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Abstract

The recently introduced concept of resolvent energy of a graph [6,7] is based on the adjacency

matrix. We now consider the analogous resolvent energies based on the Laplacian and signless

Laplacian matrices, and determine some of their basic properties.
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1 Introduction

All graphs in this note are simple; i.e., undirected, with no loops, and with no multiple

edges. Let G be such a graph of order n, and let λ1 ≥ λ2 ≥ · · · ≥ λn, µ1 ≥ µ2 ≥ · · · ≥ µn,

and q1 ≥ q2 ≥ · · · ≥ qn be its adjacency, Laplacian, and signless Laplacian eigenval-

ues, respectively. We denote by Mk(G), Mk(L(G)), and Mk(Q(G)) the k-th adjacency,

Laplacian, and signless Laplacian spectral moments of G, i.e.,

Mk(G) =
n∑

i=1

λki , Mk(L(G)) =
n∑

i=1

µk
i , Mk(Q(G)) =

n∑
i=1

qki .

Inspired by the definition of resolvent energy [6, 7], we define the Laplacian resolvent

energy RL(G) of G as:

RL(G) =
n∑

i=1

1

(n+ 1)− µi

.

Since 0 ≤ µi/(n + 1) < 1 for each i ∈ {1, . . . , n}, we obtain the following expression

for RL(G), which is similar to the existing ones for the Estrada index [5], the resolvent

Estrada index [3], and the resolvent energy [6, 7]:

RL(G) =
1

n+ 1

∞∑
k=0

Mk(L(G))

(n+ 1)k
. (1)

2 Preliminaries

2.1 Deng’s transformation I

A semistar vertex v of a graph G is any vertex of G of degree at least 2 having exactly one

neighbor of degree at least 2. The only neighbor of v of degree at least 2 will be denoted

by v∗. If v is a semistar vertex of a graph G, then we define Sv(G) as the graph obtained

from G by contracting the edge vv∗ and adding a pendent vertex adjacent to the vertex

arising from the contraction; the vertex that results of the contraction of the edge vv∗ is

labeled by v, whereas the added pendent vertex is labeled by v∗. The operator S was

introduced by Hanyuan Deng in [2] under the name Transformation I .

Example 1. The graph G of Figure 1 has two semistar vertices: vertices 1 and 4. More-

over, 1∗ = 4 and 4∗ = 1. The graph S1(G) is depicted in Figure 2.
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Fig. 1. A graph with two semistar vertices: 1 and 4 .
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Fig. 2. The graph S1(G)

Remark 2. Let T be a tree on n vertices and with exactly ` leaves.

1. If n ≥ 2, then the semistar vertices of T are the leaves of the tree that arises from T

by removing all its leaves. Hence, if T is not a star, then T has at least two semistar

vertices.

2. If v is a semistar vertex of T , then Sv(T ) has exactly one more leaf than T . There-

fore, by applying the operator S to T exactly n− `− 1 times, we obtain the star Sn

with n vertices.

The importance of S in [2] is due to the result below, which implies that the Estrada

index attains its maximum among trees of n vertices at the star Sn.

Theorem 1. [2] Let G be a graph with a semistar vertex v. Then,

M2k(G) ≤M2k(Sv(G)) .

Moreover, if dG(v) ≥ 3 and k ≥ 2, then the inequality is strict.
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2.2 Deng’s transformation II

Let G1 and G2 be two graphs and, by renaming the vertices if necessary, assume without

loss of generality that V (G1) ∩ V (G2) = ∅. If v ∈ V (G1) and w ∈ V (G2), denote by

G1 ◦v,w G2 the graph obtained from the disjoint union of G1 and G2 by identifying the

vertices v and w; i.e., by replacing v and w by a new vertex adjacent to the neighbors of

v in G1 and to the neighbors of w in G2.

Let P be an induced path of G of length `. Let v ∈ V (P ) be a vertex that is not an

endpoint of P . If v is the only vertex of P having some neighbor in G − V (P ), then v

is said to be a semipath vertex of G (of span `). If so, we denote by Pv(G) the graph

(G− (V (P )−{v})) ◦v,w P` where w is an endpoint of P`. The operator P was introduced

in [2] under the name of Transformation II .

Example 3. The graph G depicted in Figure 1 has 1 as a semipath vertex of span 4

because it is a vertex of the path P induced by {2, 1, 4, 5}, the vertex 1 is not an endpoint

of P , and 1 is the only vertex of P having a neighbor not in P . The corresponding graph

P1(G) is depicted in Figure 3. In the graph G, 1 is also a semipath vertex of span 3.

1 2

3

4 5

Fig. 3. The graph P1(G) corresponding to the path P induced by {2, 1, 4, 5}

Let T be a tree on n vertices with exactly r vertices of degree at least 3.

• Let T ′ be the tree without vertices of degree 2, such that T arises from T ′ by some

(eventually empty) sequence of edge subdivisions. The semipath vertices of T are

the vertices of T of degree at least 3 which are adjacent to at least two leaves in T ′.

• Hence, if T is not a path, then T ′ is also not a path, and T has some semipath

vertex v.
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• Moreover, Pv(T ) has exactly one less vertex of degree at least 3 than T . Therefore,

by applying the operator P to T exactly r times, we obtain the path Pn.

The relevance of the operator P in [2] is its effect on the spectral moments, which

implies that the Estrada index attains its minimum among the trees on n vertices at the

path Pn.

Theorem 2. [2] Let G be a graph with a semipath vertex v. Then,

M2k(Pv(G)) ≤M2k(G) .

Moreover, if k ≥ 2, then the inequality is strict.

2.3 Similarity between the Laplacian and signless Laplacian
matrices of bipartite graphs

We denote by Q(G) the signless Laplacian matrix of the graph G. It is known that the

spectra of the Laplacian and signless Laplacian matrices of a bipartite graph coincide.

Theorem 3. [4] If G is bipartite, then L(G) and Q(G) are similar matrices.

The above theorem has the following immediate consequence.

Corollary 4. If G is a bipartite graph, then

RL(G) =
1

n+ 1

∞∑
k=0

Mk(Q(G))

(n+ 1)k
.

2.4 Signless Laplacian spectral moments and semiedge walks

A semiedge walk of length k in a graph G is a sequence v1, v2, . . . , vk+1 of vertices of

G such that, for each i ∈ {1, . . . , k}, either vi is adjacent to vi+1 or vi = vi+1. Such a

semiedge walk is said to be closed if v1 = vk+1. We denote by CSEWk(G) the set of all

closed semiedge walks of length k in G. The following result relates the signless Laplacian

spectral moments to the number of closed semiedge walks.

Theorem 4. [1] For each non-negative integer k, the k-th signless Laplacian spectral

moment is equal to the number of closed semiedge walks of length k; i.e, Mk(Q(G)) =

|CSEWk(G)|.
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2.5 Laplacian resolvent energy of a bipartite graph and
adjacency spectral moments of its complete subdivision

If G is a graph, the complete subdivision S(G) of G is the graph obtained from G by

subdividing each of its edges exactly once. The following result relates the Laplacian

spectrum of a bipartite graph G to the adjacency spectrum of S(G).

Theorem 5. [10] Let G be a bipartite graph with n vertices and m edges. If the nonzero

Laplacian eigenvalues of G are µ1, . . . , µh, then the adjacency spectrum of S(G) consists

of the numbers ±√µi for each i ∈ {1, . . . , h} and m+ n− 2h zeros.

The following is an immediate consequence.

Corollary 5. If G is a bipartite graph, then, for each nonnegative integer k,

Mk(L(G)) =
1

2
M2k(S(G)) .

3 Some results for the Laplacian resolvent

We define a partial order E, analogous to the quasi-order defined in Section 4.3 of [8], as

follows. For any two graphs G and H,

H E G if and only if Mk(L(H)) ≤Mk(L(G)) for every k.

It is clear from Eq. (1) that H E G implies RL(H) ≤ RL(G).

Remark 6. Kn denotes the complete graph on n vertices, and nK1 denotes the graph

on n vertices with no edges. Let G be a graph of order n, and F a spanning forest of

G. Since adding edges never decreases and eventually increases each of the Laplacian

eigenvalues [9], it also never decreases and eventually increases each of the Laplacian

spectral moments. Hence, nK1 E F E G E Kn and consequently

n

n+ 1
= RL(nK1) ≤ RL(F ) ≤ RL(G) ≤ RL(Kn) =

n2

n+ 1
.

We now prove the analogue of Theorem 1 for signless Laplacian spectral moments. If

v is a vertex of a graph G, denote by NG[v] its closed neighborhood NG(v) ∪ {v}.
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Lemma 7. Let G be a graph with a semistar vertex v. Then,

Mk(Q(G)) ≤Mk(Q(Sv(G)))

holds for all k non-negative integers. Moreover, if k ≥ 4, then the inequality is strict.

Proof. By Theorem 4, it suffices to show that |CSEWk(G)| < |CSEWk(Sv(G))|. In order

to do so, we define a mapping

θk : CSEWk(G)→ CSEWk(Sv(G))

and show that

(i) θk is injective and

(ii) if k ≥ 4, then θk is not surjective.

We define the mapping θk as follows: If W ∈ CSEWk(G), let θk(W ) be the sequence

obtained from W by replacing by v each occurrence of v∗ immediately preceded or im-

mediately followed by a vertex not in NG[v]. Notice that the sequence θk(W ) belongs to

CSEWk(Sv(G)) because NG[v∗] ⊆ NSv(G)[v] and because occurrences of v∗ in W which

are not immediately preceded or immediately followed in W by a vertex not in NG[v] can

only be immediately preceded or immediately followed in W by v, and v ∈ NSv(G)[v
∗].

The transformation θk is injective becauseW can be recovered from θk(W ) by replacing

by v∗ those occurrences of v immediately preceded or immediately followed by a vertex

not in NG[v] (because θk replaces with v some occurrences of v∗, and both v and v∗ belong

to NG[v] ).

Assume now that k ≥ 4. Since v and v∗ have degree at least 2 each, there is some

vertex u ∈ NG[v∗] \ {v} and some vertex w ∈ NG[v] \ {v∗}. Since u, v, w, w, . . . , w, w, v, u

(with k − 3 occurrences of w) belongs to CSEWk(Sv(G)) but not to the image of θk

(because neither NG[v] nor NG[v∗] contains both u and w), θk is not surjective, which

completes the proof.

We now prove the analogue of Theorem 2 for the signless Laplacian spectral moments

of bipartite graphs.

Lemma 8. Let G be a bipartite graph with semipath vertex v. Then,

Mk(Q(Pv(G))) < Mk(Q(G))

holds for all non-negative integers k. Moreover, if k ≥ 2, the inequality is strict.
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Proof. Since G is bipartite, Pv(G) is also bipartite. Hence, Theorem 3 and Corollary 5

imply that

Mk(Q(G)) = Mk(L(G)) =
1

2
M2k(S(G))

and

Mk(Q(Pv(G))) = Mk(L(Pv(G))) =
1

2
M2k(S(Pv(G))) .

Since S(Pv(G)) = Pv(S(G)), in order to prove the theorem it suffices to show that

M2k(Pv(S(G)))) ≤M2k(S(G))

and that the inequality is strict if k ≥ 2. But this directly follows from Theorem 2.

Remark 9. It seems that the condition that G is bipartite can be dropped from Lemma

8. If so, then it is highly likely that the corresponding proof can be obtained by slightly

adapting the argument used in the proof of Theorem 2 given in [2] from closed walks to

closed semiedge walks.

By combining the above results, we are able to characterize the graphs minimizing

and maximizing the Laplacian resolvent energy among trees on n vertices.

Theorem 6. It T is a tree on n vertices, such that T 6∼= Pn and T 6∼= Sn, then

RL(Pn) < RL(T ) < RL(Sn)

where Pn and Sn are the path and the star on n vertices, respectively.

Proof. Recall from Remark 2 that, since T is not a star, it is possible to apply repeatedly

the operator S to transform T into the star on Sn. Hence, by Lemma 7, Mk(Q(T )) ≤

Mk(Q(Sn)) for every k and the inequality is strict for each k ≥ 4. Therefore, by Corollary

4, RL(T ) < RL(Sn), which concludes the proof.

Similarly, since T is not a path, it is possible to transform T into Pn by repeated

application of operator P . Hence, by Lemma 8, Mk(Q(Pn)) < Mk(Q(T )) for every k ≥ 2.

Therefore, by Corollary 4, RL(Pn) < RL(T ), which concludes the proof.

In fact, it is possible to characterize the path Pn as the only graph minimizing the

Laplacian resolvent energy among connected graphs on n vertices.
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Corollary 10. If G is a connected graph on n vertices such that G 6∼= Pn, then RL(Pn) <

RL(G).

Proof. Since G is not a path, it has some spanning tree T which is not a path. By

Theorem 6 and Remark 6, RL(Pn) < RL(T ) ≤ RL(G).

4 On signless Laplacian resolvent energy

The signless Laplacian resolvent energy RQ(G) of a graph G may be defined similarly by

means of the formula

RQ(G) =
n∑

i=1

1

(2n− 1)− qi

where q1, q2, . . . , qn are the signless Laplacian eigenvalues of G. The analogue of Eq. (1)

would then be

RQ(G) =
1

2n− 1

∞∑
k=0

Mk(Q(G))

(2n− 1)k
. (2)

Since adding edges to a graph never decreases and eventually increases the number of

closed semiedge walks of length k, it also never decreases and eventually increases each of

the signless Laplacian spectral moments (see Theorem 4). Hence, we have the following

analogue of Remark 6.

Remark 11. If G is a graph on n vertices and F is a spanning forest of G, then

n

2n− 1
= RQ(nK1) ≤ RQ(F ) ≤ RQ(G) ≤ RQ(Kn) =

2n

n+ 1
.

Because of Eq. (2) and Lemmas 7 and 8, we have the following analogues of Theorem

6 and Corollary 10 for the signless Laplacian resolvent energy.

Theorem 7. It T is a tree on n vertices which is neither the path nor the star, then

RQ(Pn) < RQ(T ) < RQ(Sn) .

Corollary 12. If G is a connected graph on n vertices which is not the path, then

RQ(Pn) < RQ(G).
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