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Abstract

The nullity n0 of a graph G is the algebraic multiplicity of the number zero in the

spectrum of G. The energy E of G is the sum of absolute values of the eigenvalues of G. A

long–open problem in the theory of graph energy is the relation between E and n0 , i.e., the

dependence of E on n0 . Arguments from quantum chemistry suggest that E should be a

decreasing function of n0 , but no mathematical verification of this conjecture is known. We

now offer a case study, in which the validity of the conjecture is confirmed within a special

class of graphs called banana trees.

1 Introduction

Let G be a simple graph of order n and let A(G) be its adjacency matrix. The

eigenvalues λ1, λ2, . . . , λn of A(G) are referred to as the eigenvalues of the graph G

and form the spectrum of G [2, 3].

The multiplicity of the number zero in the spectrum of G is the nullity of G and

will be denoted by n0 = n0(G). The sum of absolute values of the eigenvalues of G,
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i.e.,

E = E(G) =
n∑

i=1

|λi| (1)

is the energy of G. Both n0 and E have been extensively studied within spectral

graph theory, for details and further references see [7, 12, 14].

In chemical applications, when G is a graph representation of a conjugated hy-

drocarbon, E(G) is related to the total energy of the π-electrons of this hydrocarbon

whereas n0 is the number of so-called non-bonding molecular orbitals (NBMOs); for

details see [4–6]. The NBMOs pertain to π-electrons which do not contribute to

the chemical bonding in the underlying molecule. In view of this, from a quantum–

chemical point of view, the greater is n0 , the weaker should be the bonding in the

molecule and, consequently, the smaller should E be. In mathematical language, the

parameter n0 is expected to have a diminishing effect on the value of E .

The above conjectured property of graph energy is not easy to formulate in a

satisfactorily consistent manner. Its naive statement could be

n0(G1) > n0(G2) =⇒ E(G1) < E(G2) (2)

where it must be assumed that all other structural features of the graphs G1 and G2 ,

influencing the value of their energies, are same or differ negligibly.

Much work has been devoted to the analysis of the dependence of E(G) on the

structure of the graph G [6, 12]. This dependence is known to be complex, with

various structural features influencing the E-value simultaneously and in a mutually

interlaced manner.

Anyway, the main structural details on which the E-value depends are the number

of vertices, number of edges, and the number, type and mutual arrangement of cycles.

Thus, in order that the conjectured relation (2) be meaningful, these must be kept

equal in G1 and G2 . The elements of the set B(n), defined in the subsequent section,

satisfy these requirements.

In an earlier work [8], the validity of the conjecture (2) was corroborated, and the

n0-dependence of E quantitatively assessed, by means of computer-aided numerical

calculations, as applied to a suitably constructed class of graphs. In the present work
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we offer a model, within which the analysis of the n0-dependence of E can be achieved

in an explicit and mathematically exact manner.

2 Banana trees

The k-star is the tree with k vertices and k − 1 leaves (= pendent vertices). The

banana tree, denoted by B(p, k), with parameters p ≥ 1 and k ≥ 3 is obtained from

p disjoint k-stars, by connecting one leaf of each k-star with a single vertex that is

distinct from all stars. Thus B(p, k) has

n = n(B(p, k)) = pk + 1 (3)

vertices.

Throughout this paper, it is assumed that the banana trees are constructed from

mutually isomorphic star-graphs (i.e., that all their k-values are equal). If this con-

dition would not be satisfied, then we would arrive at expressions much more com-

plicated than the present Eqs. (9) and (10). Then the analytical treatment of the

nullity–dependence of graph energy (as in Section 4) would not be feasible.

The parameter k is required to be at least 3. The case of k = 1 is formally

impossible because the 1-star has no pendent vertices. In the case of k = 2, the

banana tree would coincide with the “sun graph” of degree p (see [9]) whose nullity is

equal to one, independently of the value of the parameter p. Thus, in this case, Eq.

(4) would not hold.

The set of all banana trees of order n will be denoted by B(n). The number of

elements of B(n) is equal to the number of solutions of the Diophantine equation

p k = n− 1 for p ≥ 1 and k ≥ 3. Thus, if n− 1 is prime, then B(n) has just a single

element, with p = 1. If n − 1 is two times a prime, then |B(n)| = 2, for p = 1 and

p = 2. If n− 1 is eight times a prime, then |B(n)| = 6 for p = 1, p = 2, p = 4, p = 8,

p = (n− 1)/4, and p = (n− 1)/8.

Properties of banana trees of have been studied in numerous earlier works (see

e.g. [1, 10, 11,13]).
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As shown in the subsequent section, the nullity of B(p, k) is equal to

n0 = n0(B(p, k)) = p(k − 2)− 1 . (4)

From Eq. (3) we see that for a given value n, the set B(n) may consist of several

banana trees. According to Eq. (4), these banana trees will have different nullities.

An example is given in the following table, for the six distinct elements of B(25).

p k n0

1 24 21
2 12 19
3 8 17
4 6 15
6 4 11
8 3 7

Combining Eqs. (3) and (4), we get n0 = n − 2p − 2. Since p ≥ 1, we thus see

that

n0 ≤ n− 4 . (5)

3 Energy and Nullity of Banana Trees

The energy of a banana tree B(p, k) can be determined in the standard way:

1. Calculate the characteristic polynomial of B(p, k). From it, the nullity of B(p, k)

will be immediately seen.

2. Find the zeros of the characteristic polynomial (i.e., the graph eigenvalues)

3. Find the expression for energy using Eq. (1).

The following result is well known.

Lemma 1. [2] Let u be a vertex of a tree T , adjacent to the vertices v1, v2, . . . , vp .

Let ϕ(T, λ) be the characteristic polynomial of T . Then,

ϕ(T, λ) = λϕ(T\u, λ)−
p∑

i=1

ϕ(T\{u, vi}, λ).

Proposition 2. The characteristic polynomial of the banana tree B(p, k) is

ϕ(B(p, k), λ) = λp(k−2)−1
[
λ2 − (k − 1)

]p−1 [
λ4 − (p+ k − 1)λ2 − (k − 2)p

]
. (6)
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Proof. Let u be the vertex of B(p, k) that is distinct from all stars. If we remove

u from B(p, k) the subgraph B(p, k)\u consists of p disjoint copies of k-stars. Since

the characteristic polynomial of the disjoint union of graphs is the product of their

characteristic polynomials, and since the characteristic polynomial of the k-star is

λk − (k − 1)λk−2,

ϕ(B(p, k)\u, λ) =
[
λk − (k − 1)λk−2

]p
= λp(k−2)

[
λ2 − (k − 1)

]p
. (7)

The subgraph B(p, k)\{u, v}, where v is a leaf of a k-star, consists of p − 1 disjoint

copies of k-stars and a (k − 1)-star. Thus,

ϕ(B(p, k)\{u, v}) =
[
λk − (k − 1)λk−2

]p−1 [
λk−1 − (k − 2)λk−3

]
and

p∑
i=1

ϕ(B(p, k)\{u, vi}, λ) = p
{[

λk − (k − 1)λk−2
]p−1 [

λk−1 − (k − 2)λk−3
]}

. (8)

By Lemma 1,

ϕ(B(p, k), λ) = λϕ(B(p, k)\u, λ)−
p∑

i=1

ϕ(B(p, k)\{u, vi}, λ)

which combined with Eqs. (7) and (8) yields formula (6).

Directly from Eq. (6) follows:

Theorem 1. The nullity of the banana tree B(p, k) is equal to p(k− 2)− 1, i.e., Eq.

(4) holds.

Proposition 3. The energy of the banana tree B(p, k) is

E(B(p, k)) = 2(p− 1)
√
k − 1 + 2

√(√
k − 2 +

√
p
)2

+ 1 . (9)

Proof. The zeros of the polynomial (6), i.e., the eigenvalues of B(p, k) are:

0 p(k − 2)− 1 times

+
√
k − 1 p− 1 times

−
√
k − 1 p− 1 times
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as well as the four numbers

±
√

1

2

[
p+ k − 1±

√
(p+ k − 1)2 − 4p(k − 2)

]
.

Substituting these into Eq. (1), and performing appropriate algebraic transformations

results in formula (9).

From Eqs. (3) and (4) we can express the parameters p and k as:

p =
n− 2− n0

2
and k =

2(n− 1)

n− 2− n0

.

When these expressions are substituted into Eq. (9), we get an explicit functional

dependence of the energy on nullity.

Theorem 2. The energy and the nullity of a banana tree B ∈ B(n) are related as:

E(B) = (n− 4− n0)

√
2(n− 1)

n− 2− n0

− 1

+ 2

√√√√(√ 2(n− 1)

n− 2− n0

− 2 +

√
n− 2− n0

2

)2

+ 1 . (10)

Note that Eq. (10) appears to be be the very first exact analytical expression for

the dependence of graph energy on nullity. Recall that by (5), 0 ≤ n0 ≤ n− 4 .

Now, the task would be to prove that the function

f(x) = (n−4−x)

√
2(n−1)

n−2−x
−1 + 2

√√√√(√ 2(n−1)

n−2−x
−2 +

√
n−2−x

2

)2

+1 (11)

is monotonically decreasing for x ∈ (0, n − 4). This we verify in the subsequent

section.

4 Dependence of Energy on Nullity

Theorem 3. For a fixed number of vertices n, the energies of the banana trees B ∈

B(n) decrease as their nullities n0 increase.
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Proof. Let n be a constant and x ∈ (0, n− 4). If we consider the function (11), then

f ′(x) = − x+ 2√
n− x− 2

√
n+ x

−
√
n+ x

(n− x− 2)3/2
+

2F0(n, x)F1(n, x)

F2(n, x)
.

where

F0(n, x) :=

√
2(n− 1)

n− x− 2
− 2 +

√
n− x− 2

2

F1(n, x) :=
n− 1√

2(n−1)
n−x−2

− 2(n− x− 2)2
− 1

2
√
2
√
n− x− 2

F2(n, x) :=

√√√√(√ 2(n− 1)

n− x− 2
− 2 +

√
n− x− 2

2

)2

+ 1 .

If F1(n, x) < 0, then f ′(x) < 0 and the function is monotonically decreasing for

x ∈ (0, n− 4). In the case when F1(n, x) > 0, since F2(n, x) > F0(n, x), we have

2F0(n, x)F1(n, x)

F2(n, x)
< 2F1(n, x) .

Thus,

f ′(x) < − x+ 2√
n− x− 2

√
n+ x

−
√
n+ x

(n− x− 2)3/2
+

2√
n− x− 2

√
2x+ 2

+

√
2x+ 2

(n− x− 2)3/2
− 1√

2
√
n− x− 2

.

By direct checking it can be verified that the above inequality holds for x = 0, 1, 2.

Therefore, it remains to consider the case 3 ≤ x ≤ n− 4. Since

√
n+ x ≥

√
2x+ 4 >

√
2x+ 2

it follows

−
√
n+ x

(n− x− 2)3/2
+

√
2x+ 2

(n− x− 2)3/2
< 0 .

Also, for x ≥ 3,

− 1√
2
√
n− x− 2

+
2√

n− x− 2
√
2x+ 2

< 0 .

Thus f ′(x) < 0, and Theorem 3 follows.
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Corollary 4. In the class B(n) of banana trees with a fixed number of vertices n, the

banana trees B(1, n− 1) has the minimum energy.

It is worth noting that B(1, n− 1) happens to be the tree of order n with second–

minimal energy.
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[1] W. C. Chen, H. I. Lü, Y. N. Yeh, Operations of interlaced trees and graceful

trees, Southeast Asian Bull. Math. 21 (1997) 337–348.
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