma 2.2). From [21], we have
1, 3
bi(G) — by(Bsa1) > §n2 + "= 12 — 2s — (5n — 35),

where s is the number of quadrangles in G. It is easy to check that in this case, G has at

most 13 quadrangles. Therefore
1 3 1
b4(G) — ba(Bs11) > 5n2 +5n—12-26— (5n — 35) = 5n(n —7)—3=1>0.

The proof is thus complete. |
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Lemma 3.3. [21] For each G; € £, (j = 1,...,8), E(Spnts) < E(G;) forn > 9 and
E(Bn,n+3) < E(G]) fOT 9 S n § 17.

By the proof of Lemma 2.4 of [21], we can get the following result for n = 8.

Lemma 3.4. For each G; € I, \{G1} (j =2,...,8), E(Byn+3) < E(G;) forn =8.

Li and Li [21] claimed that the graph with minimal energy in G}, 4 is Bynis for
9 < n <17, and S, 43 for n > 18, respectively. However, from Lemma 1.9, we can

obtain the following result.

Corollary 3.5. E(Spn+3) < E(Bynts) for n > 12, and E(Byuts) < E(Spnis) for
7<n <11

The authors of [21] failed to get the above result in that (in the proof of Proposition
2.5 of [21]) they used the wrong formula by(S, n+3) = 4n — 18 instead of the correct one

b4(Spnts) = 4n — 24. In fact, by Lemmas 3.1, 3.2, 3.3,3.4 and Corollary 3.5, we can

1
n,n+

characterize the graph with minimal energy in G,, ,, . 5 as follows.

Theorem 3.6. The graph with minimal energy in gﬁm% s Bppys for 8 <n <11, and
Spns forn > 12, respectively.

To prove Theorem 1.8, we need the following two lemmas.

Lemma 3.7. (1) E(Ky) > E(S44), and E(Bpni2) > E(Sp,) for 7<n <9.
(2) E(Spnt2) > E(Snn) forn > 5.

Proof. (1) It is easy to obtain that E(Ky) = 6, E(Sy4) = 4.96239, E(B7y) = 7.21110,
E(Sy7) = 6.64681, E(Bsio) = 7.91375, E(Sss) = 7.07326, E(Bey) = 8.46834 and
E(Sy9) = 7.46410. Hence the result (1) follows.

(2) Since 6 = E(S57) > E(Ss5) = 5.62721, we now suppose n > 6. By direct
computation, we have that ¢(Sy, 42, 2) = 2" — (n +2)2" "2 — 62"~ + (3n — 15)2"~* and

&(Spm, ) = 2" — a2 — 22773 + (n — 3)a" 4. By Eq. (1), we obtain that

1 [t>*1
E(Spnt2) = %/ = In((1+ (n+2)2* + (3n — 15)2")? + (62%)%)dx
1 [*1

— In((1+ na? 4 (n — 3)a")? 4 (22°)%)dx = E(S,.).

21 ) _oo

Lemma 3.8. E(Sn_g,n_g @] C‘;) > E(Sn,n_'_g) fOT n > 6.
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Proof. For 6 < n < 14, the result follows by direct computation. Suppose that n > 15.
By direct calculation, we have that ¢(Sy n43,2) = 2" —(n+3)2" 2 —82" 34 (4n—24)z" 4.
Let f(z) = 2 — (n+3)2® — 8 +4n —24. Then we have that f(—vn — 1) >0, f(=2) <0,
f(0) >0, f(2) < 0and f(v/n+3) > 0. Hence

E(Sunss) <44V =T+ Vn T3

On the other hand, we have E(S,, 3, 3UC3) > 4++/2+2y/n — 4 [35], and s0 E(S,_3,_3U
C3) > E(Snn+ts)- |
Proof of Theorem 1.8: By Table 1 of [3], there are two (5,8)-graphs. By simple
calculation, we can prove the theorem for n = 5. By Table 1 of [4], there are 20 (6,9)-
graphs. By direct computation, we can prove the theorem for n = 6. By [2], there are 132
(7,10)-graphs. By direct computing, we can prove the theorem for n = 7. Now suppose
that n > 8. By Theorem 3.6 and Corollary 3.5, it suffices to prove that E(G) > E(S,n+3)
for GeG?, 3

Suppose that G' € G2, 5 and C,,, C, are two disjoint odd cycles with p + ¢ = 2 (mod
4). Then there are at most three edge disjoint paths in G' connecting C,, and Cj,.

Case 1. There exists exactly an edge disjoint path P! connecting C, and C,. Then
there exists an edge e; of P! such that G — e¢; = G; U G, where either both G| and G5
are non-bipartite bicyclic graphs, or G; is an non-bipartite tricyclic graph and G is an
non-bipartite unicyclic graph. Let |V(G1)| = n; and [V (Gs)| = ne.

Subcase 1.1. Both G; and G, are non-bipartite bicyclic graphs. Then by Lemmas
2.1, 2.2, 2.5, 3.8 and Theorem 1.6, we have

E(G) > E(G1UGs) > E(Snyni+1 Y Snynat1) > E(Snyn U Snons)
> E(Sn-3n-3UC3) > E(Spni3)-

Subcase 1.2. G, is an non-bipartite tricyclic graph and Gs is an non-bipartite uni-
cyclic graph. It follows from Theorem 1.7 and Lemma 3.7 that E(G1) > E(Sun,)-
Therefore by Lemmas 2.1, 2.2, 2.3 and 3.8, we have

E(G) > E(Gl @] GQ) > E(Sﬂl,"l U S?‘Lz,ng) > E(Sn_g"n_g U 03) > E(Sn’n+3).

Case 2. There exist exactly two edge disjoint paths P? and P® connecting C, and
Cy. Then there exist two edges ey and eg such that e; is an edge of P for i = 2,3, and

G — {ea, 3} = G5 UGy, where Gy is an non-bipartite bicyclic graph with n; vertices and
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G4 is an non-bipartite unicyclic graph with ny vertices. By Lemmas 2.1, 2.2, 2.3, 2.5, 3.8
and Theorem 1.6, we have
E(G) 2 E(G3U G4) Z E(Sn;ni+1 U Snpiny) > E(Snymy U Snymo)
> E(Sn—3n-3UC3) > E(Spnt3)-

Case 3. There exist exactly three edge disjoint paths P?, P> and P® connecting C,
and C,. Then there exist three edges ey, e5 and eg such that e; is an edge of P! for
i =4,5,6, and G — {e4, e5,66} = G5 U Gg, where G5 and Gy are non-bipartite unicyclic
graphs. Let |[V(Gs)| = n1 and |V(Gg)| = ng. Then by Lemmas 2.1, 2.2, 2.3 and 3.8, we

have
E(G) 2 E(G5 ) GG) 2 E(Snl,nl ) Snz,nz) 2 E(Snf?),nf?) ) 03) > E(Sn,n+3)~

The proof is thus complete. u
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