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Abstract

We use recently obtained lower bounds on the independence number of fullerene

graphs to settle in affirmative a conjecture of the Graffiti software about the rela-

tionship between the independence number and the face independence number of a

fullerene graph. We also consider another Graffiti conjecture, concerned with the

relationship of the independence number and the radius of a fullerene graph, and

show that it is not valid.

1 Introduction

The main goal of this note is to settle two conjectures of the Graffiti software about

fullerene graphs. One of them, concerned with the independence numbers of fullerenes

and their duals, was already attacked and partially solved by Fajtlowicz some twelve years

ago. We are not aware of any partial results about the other one, relating the independence

number of a fullerene to its radius. In both cases, the progress was made possible by some

recently established lower bounds on the independence number of fullerene graphs [11]

that follow from a result about their odd cycle transversals.

We start by providing some context on the considered conjectures. They were made

by Graffiti, a conjecture-making software designed some thirty years ago by S. Fajtlow-

icz [8] and subsequently developed by him and some of his former collaborators. It evolved
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through several versions, most of them with colorful names such as Minuteman [9], Dal-

matian and Pony Express [10]; together they produced over a thousand of non-trivial

conjectures and inspired tens, by now maybe even hundreds, of research papers. Some of

the conjectures are still unsolved. We encourage the reader to consult a survey paper by

E. DeLaVina [4] and references therein for more on the history of Graffiti project and for

pointers to various lists of conjectures. For our purpose, the most interesting are the ones

concerned with fullerene graphs generated by the Minuteman version. Several of them

have been proved or disproved by various authors [5,7,15,20], and in this paper we settle

two more.

2 Definitions, conjectures, and preliminary results

In this section we define the basic terms and state relevant conjectures. For any general

graph-theoretic terms not defined here we refer the reader to any of standard textbooks

or monographs, such as, e. g., [17] or [19]. For more context and background on fullerene

graphs the reader might wish to consult the standard reference by Fowler and Manolopou-

los [14]

A fullerene graph is a planar, 3-regular and 3-connected graph that has only pen-

tagonal and hexagonal faces. Such graphs on n vertices exist for all even n ≥ 24 and for

n = 20 [16].

An independent set in a graph G is a set I of vertices of G such that no two vertices

from I are adjacent. The cardinality of any largest independent set of G is called the

independence number of G and denoted by α(G).

For a planar graph G we denote its dual by G∗. If two faces of a fullerene graph G

intersect, they intersect in a whole edge. Hence an independent set in G∗ corresponds

to a set of disjoint faces in G. The independence number of G∗ is then called the face

independence number of G and denoted by α∗(G).

The first conjecture we consider in this paper is concerned with the relationship be-

tween the independence number and the face independent number of a fullerene graph.

In the Fajtlowicz’s original formulation it reads as follows.

Conjecture 1005

Let F be a fullerene with independence a and maximum number of disjoint faces b. Then

2b ≤ a.
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It appeared at the end of a list of conjectures produced by the Pony Express version

[10], almost exclusively concerned with benzenoid graphs. An alternative formulation is

more compact.

Conjecture 1005

Let G be a fullerene graph. Then α(G) ≥ 2α∗(G).

The other conjecture relates the independence number of a fullerene to one of its

distance-based invariants, namely to its radius. For vertices u, v of a graph G, their

distance d(u, v) is defined as the number of edges in any shortest path in G connecting

u and v. For a fixed u, the maximum value of d(u, v) over all vertices v is called the

eccentricity of u. The maximum eccentricity over all vertices in G is the diameter of

G, denoted by diam(G). The radius of G, denoted by rad(G), is the minimum value of

the eccentricity over all vertices of G. Obviously, rad(G) ≤ diam(G) ≤ 2 rad(G).

For some recent results on distance-related properties of fullerene graphs we refer the

reader to the series of papers by Andova et al. [1–3] and by one of the present authors [6].

Conjecture 911

Let G be a fullerene graph on n vertices. Then

α(G) ≥ rad(G) log
(n

2
− 1
)
.

We close this section by quoting some results that will enable us to settle the above

conjectures. The first one is a lower bound on the independence number of fullerene

graphs.

Theorem A ( [11])

Let G be a fullerene graph on n vertices. Then α(G) ≥ n
2
−
√

3n
5

. The equality is achieved

if and only if G is an icosahedral fullerene.

Next result is a general upper bound on the independence number of a planar graph

with prescribed minimum degree.

Theorem B ( [19], p. 19)

Let G be a connected planar graph on n vertices with minimum degree 5. Then any

largest independent set in G has less than 2n
5

vertices.

Finally, we will need an upper bound on the diameter of fullerene graphs.

Theorem C ( [1])

Let G be a fullerene graph on n vertices. Then diam(G) ≤ n
6

+ 5
2
, unless G is a narrow
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nanotube capped on both ends by hemidodecahedral caps. If G is such nanotube, then

G has 10k vertices and diam(G) ≤ n
5
− 1 for k ≥ 5.

(For the remaining cases of short nanotubes, the upper bound is n
5

+ 1 for k = 2 (i.e.,

for the dodecahedron) and n
5

for k = 3, 4.)

3 Main results

We first treat Conjecture 1005. As mentioned in the introduction, it was partially proved

by Fajtlowicz in [10]. He was able to show that it is true for all fullerenes with at least

96 vertices. He relied on the lower bound on the independence number of triangle-free

cubic graphs α(G) ≥ 3
8
n that was conjectured by Albertson, Bollobás and Tucker and

subsequently proved by Heckman and Thomas [18].

Theorem 1

Let G be a fullerene graph. Then α(G) ≥ 2α∗(G).

Proof

We follow the same approach as Fajtlowicz, but use the lower bound of Theorem A

instead of the 3/8 bound of Heckman and Thomas. Fajtlowicz observed that the maximum

number of disjoint faces D in a fullerene is at most n+k
6

, where k is the number of pentagons

among those faces. Our claim will follow if we prove a stronger inequality, n
2
−
√

3n
5
≥ 2n+k

6
.

Since k cannot exceed 12, this inequality reduces to n
6
−
√

3n
5
≥ 4. This is equivalent

to 5n2 − 348n + 2880 ≥ 0, and this is satisfied for n ≥ 60. Hence, we have managed to

extend the range of validity of Conjecture 1005 down to n = 60.

As the next step, we notice that for n < 60 a fullerene cannot have 12 disjoint pen-

tagons, since the smallest IPR isomer has 60 vertices. Also, the only fullerene with

icosahedral symmetry on less than 60 vertices is the dodecahedron. Hence, we can re-

place the left hand side by its ceiling and decrease the right hand side to 11
3

. The resulting

inequality
⌈
n
6
−
√

3n
5

⌉
≥ 11

3
is valid for all n > 50, and this extends the validity of the

conjecture down to n = 52.

The conjecture is obviously valid for the dodecahedron, i.e., for n = 20 case. This

leaves us with the range 24 ≤ n ≤ 50 in which the validity of Conjecture 1005 is not

yet established. In reference [12] one can find several tables containing distributions of

independence numbers for all fullerene isomers on at most 120 vertices. We have compared

the reported minimum values of independence numbers αmin(Gn) with upper bounds bn
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from Theorem B for all fullerene isomers on 24 ≤ n ≤ 50 vertices. The results appear in

n αmin(Gn) n∗ bn α∗
max(Gn)

24 9 14 5 4

26 11 15 6 4

28 11 16 6 4

30 12 17 6 5

32 13 18 7 6

34 14 19 7 6

36 15 20 7 6

38 16 21 8 6

40 16 22 8 7

42 18 23 9 7

44 18 24 9 8

46 19 25 9 8

48 20 26 10 8

50 21 27 10 9

Table 1: The smallest value of the independence number of a fullerene on n vertices

αmin(Gn); the number of vertices in a dual graph n∗; the upper bound from Theorem

B bn; the largest value of the face independence number α∗
max(Gn) of a fullerene on n

vertices.

columns 2 and 4, respectively, of Table 1. One can see that αmin(Gn) ≤ 2bn remains valid

throughout the range with only two exceptions: n = 28 and n = 32. The exceptional

cases appear in the table in boldface font. In order to settle those two cases, we have

computed the face independence numbers for both isomers on 28 vertices and for all six

isomers on 32 vertices. We have found that both isomers on 28 vertices have α∗(G) = 4;

for C32, we found that five out of six isomers have the face independence number equal to

five, while the remaining one has α∗(G) = 6. In all cases, the maximum computed face

independence number is less than one half of the minimum independence number, and

hence Conjecture 1005 is established for all fullerene graphs.

We have also computed face independence numbers for all fullerene graphs on 24 ≤

n ≤ 50 isomers. Their maximum values for given n are reported in the fifth column of

Table 1.

Let us now look at Conjecture 911.
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Theorem 2

Conjecture 911 is false for large enough n.

Proof

We look at narrow nanotubes Gn on n = 10k vertices. As mentioned in Theorem C, their

diameter is equal to n
5
− 1. It is clear from their structure that their radius is roughly

one-half of the diameter. Hence, rad(Gn) ∼ n
10

. On the other hand, the independence

number of Gn is equal to n
2
− 2. It is clear now that the right hand side of Conjecture

911 grows superlinearly and that it will exceed the linear growth of the left hand side for

large enough n; it suffices to take n ∼ 2 · 105. Hence, the Conjecture is false for very long

nanotubes.

To be fair to Conjecture 911, one should notice that it remains valid for infinite classes

of fullerenes. For example, for icosahedral fullerenes their diameter (and hence also radius)

grows as the square root of the number of vertices, while the independence number grows

linearly, with a downward correction of the order of
√
n.

4 Conclusion

We have answered some open questions and conjectures concerned with independence

properties of fullerene graphs. In particular, we have shown that the independence number

of a fullerene graph is at least twice as big as its face independence number. Further, we

have found a class of counterexamples to a conjecture relating the independence number

of a fullerene and its radius. We have shown that for very long narrow nanotubes, both

their radius and their independence number grow linearly with the number of vertices.

At the time of writing of this paper several other Graffiti conjectures about indepen-

dence and distance-related properties of fullerenes are still open. We mention here two

that are quite similar to the ones treated here.

Conjecture 908 α(G) ≤ rad(G)2.

Conjecture 909 α(G) ≤ rad(G)`(G), where `(G) denotes the average distance in G.

It can be shown that Conjecture 908 is valid for two classes of fullerenes, the narrow

nanotubes and the icosahedral isomers. The first class is known to have the largest

diameter, while the second one is conjectured [2] to have the smallest diameter among all

isomers on the same number of vertices. The same is valid for Conjecture 909. Hence,

there are good chances that both are true. The validity of both conjectures can be also
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shown for nanotubical non-classical fullerenes.

We also mention here Conjecture 843, claiming that the independence number of a

fullerene graph on n vertices is greater or equal to n
2
− 8. At first glance it seems as

a very weak conjecture. However, the constant correction of 8 become worse than the

square-root correction of Theorem A only for n ≥ 108.

It would be an interesting thing to see if some of the conjectures could be established

also for non-classical fullerenes.
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[7] T. Došlić, The smallest eigenvalue of fullerene graphs – closing the gap, MATCH

Commun. Math. Comput. Chem. 70 (2013) 73–78.

[8] S. Fajtlowicz, Written on the Wall (A List of Conjectures of Graffiti), (available from

the author on request).

-729-



[9] S. Fajtlowicz, Fullerene expanders, a list of conjectures of Minuteman, (available

from the author on request).

[10] S. Fajtlowicz, Pony Express, an extension of Written on the Wall on conjectures

about carcinogenic and stable benzenoids, (available from the author on request).
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