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Abstract

An extensively studied quasi-order, defined in terms of matching numbers of graphs, is

investigated further in this paper and applied it to graph complements. Some transforma-

tions on the complements of graphs are presented. As an application, we determine the

maximum and minimum graphs with respect to the quasi-order in the set of the comple-

ments of unicyclic graphs with given order and in the set of unicyclic graphs with given

order and girth, respectively.

1 Introduction

All graphs considered in this paper are undirected and simple (i.e., no multiple edges

and loops). Let G = (V (G), E(G)) be such a graph, with vertex set V (G) and edge

set E(G). A matching of G is a set of pairwise nonadjacent edges in E(G). A k-

matching is a matching consisting of k edges. By m(G, k) we denote the number of

k-matchings of G. It is both consistent and convenient to define m(G, 0) = 1 as well

as m(G, k) = 0 for k < 0 and k > n/2, where n = |V (G)| is the order of G.
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Many results pertaining to the matching numbers could be expressed by means

of the matching polynomial [7], which is usually defined as

α(G, λ) =
∑
k≥0

(−1)k m(G, k)λn−2k .

Details of the theory of matching polynomial can be found in the monographs [5,14].

There is a natural ordering with respect to the matching numbers, introduced in

the 1970s by Gutman [10, 11] and eventually elaborated in cooperation with Zhang

[19, 20, 33–35]. If for two graphs G1 and G2 the relations m(G1, k) ≥ m(G2, k) are

satisfied for all k, then we write G1 ≽ G2 (or G2 ≼ G1). If G1 ≽ G2 and m(G1, k) >

m(G2, k) for some k, then we write G1 ≻ G2 (or G2 ≺ G1). If both G1 ≽ G2 and

G2 ≽ G1 hold, then we write G1 ∼ G2.

As a binary relation on graphs, ≼ is reflexive and transitive, but not anti-symmet-

ric because there are non-isomorphic graphs G1 and G2 such that G1 ∼ G2. Hence

≼ is a quasi-order. Since there exist graphs for which neither G1 ≽ G2 nor G2 ≽ G1

holds, which means that G1 and G2 are incomparable w.r.t. the relations ≽, the

ordering implied by this relation is not complete.

The quasi-order was extensively used since introduced, especially in connection

with the energy of trees [17, 25], for which the relation

E(T ) =
2

π

∫ ∞

0

1

x2
ln

[∑
k≥0

m(T, k) x2k

]
dx . (1)

was shown to hold [10]. The integral on the right hand side of Eq. (1) is increasing

in all the coefficients m(G, k). From Eq. (1), it immediately follows that if T1 ≽ T2

holds for two trees T1 and T2, then E(T1) ≥ E(T2).

Another straightforward application of the quasi-order is for comparing Hosoya

indices. The Hosoya index of a graph G is defined as the total number of matchings in

G, i.e., as Z(G) =
∑

k m(G, k); for details and further references see [29, 36]. At this

point it is worth noting that via the Hosoya index, the matching numbers m(G, k)

have been related also to certain types of entropy [6, 21,24,27].

In 2012, Gutman and Wagner [18] extended the applicability of formula (1) to all

graphs, by conceiving the concept of matching energy , defined as

ME(G) =
2

π

∫ ∞

0

1

x2
ln

[∑
k≥0

m(G, k) x2k

]
dx . (2)
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Evidently, if G is a tree, then ME(G) = E(G). The matching energy is nowadays

the subject of extensive studies, see the survey [15], the recent papers [1–4, 23], and

the references cited therein.

The quasi-order ≽ has been studied for various classes of graphs: acyclic [10,11],

unicyclic [12], bicyclic [12,13], tricyclic [16], and many others [19,28,30,31]. For these

classes the maximal and minimal elements with respect to ≽ could be determined.

In particular, the maximum and minimum elements in the class of connected graphs

with n vertices are the complete graph Kn and the star Sn, respectively [18]. So and

Wang [28] determined the minimum elements among all connected graphs of order n

and size m for n− 1 ≤ m ≤ 2n− 3 and n(n−1)
2

− (n− 2) ≤ m ≤ n(n−1)
2

.

This paper is the continuation of the work of [22], which presents some transfor-

mations on the complements of graphs, one of which concerns grafting two pendent

paths attached at different vertices. The corresponding problem of grafting of two

pendent paths attached at a vertex has been solved in [22]. Combining all these

results enables us to find the maximum and minimum graphs with respect to the

quasi-order in the set of the complements of all unicyclic graphs with given order and

in the set of all unicyclic graphs with given order and girth, respectively.

2 Main results

First a few necessary definitions and auxiliary lemmas are provided. Let u and v be

two distinct vertices of a graph G. A path P = uw1w2 . . . wtv between u and v is

called an internal path from u to v in G if all internal vertices are of degree two, i.e.,

dG(wi) = 2 for i = 1, . . . , t. The length of the path P is t + 1. If the internal path

between u and v is of length one, then u and v are actually adjacent. If v is of degree

one, the internal path uw1w2 · · ·wtv is also said to be a pendent path (attaching at

u) of length t + 1. For a graph G with u a non-isolated vertex, let G(u; a1, . . . , at)

denote the graph obtained from G by attaching t pendent paths of length a1, . . . at

respectively at the vertex u. Especially when a1 = · · · = at = 1, G(u; a1, . . . , at) is

simply written as G(u;∗ t). Similarly, the notation G(u, v; a, b) stands for the graph

obtained from G by attaching two pendent paths of length a and b at u and v,
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respectively.

Recall a standard notation in graph theory. For a graph G and v a vertex of G,

let NG(v) denote the set of vertices in G adjacent to v.

Lemma 1. [5,14] If e = uv is an arbitrary edge of G with end vertices u and v, then

for all non-negative integers k,

m(G, k) = m(G− e, k) +m(G− u− v, k − 1) (3)

m(G, k) = m(G− u, k) +
∑

v∈NG(u)

m(G− u− v, k − 1) . (4)

The following result can be immediately obtained by applying (3) of Lemma 1 on

edges incident with u, whose proof is simple and so omitted.

Lemma 2. If u is an arbitrary vertex of G, then for any vertices v1, . . . , vs adjacent

to u in G and all non-negative integers k, we have

m(G, k) = m(G− uv1 − · · · − uvs, k) +
s∑

i=1

m(G− u− vi, k − 1) .

As usual, by G we denote the complement of the graph G. Let Kp be the complete

graph of order p. By straight observation we can get some simple properties on the

matching numbers of the complement.

Lemma 3. For any simple graph G of order n, with H as its subgraph on t vertices,

the following results hold.

(1) If H is a spanning subgraph of G, then H ≽ G with equality if and only if H = G.

(2) If H is an induced subgraph of G, then H ≼ G with equality if and only if

G = H ∨Kn−t.

Proof. If H is a spanning subgraph of G, then V (H) = V (G) and E(H) ⊆ E(G). It

is easy to see that E(H) ⊇ E(G) and then m(H, k) ≥ m(G, k) for all k. In this case,

m(H, 1) = m(G, 1) if and only if H = G.

If H is an induced subgraph of G, then H is an induced subgraph of G too. Thus

m(H, k) ≤ m(G, k) for all k. If m(H, 1) = m(G, 1), then E(H) = E(G) and so

G = H ∪ (n− t)P1. Therefore G = G = H ∪ (n− t)P1 = H ∨Kn−t.
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In the theory of matching polynomials it has been shown that the matching poly-

nomial of G can be computed from the matching polynomial of the graph G as follows.

Lemma 4. [8] Let G be the complement of the graph G. Then

α(G, λ) =
∑
k≥0

m(G, k)α(Kn−2k, λ) (5)

m(G, k) =
1

(n− 2k)!
√
2π

+∞∫
−∞

α(G, λ)α(Kn−2k, λ) e
−λ2/2 dλ . (6)

Formulas (5) and (6) were discovered by Zaslavsky [32] and Godsil [8], respectively.

Directly from Eq. (5) we get

Lemma 5. [26] Let G be a simple graph with n vertices and G its complement. Then

m(G, k) =
∑
ℓ≥0

(−1)ℓ m(G, ℓ)m(Kn−2ℓ, k − ℓ) . (7)

Some results on the matching numbers of the complement have been obtained in

our earlier paper [22], some of which will be used in the paper and listed here.

Theorem 1. Let u and v be adjacent vertices of a graph G. If G1 (resp., G2) is the

graph obtained from G by inserting t vertices into the edge uv (resp., by joining the

vertex u to an end vertex of a path Pt) then G1 ≽ G2. If in addition dG(u) ≥ 2, then

G1 ≻ G2.

Recall some notations from [22]. For an arbitrary edge e = uv of a graph G with

dG(u) > 1 and dG(v) > 1, let G(u ◦ v) denote the graph obtained from G by deleting

the edge e and then identifying u and v, and adding a pendent edge at the identified

vertex.

Theorem 2. Let G be a simple graph and uv an edge of G such that NG(u)∩NG(v) =

∅, and dG(u), dG(v) > 1. Then G ≻ G(u ◦ v).

For two graphs G and H, the notation G(u, v)H stands for the graph obtained by

identifying the vertex u of G and the vertex v of H.
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Theorem 3. Suppose that G is an arbitrary graph and T is a tree with t+1 vertices,

with u being a vertex of G and v a vertex of T . Then

G(u;∗ t) ≼ G(u, v)T ≼ G(u; t)

where the left–hand side equality holds if and only if T ∼= St+1 with v as its center

whereas the right–hand side equality holds if and only if T ∼= Pt+1 with v as its end

vertex .

Theorem 4. Let G,H ′ and H ′′ be three connected graphs, u, v ∈ V (G), u′ ∈ V (H ′)

and u′′ ∈ V (H ′′), where |V (H ′)|, |V (H ′′)| ≥ 2. Let Gu,v be the graph obtained from

G,H ′ and H ′′ by identifying u with u′, and v with u′′, and Gu (resp., Gv) be obtained

by identifying u (resp., v) with both u′ and u′′. If G− u ∼= G− v, then Gu,v ≻ Gu.

The following result comes from the proof of Theorem 5 in [22] and will be used

several times here.

Lemma 6. Let G be a simple graph and u be a non-isolated vertex of G. Let a, b (a ≤

b) be two positive integers and G(u; a, b) defined as previously. Then m(G(u; a, b), k)−

m(G(u; a− 1, b+1), k) = (−1)a
∑

u′∈NG(u)m(G−u−u′ ∪Pb−a, k− a− 1) and equal to

zero for k = 0, 1, . . . , a.

Edge grafting on two pendent paths attached at a vertex was investigated in our

paper [22]. Now we shall discuss the general case and the case of grafting two pendent

paths at two adjacent vertices will be given first as follows.

Lemma 7. Let G be a simple graph and uv an edge of G with dG(u) > 1 or dG(v) > 1.

Then for any positive integers a and b, we have

G(u, v; a, b) ≺ G(v; a+ b) and G(u, v; a, b) ≺ G(u; a+ b).

Proof. For convenience, let G1 = G(u, v; a, b) and G2 = G(v; a + b), and assume

that G1 (and so G2) has n vertices. If dG(v) = 1, then dG(u) > 1 must hold by

the condition that u and v cannot both be pendent vertices. In this case, note that

G1 = G(u; a, b+ 1) and G2 = G(u; a+ b+ 1), and so G1 ≺ G2 by Theorem 5 in [22].

Now assume that dG(v) ≥ 2. By Lemma 1, we have

m(G1, k) =m((G− uv)(u, v; a, b), k) +m(Pa ∪ Pb ∪G− u− v, k − 1)
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=m(Pa ∪ (G− uv)(v; b), k) +m(Pa−1 ∪ (G− u)(v; b), k − 1)

+m(Pa ∪ Pb ∪G− u− v, k − 1)

m(G2, k) =m(Pa ∪G(v; b), k) +m(Pa−1 ∪G(v, b− 1), k − 1)

=m(Pa ∪ (G− uv)(v; b), k) +m(Pa ∪ Pb ∪G− u− v, k − 1)

+m(Pa−1 ∪G(v; b− 1), k − 1) .

Consequently, we have

m(G1, k)−m(G2, k) = m(Pa−1∪(G−u)(v; b), k−1)−m(Pa−1∪G(v; b−1), k−1) . (8)

Note that a ≥ 1 and b ≥ 1. If b = 1, then in this case G(v; 0) = G. Since m(G1, ℓ) =

m(G2, ℓ) for ℓ = 0, 1, and by Lemma 5 and Eq. (8), we have

m(G1, k)−m(G2, k)

=
∑
ℓ≥0

(−1)ℓ m(Kn−2ℓ, k − ℓ)(m(G1, ℓ)−m(G2, ℓ))

=
∑
ℓ≥1

(−1)ℓ m(Kn−2ℓ, k − ℓ)m(Pa−1 ∪ (G− u)(v; 1), ℓ− 1)

−
∑
ℓ≥1

(−1)ℓ m(Kn−2ℓ, k − ℓ)m(Pa−1 ∪G, ℓ− 1)

=
∑
ℓ′≥0

(−1)ℓ
′+1m(Kn−2−2ℓ′ , k − 1− ℓ′)m(Pa−1 ∪ (G− u)(v; 1), ℓ′)

−
∑
ℓ′≥0

(−1)ℓ
′+1m(Kn−2−2ℓ′ , k − 1− ℓ′)m(Pa−1 ∪G, ℓ′)

= −m(Pa−1 ∪ (G− u)(v; 1), k − 1) +m(Pa−1 ∪G, k − 1) .

Let us observe that (G−u)(v; 1) can be obtained from G by deleting all edges but uv

incident with u in G, so (G − u)(v; 1) is a proper spanning subgraph of G. Thus by

Lemma 3, Pa−1 ∪ (G− u)(v; 1) ≻ Pa−1 ∪G. Thus m(G1, k) ≤ m(G2, k), and strict

inequality holds for at least one k, say k = 2. Thus we are done in this case.

Then we may assume that b ≥ 2 hereafter. By Lemma 1, we have

m(Pa−1 ∪ (G− u)(v; b), k − 1)

= m(Pa−1 ∪ (G− u)(v; b− 1), k − 1) +m(Pa−1 ∪ (G− u)(v; b− 2), k − 2)

= m(Pa−1 ∪ (G− u)(v; b− 1), k − 1) +m(Pa−1 ∪G− u− v ∪ Pb−1, k − 2)

+
∑

v′∈NG(v)\{u}

m(Pa−1 ∪G− u− v − v′ ∪ Pb−2, k − 3) (9)

-675-



where the last equality follows by applying Lemma 2 on Pa−1 ∪ (G − u)(v; b − 2) to

all edges but uv incident with v in G, and

m(Pa−1 ∪G(v; b−1), k − 1)

= m(Pa−1 ∪ (G−u)(v; b−1), k−1)+
∑

u′∈NG(u)

m(Pa−1 ∪ (G−u−u′)(v; b−1), k−2)

= m(Pa−1 ∪ (G− u)(v; b− 1), k − 1) +m(Pa−1 ∪G− u− v ∪ Pb−1, k − 2)

+
∑

u′∈NG(u)\{v}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2) . (10)

Substituting (9) and (10) into Eq. (8), we come to

m(G1, k)−m(G2, k)

=
∑

v′∈NG(v)\{u}

m(Pa−1 ∪G− u− v − v′ ∪ Pb−2, k − 3)

−
∑

u′∈NG(u)\{v}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2) . (11)

Note that m(G1, 0) = 1 = m(G2, 0) obviously and m(G1, 1) = |E(G1)| = |E(G2)| =

m(G2, 1). From the first equality above we know that m(G1, 2) = m(G2, 2) since

m(Pa−1 ∪ (G− u)(v; b), 1) = m(Pa−1 ∪G(v; b− 1), 1). As the convention m(·, k) = 0

for k < 0 is adopted, the above formula is valid for any k. By Lemma 5,

m(G1, k)−m(G2, k)

=
∑
ℓ≥0

(−1)ℓ m(Kn−2ℓ, k − ℓ) (m(G1, ℓ)−m(G2, ℓ))

=
∑
ℓ≥3

(−1)ℓ m(Kn−2ℓ, k − ℓ)
∑

v′∈NG(v)\{u}

m(Pa−1 ∪G− u− v − v′ ∪ Pb−2, ℓ− 3)

−
∑
ℓ≥2

(−1)ℓ m(Kn−2ℓ, k − ℓ)
∑

u′∈NG(u)\{v}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), ℓ− 2)

= −
∑

v′∈NG(v)\{u}

m(Pa−1 ∪G− u− v − v′ ∪ Pb−2, k − 3)

−
∑

u′∈NG(u)\{v}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2) .

Thus we have m(G1, k)−m(G2, k) ≤ 0 and is strictly less than zero for at least one

k, say k = 3. Therefore we proved that G(u, v; a, b) ≺ G(v; a+ b).

By the same way, G(u, v; a, b) ≺ G(u; a+ b) can be proved.
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By a more subtle method, we can get main result on grafting two pendent paths

at two vertices connected by an internal path.

Theorem 5. Let G be a simple graph and u, v be its two vertices with dG(u) > 1

or dG(v) > 1. If there exists an internal path between u and v, then for all positive

integers a, b we have

G(u, v; a, b) ≺ G(u; a+ b), if a ≥ 2

and

G(u, v; a, b) ≺ G(v; a+ b), if b ≥ 2 .

Proof. For convenience, let G1 = G(u, v; a, b) and G2 = G(v; a+ b), and assume that

G1 (and so G2) has n vertices. By the same reason as in the proof of Lemma 7, we

can always assume that dG(u) > 1 and dG(v) > 1. Suppose the shortest internal path

between u and v is of length t. Choose a shortest internal path P between u and v,

say P = uw1w2 · · ·wtv. Assume the two pendent paths in G(u, v; a, b) attached at u

and v are uu1 · · ·ua and vv1 · · · vb respectively, and the pendent path in G(v; a + b)

attached at v is vv1 · · · va+b.

If t = 1, the conclusion follows from Lemma 7.

Now assume that t > 1. By Lemma 1, we have

m(G1 + uv, k) =m(G1, k) +m(Pa ∪ Pb ∪G− u− v, k − 1)

m(G2 + uv, k) =m(G2, k) +m(Pa+b ∪G− u− v, k − 1)

=m(G2, k) +m(Pa ∪ Pb ∪G− u− v, k − 1)

+m(Pa−1 ∪ Pb−1 ∪G− u− v, k − 2) .

By Eq. (11) in the proof of Lemma 7,

m(G1 + uv, k)−m(G2 + uv, k)

=
∑

v′∈NG(v)

m(Pa−1 ∪G− u− v − v′ ∪ Pb−2, k − 3)

−
∑

u′∈NG(u)

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2) .
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Consequently, we have

m(G1, k)−m(G2, k)

= m(G1 + uv, k)−m(G2 + uv, k) +m(Pa−1 ∪ Pb−1 ∪G− u− v, k − 2)

=
∑

v′∈NG(v)

m(Pa−1 ∪G− u− v − v′ ∪ Pb−2, k − 3)

−
∑

u′∈NG(u)

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2)

+m(Pa−1 ∪ Pb−1 ∪G− u− v, k − 2)

= m(Pa−1 ∪ (G− u)(v; b− 2), k − 2)

−
∑

u′∈NG(u)

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2) (12)

where the last equality follows by observing

m(Pa−1 ∪ (G− u)(v; b− 2), k − 2)

=
∑

v′∈NG(v)

m(Pa−1 ∪G− u− v − v′ ∪ Pb−2, k − 3)

+m(Pa−1 ∪ Pb−1 ∪G− u− v, k − 2)

which can be obtained by applying Lemma 2 on Pa−1 ∪ (G− u)(v; b− 2) to all edges

incident with v in G.

Now we distinguish it in two cases according to the values of t and b.

Case 1. t ≤ b− 1. Eq. (12) continues as

m(G1, k)−m(G2, k)

= m(Pa−1 ∪ (G− u)(v; b− 2), k − 2)−m(Pa−1 ∪ (G− u− w1)(v; b− 1), k − 2)

−
∑

u′∈NG(u)\{w1}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2) .

For convenience, let Ĝ = (G − P \ {v}) ∪ Pa−1. Then we observe that Pa−1 ∪ (G −

u)(v; b− 2) ∼= Ĝ(v; t, b− 2) and Pa−1 ∪ (G− u− w1)(v; b− 1) ∼= Ĝ(v; t− 1, b− 1). If

t ≤ b− 2, then by Lemma 6, we have

m(Ĝ(v; t, b− 2), k − 2)−m(Ĝ(v; t− 1, b− 1), k − 2)

= (−1)t
∑

v′∈NĜ(v)

m(Ĝ− v − v′ ∪ Pb−t−2, k − t− 3)
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which is equal to zero for any k = 2, . . . , t + 2 and is identically zero for any k if

t = b− 1 because Ĝ(v; t, b− 2) ∼= Ĝ(v; t− 1, b− 1) in this case. Further by Lemma 5,

we have

m(G1, k)−m(G2, k) =
∑
ℓ≥0

(−1)ℓ m(Kn−2ℓ, k − ℓ) (m(G1, ℓ)−m(G2, ℓ))

=
∑
ℓ≥t+3

(−1)ℓ m(Kn−2ℓ, k − ℓ)(−1)t
∑

v′∈NĜ(v)

m(Ĝ− v − v′ ∪ Pb−t−2, ℓ− t− 3)

−
∑
ℓ≥2

(−1)ℓ m(Kn−2ℓ, k − ℓ)
∑

u′∈NG(u)\{w1}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), ℓ− 2)

= −
∑

v′∈NĜ(v)

m(Ĝ− v − v′ ∪ Pb−t−2, k − t− 3)

−
∑

u′∈NG(u)\{w1}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2) .

Thus m(G1, k) − m(G2, k) ≤ 0 and is strictly less than zero at least for k = 2 and

k = t+ 3. Therefore G1 ≺ G2.

Case 2. t ≥ b. Choose an arbitrary vertex u̇ ∈ NG(u) \ {w1}. From Eq. (12), we

have

m(G1, k)−m(G2, k)

= m(Pa−1 ∪ (G− u− u̇)(v; b− 2), k − 2)

+
∑

u̇′∈NG(u̇)\{u}

m(Pa−1 ∪ (G− u− u̇− u̇′)(v; b− 2), k − 3)

−
∑

u′∈NG(u)\{u̇}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2)

−m(Pa−1 ∪ (G− u− u̇)(v; b− 1), k − 2) . (13)

Let us observe that in the above equality the last term m(Pa−1 ∪ (G− u− u̇)(v; b−

1), k − 2) ca be expressed as

m(Pa−1 ∪ (G− u− u̇)(v; b− 1), k − 2)

= m(Pa−1 ∪ (G− u− u̇)(v; b− 2), k − 2) +m(Pa−1 ∪ (G− u− u̇)(v; b− 3), k − 3) .

Since b ≥ 2 and if b = 2, (G − u − u̇)(v;−1) = G − u − u̇ − v can be understood

without confusion. Meanwhile, in the right–side of Eq. (13) the third term can be

expressed as ∑
u′∈NG(u)\{u̇}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2)
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=
∑

u′∈NG(u)\{u̇,w1}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2)

+m(Pa−1 ∪ (G− u− w1)(v; b− 1), k − 2)

=
∑

u′∈NG(u)\{u̇,w1}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2)

+m(Pa−1 ∪ (G− u− w1 − u̇)(v; b− 1), k − 2)

+
∑

u̇′∈NG(u̇)\{u}

m(Pa−1 ∪ (G− u− w1 − u̇− u̇′)(v; b− 1), k − 3) . (14)

Thus the equation (13) continues as

m(G1, k)−m(G2, k)

=
∑

u̇′∈NG(u̇)\{u}

m(Pa−1 ∪ (G− u− u̇− u̇′)(v; b− 2), k − 3)

−
∑

u′∈NG(u)\{u̇,w1}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2)

−m(Pa−1 ∪ (G− u− w1 − u̇)(v; b− 1), k − 2)

−
∑

u̇′∈NG(u̇)\{u}

m(Pa−1 ∪ (G− u− w1 − u̇− u̇′)(v; b− 1), k − 3)

−m(Pa−1 ∪ (G− u− u̇)(v; b− 3), k − 3) .

For convenience, let Gu̇′ = Pa−1 ∪ (G − P \ {v} − u̇ − u̇′) and then we observe that

Pa−1∪(G−u−u̇−u̇′)(v; b−2) = Gu̇′(v; b−2, t) and Pa−1∪(G−u−w1−u̇−u̇′)(v; b−1) =

Gu̇′(v; b− 1, t− 1).

On the one hand, by Lemma 6, we have∑
u̇′∈NG(u̇)\{u}

(m(Gu̇′(v; b− 2, t), k − 3)−m(Gu̇′(v; b− 1, t− 1), k − 3))

=
∑

u̇′∈NG(u̇)\{u}

(−1)b
∑

v′∈NGu̇′
(v)

m(Gu̇′ − v − v′ ∪ Pt−b, k − b− 3) .

On the other hand, if b ≥ 3 and then t ≥ 3 (since t ≥ b), we have

m(Pa−1 ∪ (G− u− u̇)(v; b− 3), k − 3)

= m(Pa−1 ∪ (G− u− u̇− w1)(v; b− 3), k − 3)

+m(Pa−1 ∪ (G− u− u̇− w1 − w2)(v; b− 3), k − 4)

= m(Pa−1 ∪ (G− u− u̇− w1 − w2)(v; b− 3), k − 3)

+m(Pa−1 ∪ (G− u− u̇− w1 − w2 − w3)(v; b− 3), k − 4)
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+m(Pa−1 ∪ (G− u− u̇− w1 − w2)(v; b− 3), k − 4)

and then

m(Pa−1 ∪ (G− u− w1 − u̇)(v; b− 1), k − 2)

+m(Pa−1 ∪ (G− u− u̇− w1 − w2)(v; b− 3), k − 3)

= m(Pa−1 ∪ (G− u− w1 − u̇)(v; b− 1) + w2vb−2, k − 2)

which follows by applying Lemma 1 to the edge w2vb−2 in

Pa−1 ∪ (G− u− w1 − u̇)(v; b− 1) + w2vb−2.

If b = 2, we have

m(Pa−1 ∪ (G− u− w1 − u̇)(v; 1), k − 2)

+m(Pa−1 ∪ (G− u− u̇− v), k − 3)

= m(Pa−1 ∪ (G− u− w1 − u̇)(v; 1), k − 2)

+m(Pa−1 ∪ (G− u− u̇− v − w1), k − 3)

+m(Pa−1 ∪ (G− u− u̇− v − w1 − w2), k − 4)

= m(Pa−1 ∪ (G− u− w1 − u̇)(v;∗ 2), k − 2)

+m(Pa−1 ∪ (G− u− u̇− v − w1 − w2), k − 4)

where the last equality follows by applying Lemma 1 to one of two pendent edges at

v in Pa−1 ∪ (G− u− w1 − u̇)(v;∗ 2).

Combining all these arguments above, we have if b ≥ 3

m(G1, k)−m(G2, k)

=
∑

u̇′∈NG(u̇)\{u}

(−1)b
∑

v′∈NGu̇′ (v)

m(Gu̇′ − v − v′) ∪ Pt−b, k − b− 3)

−
∑

u′∈NG(u)\{u̇,w1}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2) + Ω (15)

where if b = 2,

Ω =m(Pa−1 ∪ (G− u− w1 − u̇)(v;∗ 2), k − 2)

+m(Pa−1 ∪ (G− u− u̇− v − w1 − w2), k − 4)
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and if b ≥ 3,

Ω = m(Pa−1 ∪ (G− u− w1 − u̇)(v; b− 1) + w2vb−2, k − 2)

+m(Pa−1 ∪ (G− u− u̇− w1 − w2 − w3)(v; b− 3), k − 4)

+m(Pa−1 ∪ (G− u− u̇− w1 − w2)(v; b− 3), k − 4) .

By Lemma 5 and Eq. (15), we have if b ≥ 3

m(G1, k)−m(G2, k)

=
∑
ℓ≥0

(−1)ℓ m(Kn−2ℓ, k − ℓ) (m(G1, ℓ)−m(G2, ℓ))

=
∑
ℓ≥b+3

(−1)ℓ+bm(Kn−2ℓ, k−ℓ)
∑

u̇′∈NG(u̇)\{u}

∑
v′∈NGu̇′

(v)

m(Gu̇′−v−v′ ∪ Pt−b, ℓ−b−3)

−
∑
ℓ≥2

(−1)ℓ m(Kn−2ℓ, k − ℓ)
∑

u′∈NG(u)\{u̇,w1}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), ℓ− 2)

−
∑
ℓ≥2

(−1)ℓ m(Kn−2ℓ, k − ℓ)m(P1 ∪ Pa−1 ∪ (G− u− w1 − u̇)(v; b− 1)

+ w2vb−2, k − 2), ℓ− 2)−
∑
ℓ≥4

(−1)ℓ m(Kn−2ℓ, k − ℓ)·

·m(P1 ∪ Pa−1 ∪ (G− u− u̇− w1 − w2 − w3)(v; b− 3), k − 4), ℓ− 4)

−
∑
ℓ≥4

(−1)ℓ m(Kn−2ℓ, k−ℓ)m(Pa−1 ∪ (G−u−u̇−w1−w2)(v; b−3), k−4), ℓ−4)

= −
∑

u̇′∈NG(u̇)\{u}

∑
v′∈NGu̇′

(v)

m(Gu̇′ − v − v′ ∪ Pt−b, k − b− 3)

−
∑

u′∈NG(u)\{u̇,w1}

m(Pa−1 ∪ (G− u− u′)(v; b− 1), k − 2)

−m(P1 ∪ Pa−1 ∪ (G− u− w1 − u̇)(v; b− 1) + w2vb−2, k − 2)

−m(P1 ∪ Pa−1 ∪ (G− u− u̇− w1 − w2 − w3)(v; b− 3), k − 4)

−m(Pa−1 ∪ (G− u− u̇− w1 − w2)(v; b− 3), k − 4)

where P1 is added in two places of the third and fourth terms because in this situation

the order of P1 ∪ Pa−1 ∪ (G − u − w1 − u̇)(v; b − 1) + w2vb−2, k − 2) is equal to

n− 2ℓ+2(ℓ− 2) = n− 4 and that of P1 ∪Pa−1 ∪ (G− u− u̇−w1 −w2 −w3)(v; b− 3)

is equal to n− 2ℓ+ 2(ℓ− 4) = n− 8, and if b = 2

m(G1, k)−m(G2, k)
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=
∑
ℓ≥0

(−1)ℓ m(Kn−2ℓ, k − ℓ) (m(G1, ℓ)−m(G2, ℓ))

=
∑
ℓ≥5

(−1)ℓ m(Kn−2ℓ, k − ℓ)
∑

u̇′∈NG(u̇)\{u}

∑
v′∈NGu̇′

(v)

m(Gu̇′ − v − v′ ∪ Pt−2, ℓ− 5)

−
∑
ℓ≥2

(−1)ℓ m(Kn−2ℓ, k − ℓ)
∑

u′∈NG(u)\{u̇,w1}

m(Pa−1 ∪ (G− u− u′)(v; 1), ℓ− 2)

−
∑
ℓ≥2

(−1)ℓ m(Kn−2ℓ, k − ℓ)m(Pa−1 ∪ (G− u− w1 − u̇)(v;∗ 2), ℓ− 2)

−
∑
ℓ≥4

(−1)ℓ m(Kn−2ℓ, k − ℓ)m(Pa−1 ∪ (G− u− u̇− v − w1 − w2), ℓ− 4)

= −
∑

u̇′∈NG(u̇)\{u}

∑
v′∈NGu̇′

(v)

m(Gu̇′ − v − v′ ∪ Pt−2, k − 5)

−
∑

u′∈NG(u)\{u̇,w1}

m(Pa−1 ∪ (G− u− u′)(v; 1), k − 2)

−m(Pa−1 ∪ (G− u− w1 − u̇)(v;∗ 2), k − 2)

−m(Pa−1 ∪ (G− u− u̇− v − w1 − w2), k − 4) .

From above, it follows immediately that m(G1, k) ≤ m(G2, k) for all k and strict

inequality holds for at least one k, say k = 2. Therefore G1 ≺ G2 is proved.

Similarly, G(u, v; a, b) ≺ G(u; a+ b) can be shown.

Theorem 6. Let G be a simple graph and u, v be its two vertices with dG(v) = 2. If

there exists an internal path between u and v, then for all positive integers a we have

G(u, v; a, 1) ≺ G(v; a+ 1) .

Proof. Choose a shortest internal path P from u to v, say P = uw1 · · ·wtv, and we

can assume t ≥ 1 by Lemma 7. Then as in Case 2 of Theorem 5, choose a vertex

u̇ ∈ NG(u) \ {w1}, by Eq. (13), we have

m(G1, k)−m(G2, k)

= m(Pa−1 ∪G− u− u̇− v, k − 2)

+
∑

u̇′∈NG(u̇)\{u}

m(Pa−1 ∪G− u− u̇− u̇′ − v, k − 3)

−
∑

u′∈NG(u)\{u̇}

m(Pa−1 ∪ (G− u− u′), k − 2)

−m(Pa−1 ∪ (G− u− u̇), k − 2) . (16)
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By Lemma 1,

m(Pa−1 ∪ (G− u− u̇), k − 2) =m(Pa−1 ∪ (G− u− u̇− v), k − 2)

+
∑

v′∈NG(v)

m(Pa−1 ∪ (G− u− u̇− v − v′), k − 3) .

Together with Eq. (14), the Equation (16) continues as

m(G1, k)−m(G2, k)

=
∑

u̇′∈NG(u̇)\{u}

m(Pa−1 ∪G− u− u̇− u̇′ − v, k − 3)

−
∑

u′∈NG(u)\{u̇,w1}

m(Pa−1 ∪ (G− u− u′), k − 2)

−m(Pa−1 ∪ (G− u− w1 − u̇), k − 2)

−
∑

u̇′∈NG(u̇)\{u}

m(Pa−1 ∪ (G− u− w1 − u̇− u̇′), k − 3)

−
∑

v′∈NG(v)

m(Pa−1 ∪ (G− u− u̇− v − v′), k − 3) . (17)

With the condition that dG(v) = 2, we can assume that NG(v) = {wt, v̇}. Add a new

vertex v̂ and join it to v and v̇ in Pa−1 ∪ (G − u − w1 − u̇), and denote by H the

resulting graph obtained from Pa−1 ∪ (G − u − w1 − u̇) with two new edges v̂v and

v̂v̇. Applying Lemma 1 to the vertex v̂ in H, we have

m(H, k − 2) = m(H − v̂, k − 2) +m(H − v̂ − v̇, k − 3) +m(H − v̂ − v, k − 3)

= m(Pa−1 ∪ (G− u− w1 − u̇), k − 2)

+m(Pa−1 ∪ (G− u− u̇− v − v̇), k − 3)

+m(Pa−1 ∪ (G− u− u̇− v − w1), k − 3)

where the last equality follows by observing that H− v̂− v̇ ∼= Pa−1∪(G−u− u̇−v− v̇)

and H − v̂ − v ∼= Pa−1 ∪ (G− u− u̇− v − w1).

Thus the equation (17) continues as

m(G1, k)−m(G2, k)

=
∑

u̇′∈NG(u̇)\{u}

m(Pa−1 ∪G− u− u̇− u̇′ − v, k − 3)

−
∑

u′∈NG(u)\{u̇,w1}

m(Pa−1 ∪ (G− u− u′), k − 2)
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−m(H, k − 2)

−
∑

u̇′∈NG(u̇)\{u}

m(Pa−1 ∪ (G− u− w1 − u̇− u̇′), k − 3) . (18)

By Lemma 5 and Eq. (18), we have

m(G1, k)−m(G2, k)

=
∑
ℓ≥0

(−1)ℓ m(Kn−2ℓ, k − ℓ) (m(G1, ℓ)−m(G2, ℓ))

=
∑
ℓ≥3

(−1)ℓ m(Kn−2ℓ, k − ℓ)
∑

u̇′∈NG(u̇)\{u}

m(Pa−1 ∪G− u− u̇− u̇′ − v, ℓ− 3)

−
∑
ℓ≥2

(−1)ℓ m(Kn−2ℓ, k − ℓ)
∑

u′∈NG(u)\{u̇,w1}

m(Pa−1 ∪ (G− u− u′), ℓ− 2)

−
∑
ℓ≥2

(−1)ℓ m(Kn−2ℓ, k − ℓ)m(H, ℓ− 2)

−
∑
ℓ≥3

(−1)ℓ m(Kn−2ℓ, k − ℓ)
∑

u̇′∈NG(u̇)\{u}

m(Pa−1 ∪ (G− u− w1 − u̇− u̇′), ℓ− 3)

= −
∑

u̇′∈NG(u̇)\{u}

m(Pa−1 ∪G− u− u̇− u̇′ − v, k − 3)

−
∑

u′∈NG(u)\{u̇,w1}

m(Pa−1 ∪ (G− u− u′), k − 2)−m(H, k − 2)

+
∑

u̇′∈NG(u̇)\{u}

m(Pa−1 ∪ (G− u− w1 − u̇− u̇′), k − 3) .

Note that G−u−u̇−u̇′−v can be obtained from G−u−w1−u̇−u̇′ by deleting all edges

except vwt incident with v, then Pa−1∪G−u−u̇−u̇′−v is a proper spanning subgraph

of Pa−1 ∪ (G− u− w1 − u̇− u̇′) and thus by Lemma 3, Pa−1 ∪G− u− u̇− u̇′ − v ≻

Pa−1 ∪ (G− u− w1 − u̇− u̇′). This implies that

m(Pa−1 ∪ (G− u− w1 − u̇− u̇′), k)−m(Pa−1 ∪G− u− u̇− u̇′ − v, k) ≤ 0

for all k. Therefore m(G1, k)−m(G2, k) ≤ 0 and is less than zero for at least one k,

say k = 2 or k = 4.

Theorem 7. Let G be a (not necessarily connected) simple graph and u, v, w ∈ V (G),

where dG(u) = 1, dG(w) ≥ 2, and u and w are adjacent to v in G. If x ∈ V (G) and

x ̸= u, v, w, then G+ xw ≺ G+ xu.
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Proof. By Lemma 1, we have

m(G+ xw, k) = m(G, k) +m(G− x− w − uv, k − 1)

+m(G− x− w − u− v, k − 2)

m(G+ xu, k) = m(G, k) +m(G− x− u− vw, k − 1)

+m(G− x− u− v − w, k − 2) .

Consequently,

m(G+ xw, k)−m(G+ xu, k)

= m(G− x− w − uv, k − 1)−m(G− x− u− vw, k − 1)

= −
∑

w′∈NG(w)\{v}

m(G− x− u− w − w′, k − 2)

where the last equality follows by applying Lemma 1 of deleting the vertex w in

G− x− u− vw.

Further by Lemma 3, we have

m(G+ xw, k)−m(G+ xu, k)

=
∑
ℓ≥0

(−1)ℓ m(Kn−2ℓ, k − ℓ)(m(G+ xw, ℓ)−m(G+ xu, ℓ))

= −
∑
ℓ≥2

(−1)ℓ m(Kn−2ℓ, k − ℓ)
∑

w′∈NG(w)\{v}

m(G− x− u− w − w′, ℓ− 2)

= −
∑

w′∈NG(w)\{v}

∑
ℓ′≥0

(−1)ℓ
′+2 m(Kn−4−2ℓ′ , k − 2− ℓ′)m(G− x− u− w − w′, ℓ′)

= −
∑

w′∈NG(w)\{v}

m(G− x− u− w − w′, k − 2) .

Therefore G+ xu ≻ G+ xw and we are done.

3 Applications

Unicyclic graphs are connected graphs with equal number of vertices and edges. Ob-

viously unicyclic graphs have a unique cycle. Denote by Un the set of unicyclic graphs

with n vertices. Denote by Un,g the set of unicyclic graphs with order n and girth g.

C∗
g (r1, r2, . . . , rg) and C

′
g(r1, r2, . . . , rg) stand for the unicyclic graphs obtained from

a cycle Cg = v1v2 . . . vgv1 by attaching ri pendent edges and a pendent path of length
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ri at vi respectively, for i = 1, 2, . . . , g. For convenience, C∗
g (n − g, 0, . . . , 0) and

C
′
g(n− g, 0, . . . , 0) are denoted simply by C∗

g (n− g) and C
′
g(n− g), respectively.

Theorem 8. For any graph G ∈ Un, we have

C∗
3(n− 3) ≼ G ≼ Cn

where the left equality holds if and only if G = C∗
3(n− 3) and the right equality holds

if and only if G = Cn.

Proof. For any G ∈ Un, assume the unique cycle of G is Cg = v1v2 . . . vgv1, and the

attached tree at vi is of order ri + 1, for i = 1, . . . , g, where g + r1 + · · ·+ rg = n. By

Theorem 3, when an attached tree is transformed into a path and a star (centered at

the root), its matching numbers of the complement increase and decrease accordingly,

so we can assume that G is of the form C
′
g(r1, r2, . . . , rg) if G is the maximal graph

and is of the form C∗
g (r1, r2, . . . , rg) if G is the minimal graph.

By Theorem 1, we know that if a nontrivial pendent path in C
′
g(r1, r2, . . . , rg) is

integrated into the cycle, its matching numbers of the complement increase strictly,

and so C ′
g(r1, r2, . . . , rg) ≼ Cn. Since the matching numbers of the complement in-

crease strictly in this process, together with the arguments previously, we conclude

that Cn attains uniquely the maximum matching numbers among all the complements

of unicyclic graphs of order n.

Now if G is the minimal graph, then G is of the form C∗
g (r1, r2, . . . , rg) as pointed

out preciously. By Theorem 2, G ≻ G(vi ◦ vi+1) for any i (1 ≤ i ≤ g, vg+1 = v1) and

so we can assume that G = C∗
3(r

′
1, r

′
2, r

′
3) with r

′
1 + r

′
2 + r

′
3 = n− 3. Let H denote the

graph C∗
3(r

′
1, 0, 0). Then H with r′2 pendent edges at v2 and r′3 pendent edges at v3

is exactly G. Since H − v2 ∼= H − v3, by Theorem 4, we have G ≻ C∗
3(r

′
1, r

′
2 + r

′
3, 0).

Using this transformation once again, we show that C∗
3(n− 3) is the minimum graph

with respect to the quasi-order in the set of the complements of unicyclic graphs on

n vertices.
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Theorem 9. For any graph G ∈ Un,g, we have

C∗
g (n− g) ≼ G ≼ C ′

g(n− g)

where the left equality holds if and only if G = C∗
g (n− g) and the right equality holds

if and only if G = C
′
g(n− g).

Proof. For any graphG ∈ Un,g, assume that the unique cycle ofG is Cg = v1v2 . . . vgv1,

and the attached tree at vi is of order ri+1, for i = 1, . . . , g, where g+ r1+ · · ·+ rg =

n. As in the proof of Theorem 8, we can always assume that G is of the form

C
′
g(r1, r2, . . . , rg) if G is the maximal element and is of the form C∗

g (r1, r2, . . . , rg) if

G is the minimal element by Theorem 3.

By Lemma 1, we have

m(C∗
g (r1, r2, . . . , rg), k)

= m(C∗
g (0, r2, . . . , rg) ∪ r1P1, k) + r1m(C∗

g (0, r2, . . . , rg)− v1 ∪ (r1 − 1)P1, k − 1)

...

= m(Cg ∪ (n− g)P1, k) + r1m(C∗
g (0, r2, . . . , rg)− v1 ∪ (r1 − 1)P1, k − 1)

+ · · ·+ rg−1m(C∗
g (0, 0, . . . , rg)− vg−1 ∪ (r1 + · · ·+ rg−1 − 1)P1, k − 1)

+ rgm(Pg−1 ∪ (n− g − 1)P1, k − 1)

and by the same way

m(C∗
g (n− g), k) =m(Cg ∪ (n− g)P1, k) + (n− g)m(Pg−1 ∪ (n− g − 1)P1, k − 1) .

By Lemma 3, we have

m(C∗
g (r1, r2, . . . , rg), k)

=
∑
ℓ≥0

(−1)ℓ m(Kn−2ℓ, k − ℓ)m(C∗
g (r1, r2, . . . , rg), ℓ)

= m(Cg ∪ (n− g)P1, k)− r1m(C∗
g (0, r2, . . . , rg)− v1 ∪ (r1 − 1)P1, k − 1)

− . . .+ rg−1m(C∗
g (0, 0, . . . , rg)− vg−1 ∪ (r1 + . . .+ rg−1 − 1)P1, k − 1)

− rgm(Pg−1 ∪ (n− g − 1)P1, k − 1)

and

m(C∗
g (n− g), k) =m(Cg ∪ (n− g)P1, k)− (n− g)m(Pg−1 ∪ (n− g − 1)P1, k − 1) .
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Observe that Pg−1 ∪ (n− g − 1)P1 is a spanning subgraph of

C∗
g (0, . . . , 0, ri+1, . . . , rg)− vi∪ (r1+ . . .+ ri− 1)P1 for all i = 1, . . . , g, and is a proper

subgraph if i ̸= g. Then by Lemma 3, for i = 1, . . . , g − 1, we have

Pg−1 ∪ (n− g − 1)P1 ≻ C∗
g (0, . . . , 0, ri+1, . . . , rg)− vi ∪ (r1 + . . .+ ri − 1)P1.

Thus mk(C∗
g (r1, r2, . . . , rg)) ≥ mk(C∗

g (n− g)) and strict inequality holds for some k,

say k = 2. Therefore for any G ∈ Un,g, C∗
g (n− g) ≼ G and equality holds if and only

if G = C∗
g (n− g).

Next the proof of the maximal case is relatively simple due to Theorem 5 and

Theorem 6. First by Theorem 3 we can assume that G = C
′
g(r1, r2, . . . , rg) when G is

the maximal graph. After applying Theorem 5 or Theorem 6 to any two consecutive

pendent paths in G, the resulting graph has larger complement matching numbers

but with the number of pendent paths decreased by one. Finally we come to the

graph with maximum complement matching numbers and only one pendent path,

which is exactly C
′
g(n− g).
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