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Abstract Let I be a summation-type topological index and let G be a graph. The I-

complexity CI(G) of G is introduced as the number of different contributions to I(G) in

its summation formula. The complexity is studied in the case of the connective eccentric

index ξce. For any d ≥ 2 and for any k ≥ 1, a graph G with diam(G) = d and Cξce(G) = k

is constructed. Graphs with Cξce(G) = 1 are studied and infinite families of such graphs

that are not vertex-transitive are constructed. A cut-method theorem for the vertex

eccentricity is also developed.

1 Introduction

Let G be the class of all graphs. A function I : G → R which is invariant under graph

isomorphisms is called a topological index. These indices are omnipresent in chemical

graph theory and have found a variety of applications; see the books [11, 12, 24] and

papers [13, 22] for appealing recent examples.

For a given graph G = (V,E), a topological index I is often of the form

I(G) =
∑
v∈V

f(v) , (1)
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where f(v) is some function of the vertex v, for instance a function of its degree, of its

eccentricity, and/or of its distances. For instance, if d(v) denotes the sum of the distances

from v to all the other vertices, then setting f(v) = d(v)/2, Equation (1) turns into

I(G) = W (G), where W (G) is the celebrated Wiener index of G, see the surveys [7, 8],

recent papers [10,18,21], and references therein.

Let now G = (V,E) be a graph and let I be a topological index of the form (1). Then

we say that vertices u and v of G are in relation ∼I if f(u) = f(v). Clearly, ∼I is an

equivalence relation. Let V/∼I
= {V1, . . . , Vk} be its equivalence classes and let vi ∈ Vi,

i ∈ [k] = {1, . . . , k}, be the representatives of the classes. Then

I(G) =
k∑
i=1

|Vi|f(vi) . (2)

We define |V/∼I
| to be the I-complexity of G and denote it with CI(G). Hence CI : G → N.

The summation in (1) runs over all vertices of G. If instead a topological index is

defined in view of (1) but replacing the vertex set with the edge set of a given graph

(as it is also often the case, e.g. in Szeged-like indices), then we define the I-complexity

analogously.

In the particular case when I = W , the function CW (G) was earlier studied in [1]

under the name Wiener dimension of a graph. In the general framework proposed here

we prefer to use the word “complexity” instead of “dimension” since the latter word has

usually a different, geometric flavour. On the other hand, CI(G) tells how complex is the

computation of I on G.

We proceed as follows. In the next section we introduce concepts and notations needed

in this paper. We also demonstrate that any possible diameter d and any possible positive

integer k, a graph exists with diameter d and ξce-complexity k. In Section 3 graphs with

ξce-complexity equal to 1 are studied with an emphasis on graphs that are not vertex-

transitive. In the final section we prove a cut-method theorem for the vertex eccentricity.

2 Preliminaries and realizability of the ξce-complexity

All graphs considered will be connected. A graph G is vertex-transitive if to any vertices

u and v of G there exists an automorphism φ of G such that φ(u) = v. The Cartesian

product G�H of graphs G and H has vertex set V (G�H) = V (G) × V (H), vertices

(g, h) and (g′, h′) being adjacent if g = g′ and hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G).
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The Cartesian product graph operation is associative, hence we may consider powers of

graphs with respect to it. Powers of K2 are known as hypercubes, the d-tuple power is

denoted with Qd. In other words, the vertex set of Qd consists of all binary vectors of

length d, two such vectors being adjacent if they differ in exactly one coordinate.

The degree of a vertex u of a graph G is denoted with degG(u). The distance dG(u, v)

between vertices u and v of a graph G is the number of edges on a shortest u, v-path. The

eccentricity eccG(u) of a vertex u is max{dG(u, x) : x ∈ V (G)}. If G is clear from the

context we may (and will) omit G as a subscript in the above notations. The radius rad(G)

and the diameter diam(G) are the minimum and the maximum eccentricity of its vertices,

respectively. A subgraph H of a graph G is an isometric subgraph if dH(u, v) = dG(u, v)

holds for any vertices u, v ∈ V (H). Isometric subgraphs of hypercubes are known as

partial cubes. Many chemical graphs are partial cubes as for instance trees and benzenoid

graphs.

The connective eccentricity index of a graph G = (V,E) is defined as

ξce(G) =
∑
v∈V

deg(v)

ecc(v)
.

This index was introduced in [14] as a novel topological descriptor for predicting biological

activity and received considerable attention afterwards, cf. [25–27]. For a comprehensive

list of all eccentricity based topological indices introduced see [19]. We note in passing

that the closely related eccentric connectivity index ξc of a graph G was introduced in [23]

as ξc(G) =
∑

v∈V deg(v)ecc(v), cf. [4, 5, 9].

The unique graphs of diameter 1 are complete graphs. Clearly, Cξce(Kn) = 1 holds for

any n ≥ 1. On the other hand, as soon as the diameter is at least 2, all ξce-complexities

are possible as the next theorem asserts. For its proof we need the following well-known

fact, cf. [15, Proposition 3.1(i)].

Lemma 2.1 If d ≥ 1, then diam(Qd) = d.

Theorem 2.2 For any d ≥ 2 and for any k ≥ 1 there exists a graph G such that

diam(G) = d and Cξce(G) = k.

Proof. For k = 1 and d ≥ 2 any vertex-transitive graph of diameter d does the job. For

instance, diam(C2d) = d and Cξce(C2k) = k.
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Let now k ≥ 2, and let Gk be the graph on the vertex set [k + 1], where ij ∈ E(Gk)

if and only if i + j ≤ k + 2. Note that the vertex 1 of Gk is of degree k = |V (Gk)| − 1.

Hence, since Gk is not a complete graph, it follows that diam(Gk) = 2. Note further that

the degree sequence of Gk is

k, k − 1, . . . ,
k

2
+ 1,

k

2
,
k

2
,
k

2
− 1, . . . , 2, 1

when k is even, and

k, k − 1, . . . ,
k + 1

2
+ 1,

k + 1

2
,
k + 1

2
,
k + 1

2
− 1, . . . , 2, 1

when k is odd. In either of the cases, |{deg(u) : u ∈ V (Gk)}| = k. It now readily follows

(having in mind that diam(Gk) = 2) that Cξce(Gk) = k. This settles the theorem for

diameter d = 2.

Let now d = 2 + d′, where d′ > 0. Set Hk = Gk�Qd′ . Distance Formula [15, Corol-

lary 5.2] combined with Lemma 2.1 immediately implies that diam(Hk) = diam(Gk) +

diam(Qd′) = 2 +d′ = d. If (u, v) is an arbitrary vertex of Hk, then applying Distance For-

mula again and recalling that also the degree is an additive function in Cartesian product

graphs, we get

degHk
(u, v)

eccHk
(u, v)

=
degGk

(u) + degQd′
(v)

eccGk
(u) + eccQd′

(v)
=

degGk
(u) + d′

eccGk
(u) + d′

.

As the latter expression is independent of v, we infer that Cξce(Hk) = Cξce(Gk) = k.

Hence Hk is a graph of diameter d with ξce-complexity k as required.

3 On graphs with ξce-complexity equal 1

In this section we consider the graphs G with Cξce(G) = 1 and demonstrate that their

variety is quite large. The primarily reason why these graphs are interesting is the fol-

lowing.

Proposition 3.1 If Cξce(G) = 1, then ξce(G) = |V (G)| deg(v)/ecc(v), where v is an

arbitrary vertex of G. The conclusion in particular holds for any vertex-transitive graph.

Proof. The first assertion follows immediately from (2). The second fact follows because

graph automorphisms preserve degrees and distances.

In the rest of the section we search for graph G that are not vertex-transitive yet

Cξce(G) = 1 holds. First we observe the following general properties on regular graphs.
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Proposition 3.2 Let G be a regular graph of order at least 3. Then

(i) Cξce(G) = 1 if and only if diam(G) = rad(G).

(ii) If Cξce(G) = 1, then G is 2-connected.

Proof. (i) If rad(G) ≤ t ≤ diam(G), then there exists a vertex x of G with ecc(x) = t [2].

Since G is regular, it follows that Cξce(G) = diam(G)−rad(G)+1 and the assertion follows.

(ii) Suppose on the contrary that G contains a cut-vertex v. Let w be a vertex of

G such that d(v, w) = ecc(v). Let G1 be the component of G − v that contains w and

let x be any neighbor of v that does not lie in G1. (Such a neighbor exists since v is a

cut-vertex.) Then ecc(x) > ecc(v) and since G is regular, Cξce(G) ≥ 2.

As a counterpart to Proposition 3.2(ii) consider the graph G from Fig. 3 which is not

2-connected yet Cξce(G) = 1. Note that deg(v)/ecc(v) = 1 holds for any vertex v of G.

Figure 1: A graph G with Cξce(G) = 1

For a sporadic but interesting example consider the Gray graph, let us denote it

here with Γ. The Gray graph is a cubic graph that is not vertex-transitive (but edge-

transitive) [3]. Moreover, as it can be verified by hand or computer, diam(Γ) = rad(Γ) = 6.

(For additional properties of the Gray graph and its drawings we refer to [20].) Hence

Proposition 3.2(i) implies that Cξce(Γ) = 1. Using this example we can state:

Proposition 3.3 There exists an infinite family of graphs Gk, k ≥ 0, such that Gk is not

vertex-transitive and Cξce(G) = 1.

Proof. By the above we can set G0 = Γ. For k ≥ 1 let Gk = Γ�Qk. Then

• diam(Gk) = diam(Γ) + diam(Qk) = 6 + k,
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• rad(Gk) = rad(Γ) + rad(Qk) = 6 + k, and

• Gk is (3 + k)-regular graph.

Hence using Proposition 3.2(i) again we get that Cξce(Gk) = 1. Finally, since G�H is

vertex-transitive if and only if G and H are vertex-transitive [15, Theorem 6.17], and since

G is not-vertex-transitive, Gk is not vertex-transitive.

Proposition 3.2(i) offers additional possibilities to construct graphs G that are not

vertex-transitive and have Cξce(G) = 1. Here is another construction. Let d ≥ 3 and

let Gd be the join of C = Ck and Qd, where k = 2d − d + 2. (Recall that the join of

(disjoint) graphs G and H is obtained from the disjoint union of G and H by adding all

edges uv, where u ∈ V (G) and v ∈ V (H).) Then Gd is a (2d + 2)-regular graph with

diam(Gd) = rad(Gd) = 2. Hence Cξce(Gd) = 1 by Proposition 3.2(i). That Gd is not

vertex-transitive follows from the fact that a vertex of Gd that lies in Qd does not lie in

an induced cycle of length k = 2d − d + 2. Indeed, an induced cycle of length k of Gd

is either the cycle C or lies completely in Qd, but an induced cycle of Qd is of length at

most 2d−1. For the latter fact, actually for a stronger upper bound on the length of an

induced cycle of a hypercube, see [6].

It seems interesting to consider graphs with the ξce-complexity as large as possible.

Since clearly Cξce(G) ≤ |V (G)| holds, the extremal graphs are those for which Cξce(G) =

|V (G)| holds. In a tree every diametrical vertex is of degree 1, hence there are no such

graphs among trees. On the other hand, Fig. 2 displays an example of a graph G with

Cξce(G) = |V (G)| = 7.

Figure 2: A graph with its ξce-complexity equal to its order

It would be interesting to construct infinite families of graphs {Gn}n→∞ such that

Cξce(Gn) = |V (Gn)| = n.
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4 A cut method for eccentricity

The eccentricity of a vertex is the key ingredient for all our above developments. Hence

we are justified to conclude the paper with the following result that can be understood as

an instance of the cut method, cf. the recent survey [17] as well as an earlier one [16] on

the cut method. More precisely, the next result is an instance of a standard cut method

which means that it applies to partial cubes.

If uv is an edge of a graph G then set Wuv = {x : dG(u, x) < dG(v, x)}. Wvu is defined

analogously. Now all is ready for the following result.

Theorem 4.1 Let u be a vertex of a partial cube G. Then

eccG(u) = 1 + max{eccWvu(v) : uv ∈ E(G)} .

Proof. Let u be a vertex of G and let w be a vertex such that dG(u,w) = eccG(u).

Let P = uv . . . w be a shortest u,w-path. Clearly, v ∈ Wvu and, moreover, v ∈ Wvu

as well. Therefore eccWvu(v) ≥ dWvu(v, w). Since Wvu is an isometric (in fact, even

convex) subgraph, dG(v, w) = dWvu(v, w) and so eccWvu(v) ≥ dG(v, w). Since dG(u,w) =

1 + dG(v, w) it follows that eccWvu(v) ≥ dG(u,w) − 1 = eccG(u) − 1. In other words,

eccG(u) ≤ eccWvu(v) + 1 which in turn implies that

eccG(u) ≤ 1 + max{eccWvu(v) : uv ∈ E(G)} .

On the other hand, let x be a neighbor of u such that eccWxu(x) = max{eccWvu(v) :

uv ∈ E(G)}. Let x′ be a vertex of Wxu such that dWxu(x, x′) = eccWxu(x). Since Wxu is

isometric, we have dG(u, x′) = 1 + dWxu(x, x′) = 1 + eccWxu(x) and hence

eccG(u) ≥ 1 + max{eccWvu(v) : uv ∈ E(G)} .

Combining the two inequalities the result follows.

Another point of view of Theorem 4.1 is that its equation is of dynamic programming

nature. Indeed, the problem of computing the eccentricity of a given vertex in G is reduced

to the smaller problems of computing the eccentricity in the induced subgraphs Wvu.
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Acta Appl. Math. 72 (2002) 247–294.
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[16] S. Klavžar, A bird’s eye view of the cut method and a survey of its applications in

chemical graph theory, MATCH Commun. Math. Comput. Chem. 60 (2008) 255–274.

[17] S. Klavžar, M. J. Nadjafi–Arani, Cut method: Update and recent developments and

equivalence of independent approaches, Curr. Org. Chem. 19 (2015) 348–358.
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