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Abstract

The energy of a graph is defined as the sum of the absolute values of the eigenvalues
of its adjacency matrix. In this paper, we characterize the tetracyclic graph of order n
with minimal energy. By this, the validity of a conjecture for the case e = n+ 3 proposed
by Caporossi et al. (1999) has been confirmed.

1 Introduction

Let G be a simple graph with n vertices and A(G) the adjacency matrix of G. The

eigenvalues λ1, λ2, . . . , λn of A(G) are said to be the eigenvalues of the graph G. The

energy of G is defined as

E = E(G) =
n∑

i=1

|λi|.

The characteristic polynomial of A(G) is also called the characteristic polynomial of G,

denoted by φ(G, x) = det(xI − A(G)) =
∑k

i=0 ai(G)xn−i. Using these coefficients of

φ(G, x), the energy of G can be expressed as the Coulson integral formula [14]:

E(G) =
1

2π

∫ +∞

−∞

1

x2
ln

 bn2 c∑
i=0

(−1)ia2i(G)x2i

2

+

 bn2 c∑
i=0

(−1)ia2i+1(G)x2i+1

2 dx. (1)
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For convenience, write b2i(G) = (−1)ia2i(G) and b2i+1(G) = (−1)ia2i+1(G) for 0 ≤ i ≤

bn
2
c.

Since the energy of a graph can be used to approximate the total π-electron energy of

the molecular, it has been intensively studied. For details on graph energy, we refer the

readers to the book [24], two reviews [11, 13] and some recent papers [5–10, 12, 15–23,

25–37].

A connected graph on n vertices with e edges is called an (n, e)-graph. We call an

(n, e)-graph a unicyclic graph, a bicyclic graph, a tricyclic graph, and a tetracyclic graph

if e = n, n + 1, n + 2 and n + 3, respectively. Follow [35], let Sn,e be the graph obtained

by the star Sn with e− n+ 1 additional edges all connected to the same vertex, and Bn,e

be the bipartite (n, e)-graph with two vertices on one side, one of which is connected to

all vertices on the other side.

In [1], Caporossi et al. gave the following conjecture:

Conjecture 1.1. [1] Connected graphs G with n ≥ 6 vertices, n− 1 ≤ e ≤ 2(n− 2) edges

and minimum energy are Sn,e for e ≤ n+ [(n− 7)/2], and Bn,e otherwise.

This conjecture is true when e = n− 1, 2(n− 2) [1], and when e = n for n ≥ 6 [15]. Li

et al. [26] showed that Bn,e is the unique bipartite graph of order n with minimal energy

for e ≤ 2n− 4. Hou [16] proved that for n ≥ 6, Bn,n+1 has the minimal energy among all

bicyclic graphs of order n with at most one odd cycle. Let Gn,e be the set of connected

graphs with n vertices and e edges. Let G1n,e be the subset of Gn,e which contains no

disjoint two odd cycles of length p and q with p + q ≡ 2 (mod 4), and G2n,e = Gn,e \ G1n,e.

Zhang and Zhou [36] characterized the graphs with minimal, second-minimal and third-

minimal energy in G1n,n+1 for n ≥ 8. Combining the results (Lemmas 5-9) in [36] with the

fact that E(Bn,n+1) < E(Sn,n+1) for 5 ≤ n ≤ 7, we can deduce the following theorem.

Theorem 1.2. [36] The graph with minimal energy in G1n,n+1 is Sn,n+1 for n = 4 or n ≥ 8,

and Bn,n+1 for 5 ≤ n ≤ 7, respectively.

Li et al. [22] proved that Bn,n+2 has minimal energy in G1n,n+2 for 7 ≤ n ≤ 9, and

for n ≥ 10, they wanted to characterize the graphs with minimal and second-minimal

energy in G1n,n+2, but left four special graphs without determining their ordering. Huo

et al. solved this problem in [18], and the results on minimal energy can be restated as

follows.
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Theorem 1.3. The graph with minimal energy in G1n,n+2 is Bn,n+2 for 7 ≤ n ≤ 9 [22],

and Sn,n+2 for n ≥ 10 [18], respectively.

In [35], the authors claimed that they gave a complete solution to conjecture 1.1 for

e = n+ 1 and e = n+ 2 by showing the following two results.

Theorem 1.4. (Theorem 1 of [35]) Let G be a connected graph with n vertices and n+ 1

edges. Then

E(G) ≥ E(Sn,n+1)

with equality if and only if G ∼= Sn,n+1.

Theorem 1.5. (Theorem 2 of [35]) Let G be a connected graph with n vertices and n+ 2

edges. Then

E(G) ≥ E(Sn,n+2)

with equality if and only if G ∼= Sn,n+2.

Note that E(Bn,n+1) < E(Sn,n+1) for 5 ≤ n ≤ 7, and E(Bn,n+2) < E(Sn,n+2) for

6 ≤ n ≤ 9. Hence Theorems 1.4 and 1.5 do not hold for smaller n, respectively. Moreover,

even for large n, there is a little gap in the original proofs of Theorems 1.4 and 1.5 in [35],

respectively. For completeness, we will prove the following two results in Section 2.

Theorem 1.6. Sn,n+1 if n = 4 or n ≥ 8, Bn,n+1 if 5 ≤ n ≤ 7 has minimal energy in

Gn,n+1.

Theorem 1.7. The complete graph K4 if n = 4, Sn,n+2 if n = 5 or n ≥ 10, Bn,n+2 if

6 ≤ n ≤ 9 has minimal energy in Gn,n+2. Furthermore, S6,8 has second-minimal energy

in G6,8.

Li and Li [21] discussed the graph with minimal energy in G1n,n+3, and claimed that

the graph with minimal energy in G1n,n+3 is Bn,n+3 for 9 ≤ n ≤ 17, and Sn,n+3 for n ≥ 18,

respectively. Note that E(Sn,n+3) < E(Bn,n+3) for n ≥ 12. In Section 3, we will first

illustrate the correct version of this result, and then we will show the following theorem.

Theorem 1.8. The wheel graph W5 if n = 5, the complete bipartite graph K3,3 if n = 6,

Bn,n+3 if 7 ≤ n ≤ 11, Sn,n+3 if n ≥ 12 has minimal energy in Gn,n+3. Furthermore, Sn,n+3

has second-minimal energy in Gn,n+3 for 6 ≤ n ≤ 7.

Lemma 1.9. [35] E(Sn,e) < E(Bn,e) if n − 1 ≤ e ≤ 3
2
n − 3; E(Bn,e) < E(Sn,e) if

3
2
n− 5

2
≤ e ≤ 2n− 4.

From Lemma 1.9, we know that the bound e ≤ n + [(n − 7)/2] in Conjecture 1.1

should be understood that e ≤ n+ d(n− 7)/2e. With Theorems 1.6, 1.7 and 1.8, we give

a complete solution to Conjecture 1.1 for e = n+ 1, n+ 2 and n+ 3.
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2 The graphs with minimal energy in Gn,n+1 and Gn,n+2

The following three lemmas are needed in the sequel.

Lemma 2.1. [9] If F is an edge cut of a simple graph G, then E(G−F ) ≤ E(G), where

G− F is the subgraph obtained from G by deleting the edges in F .

Lemma 2.2. [35] (1) Suppose that n1, n2 ≥ 3 and n = n1 + n2. Then

E(Sn1,n1 ∪ Sn2,n2) ≥ E(Sn−3,n−3 ∪ C3)

with equality if and only if {n1, n2} = {3, n− 3}.
(2) E(Sn−3,n−3 ∪ C3) > E(Sn,n+1) for n ≥ 6.

(3) E(Sn,n+1) > E(Sn,n) for n ≥ 4.

(4) E(Sn−3,n−3 ∪ C3) > E(Sn,n+2) for n ≥ 6.

Lemma 2.3. (1) [15] Sn,n has minimal energy in Gn,n for n = 3 or n ≥ 6.

(2) Bn,n and Sn,n have, respectively, minimal and second-minimal energy in Gn,n for

4 ≤ n ≤ 5. In particular, Sn,n is the unique non-bipartite graph in Gn,n with minimal

energy for 4 ≤ n ≤ 5.

Proof. By Table 1 of [3], there are two (4, 4)-graphs and five (5, 5)-graphs. By simple

computation, we can obtain the result (2).

Proof of Theorem 1.6: By Theorem 1.2, it suffices to prove that E(G) > E(Sn,n+1)

when n = 4 or n ≥ 8, and E(G) > E(Bn,n+1) when 5 ≤ n ≤ 7 for G ∈ G2n,n+1.

Suppose that G ∈ G2n,n+1. As there is nothing to prove for the case n ≤ 5, we suppose

that n ≥ 6. Then G has a cut edge f such that G− f contains exactly two components,

say G1 and G2, which are non-bipartite unicyclic graphs. Let |V (G1)| = n1, |V (G2)| = n2,

and n1 + n2 = n. By Lemmas 2.1, 2.2 and 2.3, we have

E(G) ≥ E(G1 ∪G2) (2)

≥ E(Sn1,n1 ∪ Sn2,n2) (3)

≥ E(Sn−3,n−3 ∪ C3) (4)

> E(Sn,n+1). (5)

In particular, E(G) > E(Sn,n+1) > E(Bn,n+1) for 6 ≤ n ≤ 7. The proof is thus complete.
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Remark 2.4. The proof of Theorem 1.6 (for large n) is similar to that of Theorem

1.4 except that in [35], the authors did not point out that G1 and G2 are non-bipartite

unicyclic graphs. Without this assumption, we know that the inequality (3) does not hold

when n1 or n2 equals to 4 or 5 by Lemma 2.3 (2). Moreover, the inequality E(G1∪G2) ≥
E(Sn−3,n−3 ∪ C3) does not hold. For example: E(C4 ∪ Sn−4,n−4) < E(Sn−3,n−3 ∪ C3) for

n ≥ 7, since E(C4) = E(C3) = 4 and E(Sn−4,n−4) < E(Sn−3,n−3) by Lemma 2.1.

Lemma 2.5. Sn,n+1 is the unique non-bipartite graph in Gn,n+1 with minimal energy for

5 ≤ n ≤ 7. Furthermore, Sn,n+1 has second-minimal energy in Gn,n+1 for n = 5 or 7, and

S6,7 has third-minimal energy in G6,7.

Proof. By Table 1 of [3], there are five (5, 6)-graphs. By simple calculation, we can

prove the theorem for n = 5. By Table 1 of [4], there are 19 (6, 7)-graphs. By direct

computation, we can prove the theorem for n = 6. By the results (Lemmas 5-9) in [36],

we can obtain that S7,8 has second-minimal energy in G17,8. On the other hand, from the

proof of Theorem 1.6, E(G) > E(S7,8) for G ∈ G27,8. Therefore S7,8 has second-minimal

energy in G7,8, and so the theorem is true for n = 7.

Proof of Theorem 1.7: Since K4 is the unique graph in G4,6, the theorem holds for

n = 4. By Table 1 of [3], there are four (5, 7)-graphs. By simple calculation, we can

prove the theorem for n = 5. By Table 1 of [4], there are 22 (6, 8)-graphs. By direct

computation, we can prove the theorem for n = 6. Now suppose that n ≥ 7. By Theorem

1.3, it suffices to prove that E(G) > E(Sn,n+2) when n ≥ 10, and E(G) > E(Bn,n+2)

when 7 ≤ n ≤ 9 for G ∈ G2n,n+2.

Suppose that G ∈ G2n,n+2 and Cp, Cq are two disjoint odd cycles with p+ q ≡ 2 (mod

4). Then there are at most two edge disjoint paths in G connecting Cp and Cq.

Case 1. There exists exactly an edge disjoint path P connecting Cp and Cq. Then

there exists an edge e of P such that G−e = G1∪G2, where G1 is an non-bipartite bicyclic

graph with n1 ≥ 4 vertices and G2 is an non-bipartite unicyclic graph with n2 ≥ 3 vertices.

By Lemmas 2.1, 2.2, 2.3, 2.5 and Theorem 1.6, we have

E(G) ≥ E(G1 ∪G2) ≥ E(Sn1,n1+1 ∪ Sn2,n2) > E(Sn1,n1 ∪ Sn2,n2)

≥ E(Sn−3,n−3 ∪ C3) > E(Sn,n+2).

In particular, E(G) > E(Sn,n+2) > E(Bn,n+2) for 7 ≤ n ≤ 9.

Case 2. There exist exactly two edge disjoint paths P 1 and P 2 connecting Cp and

Cq. Then there exist two edges e1 and e2 such that ei is an edge of P i for i = 1, 2,
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and G − {e1, e2} = G3 ∪ G4, where G3 and G4 are non-bipartite unicyclic graphs. Let

|V (G3)| = n1 and |V (G4)| = n2. Then by Lemmas 2.1, 2.2 and 2.3, we have

E(G) ≥ E(G3 ∪G4) ≥ E(Sn1,n1 ∪ Sn2,n2) ≥ E(Sn−3,n−3 ∪ C3) > E(Sn,n+2).

In particular, E(G) > E(Sn,n+2) > E(Bn,n+2) for 7 ≤ n ≤ 9. The proof is thus complete.

Remark 2.6. The proof of Theorem 1.7 (for large n) is similar to that of Theorem 1.5

except that in [35], the authors did not point out that G1 and G2 are non-bipartite graphs.

3 The graph with minimal energy in Gn,n+3

Li and Li [21] discussed the graph with minimal energy in G1n,n+3, and we first restate

their results.

Figure 1. Graphs G1, G2, G3, G4, G5, G6, G7 and G8.

Follow [21], let G1, G2, . . . , G8 be eight special graphs in Gn,n+3 as shown in Figure 1.

Let In = {Sn,n+3, Bn,n+3, G1, G2, G3, G4, G5, G6, G7, G8}.

Lemma 3.1. [21] If G ∈ G1n,n+3 and G 6∈ In, then E(G) > E(Bn,n+3) for n ≥ 9.

In fact, Lemma 3.1 is also true for n = 8.

Lemma 3.2. If G ∈ G18,11 and G 6∈ I8 \ {G1}, then E(G) > E(B8,11).

Proof. By the results (see the proofs of Lemma 2.2 and Proposition 2.3) of [21], all we

need is to show that b4(G)−b4(B8,11) > 0 when G contains exactly i (i = 10, 12, 13, 14, 15)

cycles (see Case 7 of Lemma 2.2). From [21], we have

b4(G)− b4(B8,11) ≥
1

2
n2 +

3

2
n− 12− 2s− (5n− 35),

where s is the number of quadrangles in G. It is easy to check that in this case, G has at

most 13 quadrangles. Therefore

b4(G)− b4(B8,11) ≥
1

2
n2 +

3

2
n− 12− 26− (5n− 35) =

1

2
n(n− 7)− 3 = 1 > 0.

The proof is thus complete.
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Lemma 3.3. [21] For each Gj ∈ In (j = 1, . . . , 8), E(Sn,n+3) < E(Gj) for n ≥ 9 and

E(Bn,n+3) < E(Gj) for 9 ≤ n ≤ 17.

By the proof of Lemma 2.4 of [21], we can get the following result for n = 8.

Lemma 3.4. For each Gj ∈ In \ {G1} (j = 2, . . . , 8), E(Bn,n+3) < E(Gj) for n = 8.

Li and Li [21] claimed that the graph with minimal energy in G1n,n+3 is Bn,n+3 for

9 ≤ n ≤ 17, and Sn,n+3 for n ≥ 18, respectively. However, from Lemma 1.9, we can

obtain the following result.

Corollary 3.5. E(Sn,n+3) < E(Bn,n+3) for n ≥ 12, and E(Bn,n+3) < E(Sn,n+3) for

7 ≤ n ≤ 11.

The authors of [21] failed to get the above result in that (in the proof of Proposition

2.5 of [21]) they used the wrong formula b4(Sn,n+3) = 4n − 18 instead of the correct one

b4(Sn,n+3) = 4n − 24. In fact, by Lemmas 3.1, 3.2, 3.3,3.4 and Corollary 3.5, we can

characterize the graph with minimal energy in G1n,n+3 as follows.

Theorem 3.6. The graph with minimal energy in G1n,n+3 is Bn,n+3 for 8 ≤ n ≤ 11, and

Sn,n+3 for n ≥ 12, respectively.

To prove Theorem 1.8, we need the following two lemmas.

Lemma 3.7. (1) E(K4) > E(S4,4), and E(Bn,n+2) > E(Sn,n) for 7 ≤ n ≤ 9.

(2) E(Sn,n+2) > E(Sn,n) for n ≥ 5.

Proof. (1) It is easy to obtain that E(K4) = 6, E(S4,4)
.
= 4.96239, E(B7,9)

.
= 7.21110,

E(S7,7)
.
= 6.64681, E(B8,10)

.
= 7.91375, E(S8,8)

.
= 7.07326, E(B9,11)

.
= 8.46834 and

E(S9,9)
.
= 7.46410. Hence the result (1) follows.

(2) Since 6 = E(S5,7) > E(S5,5)
.
= 5.62721, we now suppose n ≥ 6. By direct

computation, we have that φ(Sn,n+2, x) = xn − (n+ 2)xn−2 − 6xn−3 + (3n− 15)xn−4 and

φ(Sn,n, x) = xn − nxn−2 − 2xn−3 + (n− 3)xn−4. By Eq. (1), we obtain that

E(Sn,n+2) =
1

2π

∫ +∞

−∞

1

x2
ln((1 + (n+ 2)x2 + (3n− 15)x4)2 + (6x3)2)dx

>
1

2π

∫ +∞

−∞

1

x2
ln((1 + nx2 + (n− 3)x4)2 + (2x3)2)dx = E(Sn,n).

Lemma 3.8. E(Sn−3,n−3 ∪ C3) > E(Sn,n+3) for n ≥ 6.
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Proof. For 6 ≤ n ≤ 14, the result follows by direct computation. Suppose that n ≥ 15.

By direct calculation, we have that φ(Sn,n+3, x) = xn−(n+3)xn−2−8xn−3+(4n−24)xn−4.

Let f(x) = x4−(n+3)x2−8x+4n−24. Then we have that f(−
√
n− 1) > 0, f(−2) < 0,

f(0) > 0, f(2) < 0 and f(
√
n+ 3) > 0. Hence

E(Sn,n+3) < 4 +
√
n− 1 +

√
n+ 3.

On the other hand, we have E(Sn−3,n−3∪C3) > 4+
√

2+2
√
n− 4 [35], and so E(Sn−3,n−3∪

C3) > E(Sn,n+3).

Proof of Theorem 1.8: By Table 1 of [3], there are two (5, 8)-graphs. By simple

calculation, we can prove the theorem for n = 5. By Table 1 of [4], there are 20 (6, 9)-

graphs. By direct computation, we can prove the theorem for n = 6. By [2], there are 132

(7, 10)-graphs. By direct computing, we can prove the theorem for n = 7. Now suppose

that n ≥ 8. By Theorem 3.6 and Corollary 3.5, it suffices to prove that E(G) > E(Sn,n+3)

for G ∈ G2n,n+3.

Suppose that G ∈ G2n,n+3 and Cp, Cq are two disjoint odd cycles with p+ q ≡ 2 (mod

4). Then there are at most three edge disjoint paths in G connecting Cp and Cq.

Case 1. There exists exactly an edge disjoint path P 1 connecting Cp and Cq. Then

there exists an edge e1 of P 1 such that G− e1 = G1 ∪ G2, where either both G1 and G2

are non-bipartite bicyclic graphs, or G1 is an non-bipartite tricyclic graph and G2 is an

non-bipartite unicyclic graph. Let |V (G1)| = n1 and |V (G2)| = n2.

Subcase 1.1. Both G1 and G2 are non-bipartite bicyclic graphs. Then by Lemmas

2.1, 2.2, 2.5, 3.8 and Theorem 1.6, we have

E(G) ≥ E(G1 ∪G2) ≥ E(Sn1,n1+1 ∪ Sn2,n2+1) > E(Sn1,n1 ∪ Sn2,n2)

≥ E(Sn−3,n−3 ∪ C3) > E(Sn,n+3).

Subcase 1.2. G1 is an non-bipartite tricyclic graph and G2 is an non-bipartite uni-

cyclic graph. It follows from Theorem 1.7 and Lemma 3.7 that E(G1) > E(Sn1,n1).

Therefore by Lemmas 2.1, 2.2, 2.3 and 3.8, we have

E(G) ≥ E(G1 ∪G2) > E(Sn1,n1 ∪ Sn2,n2) ≥ E(Sn−3,n−3 ∪ C3) > E(Sn,n+3).

Case 2. There exist exactly two edge disjoint paths P 2 and P 3 connecting Cp and

Cq. Then there exist two edges e2 and e3 such that ei is an edge of P i for i = 2, 3, and

G− {e2, e3} = G3 ∪G4, where G3 is an non-bipartite bicyclic graph with n1 vertices and
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G4 is an non-bipartite unicyclic graph with n2 vertices. By Lemmas 2.1, 2.2, 2.3, 2.5, 3.8

and Theorem 1.6, we have

E(G) ≥ E(G3 ∪G4) ≥ E(Sn1,n1+1 ∪ Sn2,n2) > E(Sn1,n1 ∪ Sn2,n2)

≥ E(Sn−3,n−3 ∪ C3) > E(Sn,n+3).

Case 3. There exist exactly three edge disjoint paths P 4, P 5 and P 6 connecting Cp

and Cq. Then there exist three edges e4, e5 and e6 such that ei is an edge of P i for

i = 4, 5, 6, and G − {e4, e5, e6} = G5 ∪ G6, where G5 and G6 are non-bipartite unicyclic

graphs. Let |V (G5)| = n1 and |V (G6)| = n2. Then by Lemmas 2.1, 2.2, 2.3 and 3.8, we

have

E(G) ≥ E(G5 ∪G6) ≥ E(Sn1,n1 ∪ Sn2,n2) ≥ E(Sn−3,n−3 ∪ C3) > E(Sn,n+3).

The proof is thus complete.
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