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Abstract

We exhibit here some properties of trees T that satisfy the graph equation
W (L2(T )) = W (T ), where W (G) is the Wiener index of a graph G and L(G)
is its line graph. In particular, we show that such trees may have arbitrarily many
vertices of degree at least four, and that they may contain vertices whose degree
exceeds six. These results disprove a recent conjecture of Knor, Škrekovski and
Tepeh.

1 Introduction

The Wiener index of a graph is the sum of distances between all pairs of its vertices. It

was suggested as a structural descriptor of acyclic organic molecules by Harry Wiener

in 1947 [1], due to its high correlation with paraffin boiling points. Its relations to sev-

eral further properties of organic molecules were subsequently discovered, and it is now

widely used in quantitative structure-activity relationship studies (see, e.g., surveys [2–4]).

Wiener index attracted attention of mathematicians in the late 1970s when it was in-

troduced in graph theory under the names distance of a graph and transmission of a

graph [5–7], and is further studied also in the form of average distance of graphs and

networks [8, 9]. Mathematical statements on Wiener index are mostly stated in the form

of extremal results, which were recently surveyed in [15].

Let G be a graph with the vertex set V (G) and the edge set E(G). Cardinalities

of V (G) and E(G) are called the order and the size of G, respectively. The line graph
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L(G) has the vertex set V (L(G)) = E(G), with two vertices of L(G) adjacent if and

only if they share a vertex as edges of G. The iterated line graph Ln(G) for a positive

integer n is recursively defined as Ln(G) = L(Ln−1(G)), where L0(G) = G. For majority

of graphs, the size of Ln(G) rapidly increases with n reflecting their branching and edge

density. An accepted opinion in the mathematical chemistry community [10] is that it

may be of interest to characterize molecular graphs by means of structural descriptors

calculated for their derived structures. Iterated line graphs serve as good examples of de-

rived structures, since their invariants have been already used for characterizing branching

of acyclic molecular graphs [11], establishing partial order among isomeric structures [12],

evaluating structural complexity of molecular graphs [13] and designing novel structural

descriptors [14].

The graph equation W (Li(G)) = W (G) has raised considerable interest among graph

theorists. Although there are solutions among general graphs for i = 1 (surveyed in [16–

18]), there exist no solutions among nontrivial trees, as Buckley [19] has shown that for

trees W (L(T )) = W (T ) −
(
n
2

)
. In the rest of the paper we focus our attention to trees.

The case i ≥ 3 for nontrivial trees has been resolved in a series of papers [20–26], where

it is shown that W (Li(T )) = W (T ) holds if and only if i = 3 and T is isomorphic to a

particular tree having two vertices of degree three only, with the remaining vertices of

degree one or two.

Contrary to the cases i = 1 and i ≥ 3, there exists a multitude of solutions of

W (L2(T )) = W (T ) (1)

among trees. We denote by S the set of all trees that are solutions of the equation (1).

Trees in S are enumerated up to 17 vertices in [3] and up to 26 vertices in [27]. A few

infinite families of solutions are constructed earlier by Dobrynin and Mel’nikov [10,27–29]

and by Knor and Škrekovski [30]. Solutions presented in these papers have very simple

structure: they have at most four vertices of degree ≥ 3 and at most six pendent paths

whose lengths can be arbitrarily large. This motivated Dobrynin and Mel’nikov [27] to

pose the problem of finding an infinite family F ⊂ S such that for any n,m ∈ N there

exists a tree T ∈ F that has at least n pendent paths each having length at least m. Knor

and Škrekovski [30] implicitely consider the set T of trees without vertices of degree two

such that T ′ ∈ T if and only if there exists T ∈ S that is homeomorphic to T ′ (i.e., T is

a subdivision of T ′, so that T and T ′ have equally many vertices of any degree 6= 2). The

small number of vertices of degree ≥ 3 in known solutions of (1) led Knor and Škrekovski

to conjecture that the set T is finite.
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In [31] we provide both a positive answer to the Dobrynin-Mel’nikov problem and a

negative answer to the Knor-Škrekovski conjecture by identifying a family of solutions

of (1) that, for arbitrary k, l ∈ N, contains trees with ≥ k vertices of degree three and

with ≥ k pendent paths each of length ≥ l. Motivated by our construction and previous

findings, Knor, Škrekovski and Tepeh [18] further posed the following conjecture (as

Conjecture 7.22 in [18]):

Conjecture 1 Trees from T satisfy the following:

(a) no tree has a vertex of degree exceeding six;

(b) there is a constant c such that no tree in T has more than c vertices of degree ≥ 4.

The purpose of this note is to disprove this conjecture by exhibiting in Section 2 another

family of solutions of (1) that contains trees with an arbitrarily large number of vertices of

degree four, and by providing in Section 3 exemplary solutions of (1) that contain vertices

of degree larger than six. Some concluding remarks are given in Section 4.

2 Trees in T with arbitrarily many degree 4 vertices

In our previous paper [31] we find an infinite family of solutions of (1) among quipus—

trees that consist of a path with a new pendent path attached to each of its internal

vertices. We continue our search here in a similarly defined class of trees.

Let n be a positive integer and let h = 〈h1, . . . , hn〉 and k = 〈k1, . . . , kn〉 be two

vectors of positive integers. We define the quartic quipu Q(h, k) as follows. Let Q be

the caterpillar consisting of a path u0u1 · · ·un+1 and 2n pendent edges uivi and uiwi for

i = 1, . . . , n. Then Q(h, k) is obtained from Q by subdividing every edge uivi, i = 1, . . . , n,

to a path of length hi and the edge uiwi to a path of length ki. An example of a quartic

quipu is shown in Figure 1 for illustration. These subdivided paths are called the cords

of Q(h, k) and the path u0u1 · · ·un+1 is called its main string. We assume without loss of

generality that hi ≥ ki for each i = 1, . . . , n.

2.1 Wiener index of quartic quipu

The Wiener index of quartic quipu Q(h, k) and its quadratic line graph can be expressed

in terms of n, h and k. By classifying pairs of vertices in Q(h, k) according to whether

they belong to the main string or the cords, and by relying on the formula

W (Pt) =
1

6
(t− 1)t(t + 1)
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Figure 1: The quartic quipu Q(h, k) with h = 〈2, 5, 3, 4〉 and k = 〈1, 3, 2, 3〉 (top) and its
line graph (bottom).

for the Wiener index of a path on t vertices [5], we obtain

W (Q(h, k)) =
1

6
(n + 1)(n + 2)(n + 3)

(within the main string)

+
n∑

i=1

1

6
(hi − 1)hi(hi + 1) +

n∑
i=1

1

6
(ki − 1)ki(ki + 1)

(within the cords)

+
n+1∑
x=0

n∑
i=1

[
hi∑
y=1

(
|x− i|+ y

)
+

ki∑
y=1

(
|x− i|+ y

)]
(between the main string and the cords)

+
∑

1≤i<j≤n

[
hi∑
x=1

hj∑
y=1

(
j − i + x + y

)
+

ki∑
x=1

kj∑
y=1

(
j − i + x + y

)]
(between different cords)

+
n∑

i=1

n∑
j=1

hi∑
x=1

kj∑
y=1

(
|j − i|+ x + y

)
.

(between different cords)

In order to compute the Wiener index of the quadratic line graph L2(Q(h, k)) we sum

the distances between pairs of edges of the line graph L(Q(h, k)). Using Figure 1 as a
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reference for descriptions, we have

W (L2(Q(h, k))) =
n∑

i=1

n∑
j=1

18(|j − i|+ 1)

(within and between the 4–cliques along the main string)

+
n∑

i=1

[
1
6
hi(hi − 1)(hi − 2) + 1

6
ki(ki − 1)(ki − 2)

]
(within the cords)

+
n∑

x=1

n∑
i=1

[
hi−1∑
y=1

(
6|x− i|+ 6y + 3

)
+

ki−1∑
y=1

(
6|x− i|+ 6y + 3

)]
(between the main string and the cords)

+
∑

1≤i<j≤n

[
hi−1∑
x=1

hj−1∑
y=1

(
j − i + x + y

)
+

ki−1∑
x=1

kj−1∑
y=1

(
j − i + x + y

)]
(between different cords)

+
n∑

i=1

n∑
j=1

hi−1∑
x=1

kj−1∑
y=1

(
|j − i|+ x + y

)
.

(between different cords)

After simplification, the above formulae for W (Q(h, k)) and W (L2(Q(h, k))) yield

W (L2(Q(h, k)))−W (Q(h, k)) =
5

2
n3 + 11n2 − 9

2
n− 1

+
1

2
(3n2 + 2n− 4)

n∑
i=1

(hi + ki)−

[
n∑

i=1

(hi + ki)

]2

+
3n

2

n∑
i=1

(h2
i + k2

i )− 3
n∑

i=1

i(n− i + 1)(hi + ki).

(2)

2.2 Enumerating and mining the set of admissible pairs

It turns out that the set S of trees satisfying (1) contains plenty of quartic quipus. We say

that two n-dimensional vectors h and k form an admissible pair if Q(h, k) ∈ S. The height

of the pair (h, k) is equal to max{h1, . . . , hn, k1, . . . , kn}. Using a brute force computer

search, we enumerated admissible pairs of vectors with n ≤ 6 and height at most 20

(assuming hi ≥ ki for each i = 1, . . . , n). The resulting counts are presented in Table 1.

There are no admissible pairs of vectors with n ≤ 6 and height at most six. Increases of

counts along the columns of Table 1 suggest that admissible pairs should exist for each

n ≥ 3 given a sufficiently large height.
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Height n = 3 n = 4 n = 5 n = 6

7 2 0 0 0
8 18 0 0 0
9 15 4 0 0

10 86 248 0 0
11 131 522 69 0
12 175 2 258 1 610 0
13 259 5 062 14 245 56
14 327 10 668 66 303 26 730
15 477 18 916 231 880 283 940
16 638 33 204 628 512 2 403 602
17 734 51 622 1 443 760 11 426 479
18 987 77 456 3 078 456 42 422 052
19 1 152 112 642 5 882 413 125 256 913
20 1 279 159 974 10 360 898 328 979 427

Table 1: Numbers of admissible pairs of n–vectors of various fixed heights.

r Admissible pairs

5 2
6 38
7 10
8 0
9 0
10 0
11 770
12 18 852
13 11 032

r Admissible pairs

14 354
15 0
16 13 976
17 1 573 160
18 23 070 982
19 20 108 286
20 7 363 860
21 83 420
22 134 022 298

Table 2: Numbers of admissible pairs (h, k) with n = 2r, hi ∈ {4r, 4r + 1} and ki = 4r
for each i.

Regardless of the apparent abundance of admissible pairs, it is not at all straightfor-

ward to provide theoretical characterization of an infinite family of admissible pairs, due

to the large number of variables appearing in (2). Fortunately, the number of admissible

pairs remains plentiful even if we put appropriate restrictions on the structure of its vec-

tors. A natural restriction is to assume that all cord lengths are equal to either a or a+ 1

for some a, in order for them to be as balanced as possible. Mining the set of available

admissible pairs reveals that the choice

n = 2r, a = 4r (3)
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ensures large number of admissible pairs, even with the additional assumption

ki = 4r, i = 1, . . . , n. (4)

The numbers of such restricted admissible pairs for small r are shown in Table 2. Further

mining for patterns among the admissible pairs of this type reveals that we can also

assume the last r − 2 components of h to be equal to 4r. Hence we assume for some

subset of t coordinates C = {c1, . . . , ct} ⊆ {1, 2, . . . , r + 2} that

hi =

{
4r, if i ∈ {c1, . . . , ct} ∪ {r + 3, . . . , 2r},
4r + 1, otherwise.

(5)

An example of such admissible pair is

h = 〈25, 25, 25, 25, 24, 24, 24, 25, 24, 24, 24, 24〉

k = 〈24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24〉

which corresponds to r = 6 and C = {5, 6, 7}.
Placing the above assumptions (3)-(5) in (2) we obtain in this case that Q(h, k) ∈ S

if and only if

3

[
t∑

i=1

c2i − (2r + 1)
t∑

i=1

ci

]
= (2t− 13)r2 − 3(t + 4)r − (t2 − 6t + 3). (6)

For t = 2 the above equation becomes

c21 + c22 − (2r + 1)(c1 + c2) = −3r2 − 6r +
5

3

which has no solutions as its left-hand side is an integer, while its right-hand side is not.

For t = 3 we found 467 solutions with r ≤ 100. For t = 4 we found 1 542 solutions with

r ≤ 100. Those solutions with r ≤ 20 are listed in Table 3.

2.3 An infinite family of admissible pairs

We were able to identify among the enumerated solutions of (6) a few instances of a

particular infinite family of admissible pairs, which we describe here. By setting

t = 4 and c1 = 1,

equation (6) simplifies to

(c22 + c23 + c24)− (2r + 1)(c2 + c3 + c4) = −5r2 + 18r − 5

3
,
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r {c1, c2, c3}

6 {5,6,7}
6 {6,7,8}
9 {5,9,10}
9 {6,7,8}
9 {6,7,11}
12 {6,10,11}
12 {6,10,14}
12 {7,8,12}
12 {7,8,13}
15 {6,14,15}
15 {6,14,16}

r {c1, c2, c3}

15 {6,15,17}
15 {6,16,17}
15 {7,11,15}
15 {7,11,16}
15 {8,10,13}
15 {9,10,11}
18 {7,15,17}
18 {7,15,20}
18 {8,13,16}
18 {9,11,18}
18 {9,11,19}

r {c1, c2, c3, c4}

5 {1,2,3,4}
5 {1,2,3,7}
11 {1,3,4,10}
11 {1,3,4,13}
13 {1,2,6,13}
13 {1,2,6,14}
13 {1,3,5,11}
13 {1,4,6,7}
13 {2,3,4,10}
13 {2,3,5,8}

r {c1, c2, c3, c4}

17 {1,2,8,15}
17 {2,3,5,16}
17 {2,3,5,19}
17 {2,4,5,12}
17 {3,5,6,7}
19 {1,2,10,14}
19 {1,4,7,14}
19 {2,4,5,16}
19 {2,4,8,10}

Table 3: Solutions of equation (6) for t ∈ {3, 4} and r ≤ 20.

and after completing the squares it becomes

(2r + 1− 2c2)
2 + (2r + 1− 2c3)

2 + (2r + 1− 2c4)
2 =

16r2 − 36r + 29

3
. (7)

Set further

c2 = 2,

and denote

p = 2r + 1− 2c3, q = 2r + 1− 2c4. (8)

Equation (7) thus becomes

p2 + q2 =
4r2 + 2

3
. (9)

Finally set

p = r ⇔ c3 =
r + 1

2
. (10)

We will see in a moment that r will be odd, so that c3 above is an integer. Equation (9)

now simplifies to

r2 − 3q2 = −2, (11)

which is a particular case of Legendre’s equation [32]. Legendre considered the equation

r2 − dq2 = ±2

in relation to the Pell’s equation as it has smaller fundamental solutions. He showed that

for all primes of the form d = 4k + 3 one case of the above equation has a solution: if

d = 8m + 3 then r2 − dq2 = −2 is solvable, while if d = 8m + 7 then r2 − dq2 = 2 is

solvable.
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In our particular case d = 3, the fundamental solution of (11) is

r0 = 1, q0 = 1,

while further solutions for k ≥ 1 may be obtained as

rk + qk
√

3 =
(r0 + q0

√
3)2k+1

2k
=

(1 +
√

3)2k+1

2k
. (12)

To see why rk and qk as defined above are solutions of (11), note that for the conjugate

surd we must have

rk − qk
√

3 =
(r0 − q0

√
3)2k+1

2k
=

(1−
√

3)2k+1

2k
,

so that

r2k − 3q2k = (rk + qk
√

3)(rk − qk
√

3) =
(1 +

√
3)2k+1(1−

√
3)2k+1

22k
=

(−2)2k+1

22k
= −2.

From (12) we obtain

rk+1 + qk+1

√
3 =

(1 +
√

3)2k+3

2k+1
= (rk + qk

√
3)

(1 +
√

3)2

2
,

which yields the recurrence relation

rk+1 = 2rk + 3qk, (13)

qk+1 = rk + 2qk.

Since the fundamental solution (r0, q0) = (1, 1) consists of two odd numbers, we see by

induction that all further solutions (rk, qk) will consist of odd numbers as well, so that c3

and c4 in (8) and (10) above will be integers. Parameters of the first few admissible pairs

produced in this way are given in Table 4.

Now we are in the position to disprove part (b) of Conjecture 1. Namely, it is evident

from (13) that the sequence rk tends to infinity with k →∞. Taking into account that the

quartic quipu obtained from the admissible pair that corresponds to the solution (rk, qk)

has 2rk vertices of degree four, we see that the following theorem holds.

Theorem 1 For each real number c there exists a tree Q that has more than c vertices

of degree four and satisfies W (L2(Q)) = W (Q).
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r q c1 c2 c3 c4

5 3 1 2 3 4
19 11 1 2 10 14
71 41 1 2 36 51

265 153 1 2 133 189
989 571 1 2 495 704

3 691 2 131 1 2 1 846 2 626
13 775 7 953 1 2 6 888 9 799
51 409 29 681 1 2 25 705 36 569

191 861 110 771 1 2 95 931 136 476
716 035 413 403 1 2 358 018 509 334

Table 4: Parameters of the first ten admissible pairs obtained from the Legendre’s equa-
tion.

3 Trees in T with vertices of degree exceeding six

Here we present examples of trees T ∈ S and having vertices of degree larger than

six, which disproves part (a) of Conjecture 1. Examples are found in a class of trees

constructed similarly to quipus, by attaching cords to internal vertices of the main string.

The difference is that the vertices on the main string may now have different numbers of

cords attached to them. Such trees can be described by the sequence of cord lengths in

linear order as they appear along the main string, with the convention that the lengths of

multiple cords attached to the same main string vertex are grouped together in a pair of

parentheses. We managed to find trees T7, T8, T9 ∈ S which contain vertices of degrees 7,

8 and 9, respectively. Parameters and representations of these trees are listed in Table 5,

while the tree T7 is further illustrated in Figure 2.

Tree Order W (T ) Representation

T7 603 9 586 262 (51, 54, 57, (51, 51, 53, 55, 57), 57, 53, 55)

T8 1 111 38 502 856 (62, 61, 62, 60, 61, 61, (60, 60, 60, 61, 62, 62), 60, 62, 60, 60, 62, 60)

T9 2 141 189 643 300 (75, 78, 78, 75, 80, 75, 78, 75, 79, 81, (75, 77, 79, 81, 81, 82, 82),
76, 82, 79, 78, 81, 76, 81, 81, 77, 76)

Table 5: The trees T7, T8, T9 ∈ S with maximum degree exceeding 6.
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51 54 57 57 53 55

51

51 53 55
57

Figure 2: The tree T7. The number next to a cord indicates its length.

4 Conclusion

It can be observed from the findings that we presented in [31] and in this paper that

there are many quipu-like trees T that satisfy the equation W (L2(T )) = W (T ). Such

admissible quipu-like trees remain plentiful even if reasonable further assumptions on

their structure are made. In [31] we presented an infinite family of admissible quipus

that contains trees with arbitrarily large number of vertices of degree three and trees

with arbitrarily large number of pendent paths of arbitrarily large length. These findings

positively answered a question of Dobrynin and Mel’nikov [27] and disproved a conjecture

of Knor and Škrekovski [30]. Here we presented an infinite family of quartic quipus that

contains trees with arbitrarily large number of vertices of degree four, as well as admissible

quipu-like trees with vertices of degree exceeding six, thus disproving a conjecture of Knor,

Škrekovski and Tepeh [18]. Experience from this study suggests that it is very likely that

there exist admissible quipu-like trees with arbitrarily large vertex degrees, which we leave

as a topic for further research. Moreover, abundance of solutions of W (L2(T )) = W (T )

among quipu-like trees provides certain ground to believe that the second Knor-Škrekovski

conjecture from [30] is correct, which claims that for each solution T of W (L2(T )) = W (T )

there exist infinitely many other solutions that are homeomorphic to T .

Acknowledgment : The authors are grateful to the anonymous referees for their consider-

ation of this manuscript and their kind remarks.
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[26] M. Knor, P. Potočnik, R. Škrekovski, Wiener index of iterated line graphs homeo-

morphic to the claw K1,3, Ars Math. Contemp. 6 (2013) 211–219.

[27] A. A. Dobrynin, L. S. Mel’nikov, Trees and their quadratic line graphs having the

same Wiener index, MATCH Commun. Math. Comput. Chem. 50 (2004) 154–164.

[28] A. A. Dobrynin, L. S. Mel’nikov, Some results on the Wiener index of iterated line

graphs, El. Notes Discr. Math. 22 (2005) 460–475.

-743-



[29] A. A. Dobrynin, L. S. Mel’nikov, Wiener index of generalized stars and their

quadratic line graphs, Discuss. Math. Graph Theory 26 (2006) 161–175.
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