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Abstract

Polyhedral links were introduced as the mathematical model for DNA and protein

polyhedra. Various invariants of polyhedral links were computed to understand

and quantize DNA and protein polyhedra. In this paper we focus on two types of

DNA polyhedral links and one type of protein polyhedral links and four invariants:

Jones polynomial, HOMFLY polynomial, braid index and genus, give a survey of

results in these aspects. We also raise several questions for further study.

1 Introduction

In 1961, Frisch and Wasserman [1] first synthesized a pair of linked rings, known as the

Hopf link in knot theory and as catenanes in chemistry. Twenty eight years later, the first

molecular knot in the form of the trefoil knot was synthesized by Dietrich-Buchecker and

Sauvage [2]. Many molecules in the form of other knots, links and more general spatial

graphs have been synthesized artificially in the laboratory or found in nature by chemists

and biologists in the past more than fifty years.

Small molecules are usually rigid and their structures are topologically simple. Macro-

molecules are relatively flexible and could have more complicated spatial structures, and

in this case topological techniques are applied. For example, in 1982, Walba, Richards,

and Haltiwanger synthesized the first Möbius ladder with three rungs [3] and in 1986
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Simon [4] proved Walba’s conjecture: the Möbius ladder with three or more rungs is

topologically chiral in the sense that rungs are transformed to rungs and sides to sides.

Another manifest is the description and quantization of the action of cellular enzymes on

circular DNA [5,6]. For applications of topology to chemistry as well as molecular biology,

we refer the readers to the survey paper [7] and the monograph [8].

Knot theory is a branch of topology which mainly study knots and links, i.e. cir-

cles, S1’s, embedded in the 3-dimensional space E3, as well as general spatial graphs.

Graph theory is a branch of combinatorics which mainly study abstract graphs, as well

as planar graphs and graphs embedded in surfaces of higher genuses. The two theories

both originated from the Euler’s Königsberg’s Bridges Problem and are two of three main

branches (the third theory is group theory) of mathematics widely used in the study of

mathematical chemistry.

As for the interplay between knot theory and graph theory, there is an old 1-1 corre-

spondence between edge-singed plane graphs and link diagrams, the planar representation

of links in E3. The example in Fig. 1 illustrates it clearly. This correspondence was once

used to construct a table of link diagrams of all links in the late 19th century [9]. In

the late 1980s, the correspondence was used to establish a relation between Jones polyno-

mial [10] in knot theory and Tutte polynomial [11] in graph theory. See [12–14] for details.

In 2000s, the relation was generalized to several relations [15–17] between the Jones poly-

nomial of virtual links [18] and the topological Tutte polynomial of ribbon graphs [19,20].

To unify these relations, the classical geometrical duality for cellularly embedded graphs

(i.e. ribbon graphs) was generalized to partial duality and further twisted duality in [21]

and [22] in recent several years. See the monograph [23] for details.

Fig. 1: A link diagram (thick arcs) and its corresponding edge-signed plane graph (thin
arcs).

Two graphs are called homeomorphic if they both can be obtained from another graph
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by edge subdivisions. In [24], Read and Whitehead studied a unified way to compute the

Tutte polynomial of homeomorphism classes of graphs, reducing it to the chain polynomial

of labelled graphs [25]. In [26], Jin and Zhang generalized it from graphs to signed graphs

so that it can be used to deal with the Jones polynomial of links formed from a graph

by replacing edges by parallel twists. Then they generalized it to two kinds of twists,

parallel or perpendicular, in [27]. Finally, the computational method of the general case:

replacing edges by 2-tangles, was obtained in [28]. Based on [26], Yang and Zhang further

reduced the computation to that of cubic 3-polytopes in [29]. Furthermore, a similar

result was also obtained by Jin and Zhang for the HOMFLY polynomial in [30], which

extends results in [31] obtained by Jaeger and [32] obtained by Traldi greatly.

To our surprise and delight, our above results on general knots found applications

in quantizing many DNA polyhedra synthesized since 1991. The paper is organized as

follows. In Section 2, we first recall some DNA and protein polyhedra and their mathe-

matical model. In Section 3, we give a survey of results on invariants of DNA or protein

polyhedral links and we shall focus on the following four invariants: Jones polynomial,

HOMFLY polynomial, braid index and genus. In the last Section 4, we propose several

problems for further study.

2 Polyhedral links

Polyhedral links are mathematical models introduced in recent ten years or so, which

were used to describe, understand and quantize DNA and protein polyhedra. Now we

recall two types of DNA polyhedra and one type of protein polyhedra, and their corre-

sponding mathematical models.

In 1991, Chen and Seeman gave the first construction of a closed polyhedral object

from DNA, the DNA cube [33]. Since then, DNA truncated octahedron [34], DNA octa-

hedron [35], DNA tetrahedron [36,37], DNA bipyramid [38], DNA dodecahedron [39] were

synthesized one after another. They are all constructed by means of “d-branched curves

and (even) k-twisted double-lines” covering introduced by Hu et al in [40] as shown in

Fig. 2.

Let G be a plane graph. We shall denote by Lk(G) such a polyhedral link by covering

each vertex of degree d by a d-branched curve and each edge by a k-twisted double-line.

When k is even, we call Lk(G) an even polyhedral link [41]. This is a special family of
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Fig. 2: (1) A 3-branched curve, (2) a -4-twisted double-line, (3) a +4-twisted double-line, (4) the planar

representation of the negative DNA cubic link in [33] with k = −4, (5) the planar representation of the

positive DNA cubic link with k = +4, (6) a 4-branched curve and (7) a 5-branched curve.
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polyhedral links based on edge covering introduced in [42] by Jin and Zhang.

In 2000, a topologically linked catenane, which consists of 12 pentameric and 60 hex-

americ rings of covalently joined protein subunits that loop through each other, was

observed in the bacteriophage HK97 capsid [43, 44]. Such a protein catenane can be

modelled mathematically by a polyhedral link obtained by “3-cross curve and untwisted

double-line” covering introduced by Qiu and Zhai in [45] as shown in Fig. 3. The con-

struction was further generalized by Cheng et al in [46] to d-cross curves and branched

alternating closed braids, and by Jin and Zhang in [42] to 2d-tangles to obtain polyhedral

links based on vertex covering.

Fig. 3: (1) A 3-cross curve, (2) an untwisted double-line, (3) the planar representation of the protein

tetrahedral link, (4) a 4-cross curve and (5) a 5-cross curve.

Let G be a plane graph. We shall denote by Lv(G) such a polyhedral link by covering

each vertex of degree d by a d-cross curve and each edge by a untwisted double-line. When

G is d-regular, we call Lv(G) a d-regular polyhedral link for simplicity.
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Since 2008 or so, a type of more complicated DNA polyhedra such as DNA cube (with

4 turns) [47], DNA octahedron [48], DNA icosahedron [49], DNA tetrahedron , dodeca-

hedron and buckyball [50], have been reported. They are all synthesized by covering each

vertex of degree n of the polyhedron by “n-point star motif (tiles)” and through sticky-end

association between the tiles. The “n-point star motif” has an n-fold rotational symmetry

and consists of 2n + 1 single strands: a long repetitive central DNA strand, n identical

medium DNA strands and n identical short DNA strands. The part at the center of the

motif represents n unpaired DNA single-strands whose lengths can be adjusted to change

bending degree of the whole structure. See also [51, 52]. In fact they are called double

crossover DNA polyhedra in [53].

Fig. 4: (1) A 3-point star motif, (2) the planar diagram of the (negative) double crossover
hexahedral link, (3) a 4-point star motif and (4) a 5-point star motif.

Polyhedral links modelling the double crossover DNA polyhedra are called double

crossover polyhedral links. See Fig. 4 for an example. Let G be a plane graph. We shall

denote by Le(G) such a polyhedral link by covering each vertex of degree d by a d-point
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star motif. When G is d-regular, we call Le(G) a the double crossover d-regular polyhedral

link for simplicity. The double crossover polyhedral link is in fact a type of polyhedral

links based on edge covering. Let P be a polyhedral graph. Let DTP be the plane graph

obtained from P by truncating P firstly and then doubling edges originally in P . See Fig.

5. It is not difficult to see that

Le(P ) = L4(DTP ). (1)

（ ）                    （ ）1 2

（ ）3

Fig. 5: (1) A cubic graph P , (2) its truncation and (3) doubling edges to obtain DTP .

One can combine the edge covering and the vertex covering to obtain more complicated

polyhedral links based on mixed edge and vertex covering [42]. For more information on

mathematical models of DNA polyhedra, we also refer the readers to the survey [54].
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3 Invariants

As far as we know by now actual DNA and protein polyhedral links are all alternating.

We use the orientation of the 2 backbone strands of the dsDNA to orient DNA polyhedral

links, thus consider DNA polyhedral links as oriented links with antiparallel orientations.

Under these assumptions k must be even (the corresponding plane graph explained in

the Section 1 must be bipartite [55]), Lk(G) is right-handed if k > 0 and left-handed if

k < 0. See Fig. 6. We shall view protein polyhedral links as unoriented ones. We point

out that four invariants we shall consider in the following are all sensitive to orientations

of links. There are unoriented versions of these four invariants which we shall take when

we consider protein polyhedral links.

+ -

Fig. 6: Right-handed (+) and left-handed crossings (−).

3.1 Jones polynomial

The Jones polynomial [10, 56] was discovered in 1984. It is an invariant of oriented

links up to ambient isotopy. Let L be an oriented link, we shall denote by VL(t) the

Jones polynomial of L. It is a Laurent polynomial in the variable
√
t, determined by the

following three axioms:

(i) Jones polynomial is an ambient isotopic invariant of oriented links.

(ii)

VO(t) = 1, (2)

where O is an unknot.

(iii) (Skein relation)

t−1VL+(t)− tVL−(t) = (
√
t− 1√

t
)VL0(t), (3)

where L+, L− and L0 are link diagrams which are identical (outside the dotted

circles) except near one crossing where they are as in Fig. 7 and are called a skein

triple.
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Fig. 7: L+ (positive), L− (negative) and L0 in Eq. (3).

In 1987, L. H. Kauffman constructed a state model for the Jones polynomial using

his bracket polynomial [12, 13], which provided another way of calculating the Jones

polynomial. Let D be a link diagram of the oriented link L, and < D > be the Kauffman

bracket polynomial in one variable A of D with orientations neglected. Then

VL(t) = (−A3)−w(D) < D > |A=t−1/4 , (4)

where w(D) is the writhe (i.e. the sum of signs of crossings) of D inheriting the orientation

of L.

Note that the writhe of an oriented link diagram is easily calculated. Hence the

main difficulty in computing the Jones polynomial of an oriented link is to compute the

Kauffman bracket polynomial of its corresponding unoriented link diagram. In [57], Jin

and Zhang gave a computational formula of the Kauffman bracket polynomial of Lk(G)

in terms of the Tutte polynomial TG(x, y) of G. For the detail of the Tutte polynomial

we refer the reader to [11,58].

Theorem 3.1 Let G be a connected plane graph, having p vertices and q edges. For any

integer k, even or odd, then

< Lk(G) >= A−qk
[

(−A4)k − 1

−A2 − A−2

]q−p+1

TG((−A4)k,
(−A4)k + A4 + 1 + A−4

(−A4)k − 1
).

This result is obtained by combining the relation [26] between the Kauffman bracket

polynomial and the chain polynomial, and the relation [57] between the chain polyno-

mial and the Tutte polynomial. Note that the Maple software has a function called

TuttePolynomial in the GraphTheory package, which can be used for us to calculate the

Tutte polynomial of small graphs. Jones polynomials of Platonic polyhedral links are

thus obtained in [57]. In [27], Jin and Zhang generalized the relation in [26] to deal with

Kauffman bracket polynomials of rational links (i.e. 2-bridge links).

Based on the 1-1 correspondence between link diagrams and signed plane graphs,

in [14] Kauffman converted the Kauffman bracket polynomial to the Tutte polynomial
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of signed graphs, which are not necessarily planar. Let G be a signed graph. We shall

denote by Q[G] = Q[G](A,A−1,−A2 − A−2) ∈ Z[A] the Tutte polynomial of G.

Let G be a connected labeled graph. We define Ĝ to be the signed graph obtained

from G by replacing each edge a = uw of G by a connected signed graph Ha with two

attached vertices u and w that has only the vertices u and w in common with Ĝ− a. Let

H ′a be the graph obtained from Ha by identifying u and w, the two attached vertices of

Ha. Let d = −A2 − A−2. Let

αa = α[Ha] =
1

d2 − 1
(dQ[Ha]−Q[H ′a]), (5)

βa = β[Ha] =
1

d2 − 1
(dQ[H ′a]−Q[Ha]), (6)

γa = γ[Ha] = 1 + d
α[Ha]

β[Ha]
(7)

In [28], Jin, Zhang, Dong and Tay established a relation between the Tutte polynomial

of Ĝ and the chain polynomial of G as follows. We first recall the definitions of labeled

graphs and chain polynomials.

A labeled graph is a graph whose edges have been labeled with elements of a commuta-

tive ring with unity. The chain polynomial of labeled graphs was introduced by Read and

Whitehead Jr. in [25] for studying the chromatic polynomials of homeomorphic graphs.

The chain polynomial of labeled graphs can also be computed by using the following

recursive rules.

1. If Gl is edgeless, then

Ch[Gl] = 1. (8)

2. Let a be an edge of Gl.

(a) If a is a loop of Gl, then

Ch[Gl] = (a− w)Ch[Gl − a]. (9)

(b) If a is not a loop, then

Ch[Gl] = (a− 1)Ch[Gl − a] + Ch[Gl/a]. (10)

Theorem 3.2 Let G be a connected labeled graph, and Ĝ be the signed graph obtained

from G by replacing the edge a by a connected signed graph Ha for every edge a in G. If
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we replace w by 1− d2, and replace a by γa for every label a in Ch(G), then we have

Q[Ĝ] =

∏
a∈E(G) βa

dq(G)−p(G)+1
Ch[G] , (11)

where p(G) and q(G) are the numbers of vertices and edges of G, respectively.

We point out that the Tutte polynomial of Ĝ was studied by Woodall in [59] and

similar results were also obtained by Diao et al in [60, 61]. In theory Theorem 3.2 solved

the computational problem of Jones polynomials of polyhedral links based on edge cov-

ering, although in practice it is still a difficult task to obtain explicit expressions of Jones

polynomials of large ones. In [42], Jin and Zhang obtained some such explicit expressions

of polyhedral links of rational type and uniform polyhedral links with small edge covering

units.

In [62, 63], Jablan et al computed the Jones polynomial of 3- and 4-pyramidal knots

and 3- and 4-prismatic knots. Cheng et al computed the Jones polynomial of cycle-

crossover polyhedral links in [64]. Other related works on computing the Jones polynomial

include [29,65–67].

3.2 HOMFLY polynomial

The discovery of the Jones polynomial is a very exciting event in the study of invariants

of links which provokes the discovery of the Homfly [68, 69] as well as many types of

polynomials. The HOMFLY polynomial of an oriented link L, denoted by PL(v, z) ∈

Z[v±, z±], can be defined by the three following axioms:

(i) PL(v, z) is invariant under ambient isotopy of L.

(ii)

PO(v, z) = 1, (12)

where O is an unknot.

(iii) (Skein relation)

v−1PL+ − vPL− = zPL0 . (13)

In [40], Hu et al. first computed HOMFLY polynomial of several specific polyhedral

links. Imitating Jaeger’s work [31], Jin and Zhang [41] gave a general method to compute

the HOMFLY polynomial of even polyhedral links. They obtained:
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Theorem 3.3 Let G be a connected plane graph with p vertices and q edges. Then

PL2n(G)(v, z) = (
z

v−1 − v
(1− v2n))q−p+1v2n(p−1)TG(v−2n, 1 + (

v−1 − v
z

)2
v2n

1− v2n
).

By applying Theorem 3.3 and using computer algebra (Maple) techniques, HOMFLY

polynomials of even Platonic polyhedral links are calculated in [41].

Now we give a more general result extending from even twists to the so-called alternat-

ingly oriented 2-tangles. A 2-tangle is a part of a link with 4 free ends obtained by cutting

two segments of curves of the link. A 2-tangle diagram is the planar representation of a

2-tangle. We usually use a square (with letter T inside) with 4 free ends to denote a gen-

eral 2-tangle diagram. An oriented 2-tangle diagram is said to be alternatingly oriented

if the orientation of the diagram induces alternating orientations on the four free ends as

shown in Fig. 8.

T

Fig. 8: Alternatingly oriented 2-tangle diagram.

Let T be a 2-tangle. By joining with simple arcs the two upper (i.e. NW and NE)

and the two lower end-points (i.e. SW and SE) of the 2-tangle T , we obtain a link

called the numerator of T , denoted by Nu(T ). Joining with simple arcs each pair of the

corresponding left end-points (i.e. NW and SW) and right end-points (i.e. NE and SE)

of the 2-tangle T , we obtain a link called the denominator of T , denoted by De(T ), see

Fig. 9.

Let DT (G) be the oriented link diagram obtained from G by covering e with the

alternatingly oriented 2-tangle Te as shown in Fig. 8. Let δ = v−1−v
z

,

w(e) =
δPDe(Te) − PNu(Te)
δPNu(Te) − PDe(Te)

,

µ(e) =
δPDe(Te) − PNu(Te)

δ2 − 1
.
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T T

Fig. 9: The numerator (left) and the denominator (right).

Theorem 3.4 Let G be a connected plane graph, having p vertices and q edges. If we

replace w by 1− δ2, and replace a by 1 + δ
w(a)

for every label a in Ch(G), then

PDT (G)(v, z) = δp−q−1

 ∏
e∈E(G)

µ(e)

Ch[G].

This result is obtained by combining the relation [30] between the HOMFLY poly-

nomial and the Tutte polynomial of weighted graphs, and the relation [70] between the

Tutte polynomial of weighted graphs and the chain polynomial of labelled graphs. In

theory Theorem 3.4 solved the computational problem of HOMFLY polynomials of DNA

polyhedral links. But in practice it is still difficult to obtain explicit expressions of HOM-

FLY polynomials of large DNA polyhedral links. For some specific alternatingly oriented

2-tangles, Liu et al did a series of similar works in this aspect, see [71–74].

Now we discuss the double crossover polyhedral links. The double crossover tetrahedral

link has 96 crossings, applying Theorem 3.4 its HOMFLY polynomial was obtained by

Cheng, Lei and Yang in [75]. However, the double crossover hexahedral link as shown in

Fig. 4 (2) has 192 crossings. Applying Theorem 3.4, we cut it into 12 blocks of type 1 and

24 blocks of type 2 as shown in Fig. 10, then we need to compute the chain polynomials

of a truncated hexahedral graph with two different labels a and b as shown in Fig. 5 (2),

but the truncated hexahedral graph has 36 edges and its chain polynomial is still difficult

to be obtained.

In [76], Li, Deng and Jin give a general method to obtain the chain polynomial of a

truncated cubic (i.e. 3-regular) graph with two different labels via the chain polynomial

of the original cubic graph based on the Y −4 transform theorem of chain polynomials

and another trivial result of chain polynomials on emerging a path into a single edge [77].

See Fig. 11. As a consequence, for example, by computing the chain polynomial of the

labeled hexahedral graph as shown in Fig. 5 (1) they obtain the HOMFLY polynomial of
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Fig. 10: Two types of building blocks of the double crossover hexahedral link.

the double crossover hexahedral link as shown in Fig. 4 (b).

Fig. 11: 4− Y transformation and emerging a path of length 3 into a single edge.

3.3 Braid index

Alexander [78], in 1923, showed that every oriented link can be represented as a closed

n-string braid. The braid index of an oriented link is the minimum number of strings

among all closed braid representatives for the given oriented link. Let L be an oriented

link. We denote by b(L) the braid index of L.

In 1950s, Franks, Williams [79] and Morton [80] gave independently a lower bound

for the braid index and Ohyama in 1993 [81] provided a upper bound for a non-splittable

oriented link L. That is

1

2
spanvPL(v, z) + 1 ≤ b(L) ≤ c(L)

2
+ 1, (14)
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where spanvPL(v, z)=max degv PL(v, z)−min degv PL(v, z) , and max degv PL(v, z) and

min degv PL(v, z) denote, respectively, the maximal degree and minimal degree of v in the

polynomial PL(v, z). In addition, by a result [82] due to Menasco that states that a link

with an alternating diagram will be non-splittable if and only if the diagram is connected,

we know that polyhedral links considered in this survey are all non-splittable. In some

cases the upper and lower bounds coincide and thus we could obtain the braid index.

Using this method, in [83], Cheng et al determined the braid index of even polyhedral

links. In [84], Cheng and Jin further determined the braid index of double crossover

polyhedral links and cycle-crossover polyhedral links. In fact they consider so-called

Jaeger’s links (more general Traldi’s links) which contain, as special cases, even polyhedral

links, double crossover polyhedral links and cycle-crossover polyhedral links.

Let G be a connected plane graph. Let Da(G) be the oriented link diagram constructed

based on G by covering each edge of G with oriented clasp (a) in Fig. 12. Oriented

link diagrams Db(G), Dc(G) and Dd(G) can be defined similarly. Let Da,d(G) be the

oriented link diagram constructed based on G by covering some edges of G with oriented

clasps (a) and other edges with oriented clasps (d) in Fig. 12. Oriented link diagrams

Db,c(G) can be defined similarly. Note that Da,d(G) (resp. Db,c(G)) are both alternating

and contains Jaeger’s link Da(G), Dd(G) (resp. Db(G), Dc(G)) as special cases. More

generally, Da,b,c,d(G) is defined to be the oriented link diagram obtained fromG by covering

each edge with one of four types of clasps (a), (b), (c) and (d). The corresponding link is

called Traldi’s link.

Theorem 3.5 b Let G be a connected bridgeless and loopless plane graph with q(G) edges.

Let La,d(G) (resp. Lb,c(G)) be the oriented link that Da,d(G) (resp. Db,c(G)) represents.

Then

b(La,d(G)) = q(G) + 1,

b(Lb,c(G)) = q(G) + 1.

The family of polyhedral links considered in [73] is a special family of Jaeger’s links.

Theorem 5.4 in [73] coincides with Theorem 3.5. An example of alternating Traldi’s links,

denoted by LTr, is shown in Fig. 13 which is constructed from a theta graph by replacing

edges e1, e2 by oriented clasp (a) and e3 by clasp (c). On the one hand, by using the
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Fig. 12: Replace an edge by four types of oriented clasp.

software KnotGTK, we obtain

PL(v, z) = z−1(−v5 + v3) + z(−v5 + 3v3) + z3v3 (15)

and hence, spanvPL(v, z) = 2. On the other hand, we have c(L) = 4. Therefore,

2 =
spanvPL(v, z)

2
+ 1 ≤ b(L) ≤ c(L)

2
+ 1 = 3. (16)

Another such a family of polyhedral links upper and lower bounds of whose braid index

Fig. 13: An alternating Traldi’s link upper and lower bounds of whose braid index are not equal.

are not equal, can be found in Theorem 4.6 of [74].

The braid index of an unoriented link is defined to be the minimum taken over the

braid indexes of its all orientations. In 1987, Yamada proved that the braid index of a

link equals the minimal number of its Seifert circles [85]. In [86], Cheng, Zhang, Jin and

Qiu introduced a notion of ear decomposition of 3-regular polyhedral links based on the

ear decomposition of the 3-regular polyhedral graphs. By applying Yamada’s result and
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considering a fixed orientation depending on the ear decomposition, they obtained a upper

bound for the braid index of 3-regular polyhedral links. Other works include [87,88].

3.4 Genus

Let L be an oriented link. An orientable, connected surface that has L as its boundary

is called a Seifert surface of L. Given a diagram D of L, using Seifert algorithm [89] in

1935, we can obtain a Seifert surface called projection surface formed by disks and twisted

bands (a kind of ribbon graphs in the Section 1). An example is given as shown in Fig.

14.

Fig. 14: The Listing knot and its projection surface.

The genus of an oriented link is the minimum genus of all Seifert surfaces of the

oriented link. The genus of an unoriented link is the minimum taken over all possible

choices of orientation. We denote the genus of an (oriented or unoriented) link L by g(L).

Let D be an alternating link diagram. Let L be the link D represents. Let s̄max(D)

be the maximal number of circles by applying Seifert’s algorithm [89] to all orientations

of D. According to [90–92], we have:

g(L) =
2− s̄max(D) + c(D)− µ(D)

2
, (17)

where c(D) and µ(D) are the number of crossings and link components of D. In general

it is difficult to obtain the genus of an unoriented alternating link with large number of

-585-



components since we need consider 2µ(L)−1 orientations for the link L with µ(L) compo-

nents.

Let Pn be the n-pyramid. In [93], Cheng et al proved that

g(Lv(Pn)) =

{
n− 2 if3|n,
n− 1 otherwise.

In [94], Liu and Zhang generalized this result from n-pyramid to any 2-connected plane

graph G.

Now we recall the definition of the medial graph. Let G be a plane graph. We denote

by Gm the medial graph of G. If G is trivial (i.e. an isolated vertex having no edges),

Gm is a simple closed curve surrounding the vertex. If G is a connected non-trivial plane

graph, Gm is a 4-regular plane graph obtained by inserting a vertex on every edge of G,

and joining two new vertices by an edge lying in a face of G if the two vertices are on

adjacent edges of the face. If G is not connected, Gm is defined to be the disjoint union

of the medial graphs of its connected components. If G is also an edge-signed, then by

Fig. 15: A plane graph G (colored black) and its medial graph Gm (colored red).

turning vertices of Gm into crossings according to signs of G, we shall obtain the link

diagram corresponding to the edge-signed plane graph G as shown in Fig. 1. Let G be a

plane graph. We shall denote by D(G) the link diagram corresponding to the positive G.

It is not difficult to see as shown in Fig. 16 that

Lv(G) = D(Gm). (18)

A graph is said to be even if each of its vertices has even degree. In particular Gm is

even. A connected graph is called 3-edge connected if it is still connected after removing

any its two edges. In [95], Jin et al proved that
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Fig. 16: The interpretation of the equation Lv(G) = D(Gm).

Theorem 3.6 Let G be a 3-edge connected even plane graph with p(G) vertices. Let

D(G) be the alternating link diagram corresponding to the positive G. Let L(G) be the

unoriented link D(G) represents. Let µ(G) be the number of components of L(G). Then

g(L(G)) =
p(G)− µ(G)

2
. (19)

Theorem 3.6 generalizes Theorem 5.5 in [94] which further contains results of [93] as

a special case. As a corollary of Theorem 3.6, we have.

Corollary 3.7 Let P be a 3-regular polyhedral graph with p(P ) vertices. Then

g(Lv(P )) =
p(P )

2
− 1. (20)

Proof. By Eq. (18) and Theorem 3.6, g(Lv(P )) = g(D(Pm)) = p(Pm)−f(P )
2

= e(P )−f(P )
2

=

p(P )+2
2

= p(P )
2
− 1.

�

In addition, by the Euler formula of DNA polyhedral links in [96], it is easy to see

that the genuses of the two types of DNA polyhedral links in this paper are both zero.

Other related works include [73,74,97–99].

4 Questions and discussions

As the research goes on and deepens, some new challenges appeared for us. As for the three

kinds of polyhedral links in this survey, there are still some problems unsolved yet. We

think that the following two are very fundamental in theory. (1) Efficient ways to compute

knot polynomials of (oriented) 3-regular protein polyhedral links have not been found by

now. Although 3-regular protein polyhedra has high symmetry, its knot polynomials
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are difficult to compute. In general, we need to develop computational method for knot

polynomials of links obtained from a plane graph by replacing a vertex of degree d by

a d-tangle.(2) Theorem 3.4 only dealt with alternatingly oriented 2-tangles, how do we

deal with 2-tangles which can not be alternatingly oriented? For example, odd twists.

The first step to be solved is how to give an orientation of 2-tangles to form a consistent

orientation of the whole link.

There are several concrete problems to be solved technically: (1) The double crossover

polyhedral links usually have large number of crossings. Except tetrahedral and cubic

links, efficient ways to compute their Jones or HOMFLY polynomial have not been found

by now. We have considered double crossover 3-regular polyhedral links. Similar approach

may be developed to deal with double crossover 4-regular polyhedral links, and accordingly

the HOMFLY polynomial of the double crossover octahedral link may be thus obtained.

(2) There are two types of double crossover DNA cube: 4 turns and 4.5 turns. We have

only considered the 4-turn DNA cube and it deserves to compute invariants of 4.5-turn

DNA cube. (3) Determine the braid index of 3-regular protein polyhedral links.

Usually in chemistry invariants are computed as a complexity indicator of DNA and

protein polyhedra. In addition, chirality is very important in stereochemistry, both Jones

polynomial and HOMFLY polynomial are sensitive to chirality of links. In [55], the

chirality of a type of DNA and protein polyhedral links was studied. More deeply chemical

and biological understanding of our computational results deserves further exploring.

Finally, in recent years, more complex DNA surfaces or 3-dimensional structures have

been developed by DNA origami [52], sometimes forming complex chemical links. In the

other hand, more complex topological links, say, Brunnian cube, have been designed as

future possible chemical synthesizing target [100,101]. Topological properties of such links

need be studied.
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Möbius strip, J. Am. Chem. Soc. 104 (1982) 3219–3221.

[4] J. Simon, Topological chirality of certain molecules, Topology 25 (1986) 229–235.

[5] C. Ernst, D. W. Sumners, A calculus for rational tangles: Applications to DNA

recombination, Math. Proc. Cambridge Philos. Soc. 108 (1990) 489–515.

[6] D. W. Sumners, Lifting the curtain : using topology to prob the hidden action of

enzymes, Notices Am. Math. Soc. 42 (1995) 528–537.

[7] E. Flapan, Knots and graphs in chemistry, Chaos, Solitons Fractals 9 (1998) 547–

560.

[8] E. Flapan, When Topology Meets Chemistry , Cambridge Univ. Press, Cambridge,

2000.

[9] K. Murasugi, Knot Theory and Its Applications , Birkhauser, 1996.

[10] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull.

Amer. Math. Soc. 12 (1985) 103–112.

[11] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J.

Math. 6 (1954) 80–91.

[12] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395–

407.

[13] L. H. Kauffman, New invariants in the theory of knots, Amer. Math. Monthly 95

(1988) 195–242.

[14] L. H. Kauffman, A Tutte polynomial for signed graphs, Discr. Appl. Math. 25

(1989) 105–127.

[15] S. Chmutov, I. Pak, The Kauffman bracket of virtual links and the Bollobás–Riordan

polynomial, Moscow Math. J. 7 (2007) 409–418.

[16] S. Chmutov, J. Voltz, Thistlethwaite’s theorem for virtual links, J. Knot Theory

Ramif. 17 (2008) 1189–1198.

[17] O. Dasbach, D. Futer, E. Kalfagianni, X. S. Lin, N. Stoltzfus, The Jones polynomial

and graphs on surfaces, J. Comb. Theory 98B (2008) 384–399.

[18] L. H. Kauffman, Virtual knot theory, Eur. J. Comb. 20 (1999) 663–990.

[19] B. Bollobas, O. Riordan, A polynomial of graphs on orentable sufraces, Proc. London

Math. Soc. 83 (2001) 513–531.

-589-



[20] B. Bollobas, O. Riordan, A polynomial of graphs on surfaces, Math. Ann. 323

(2002) 81–96.

[21] S. Chmutov, Generalized duality for graphs on surfaces and the signed Bollobás-

Riordan polynomial, J. Comb. Theory 99B (2009) 617–638.

[22] J. A. Ellis–Monaghan, I. Moffatt, Twisted duality for embedded graphs, Trans.

Amer. Math. Soc. 364 (2012) 1529–1569.

[23] J. A. Ellis–Monaghan, I. Moffatt, Graphs on Surfaces: Dualities, Polynomials, and

Knots , Springer, 2013.

[24] R. C. Read, E. G. Whitehead, The Tutte polynomial for homeomorphism classes of

graphs, Discr. Math. 243 (2002) 267–272.

[25] R. C. Read, E. G. Whitehead Jr., Chromatic polynomials of homeomorphism classes

of graphs, Discr. Math. 204 (1999) 337–356.

[26] X. Jin, F. Zhang, The Kauffman brackets for equivalence classes of links, Adv. Appl.

Math. 34 (2005) 47–64.

[27] X. Jin, F. Zhang, The replacements of signed graphs and Kauffman brackets of link

families, Adv. Appl. Math. 39 (2007) 155–172.

[28] X. Jin, F. Zhang, F. Dong, E. G. Tay, Zeros of the Jones polynomial are dense in

the complex plane, El. J. Comb. 17 (2010) #R94.

[29] W. Yang, F. Zhang, Links and cubic 3-polytopes, Math. Comp. 77 (2008) 1841–

1857.

[30] X. Jin, F. Zhang, The Homfly and dichromatic polynomials, Proc. Amer. Math.

Soc. 140 (2012) 1459–1472.

[31] F. Jaeger, Tutte polynomials and link polynomials, Proc. Amer. Math. Soc. 103

(1988) 647–654.

[32] L. Traldi, A dichromatic polynomial for weighted graphs and link polynomials, Proc.

Amer. Math. Soc. 106 (1989) 279–286.

[33] J. Chen, N. C. Seeman, Synthesis from DNA of a molecule with the connectivity of

a cube, Nature 350 (1991) 631–633.

[34] Y. Zhang, N. C. Seeman, The construction of a DNA truncated octahedron, J. Am.

Chem. Soc. 116 (1994) 1661–1669.

[35] W. M. Shih, J. D. Quispe, G. F. Joyce, A 1.7-kilobase single–stranded DNA that

folds into a nanoscale octahedron, Nature 427 (2004) 618–621.

[36] R. P. Goodman, R. M. Berry, A. J. Turberfield, The single–step synthesis of a DNA

tetrahedron, Chem. Commun. 12 (2004) 1372–1373.

-590-



[37] R. P. Goodman, I. A. T. Schaap, C. F. Tardin, C. M. Erben, R. M. Berry, C. F.

Schmidt, A. J. Turberfield, Rapid chiral assembly of rigid DNA building blocks for

molecular nanofabrication, Science 310 (2005) 1661–1665.

[38] C. M. Erben, R. P. Goodman, A. J. Turberfield, A self–assembled DNA bipyramid,

J. Am. Chem. Soc. 129 (2007) 6992–6993.

[39] J. Zimmermann, M. P. J. Cebulla, S. Mönninghoff, G. V. Kiedrowski, Self–assembly

of a DNA dodecahedron from 20 trisoligonucleotides, with C3h linkers, Angew.

Chem. Int. Ed. 47 (2008) 3626–3630.

[40] G. Hu, X. D. Zhai, D. Lu, W. Y. Qiu, The architecture of Platonic polyhedral links,

J. Math. Chem. 46 (2009) 592–603.

[41] X. Jin, F. Zhang, The Homfly polynomial for even polyhedral links, MATCH Com-

mun. Math. Comput. Chem. 63 (2010) 657–677.

[42] X. Jin, F. Zhang, The architecture and the Jones polynomial of polyhedral links, J.

Math. Chem. 49 (2011) 2063–2088.

[43] W. R. Wikoff,L. Liljas, R. L. Duda, H. Tsuruta, R. W. Hendrix, J. E. Johnson,

Topologically linked protein rings in the bacteriophage HK97 capsid, Science 289

(2000) 2129–2133.

[44] C. Helgstrand, W. R. Wikoff, R. L. Duda, R. W. Hendrix, J. E. Johnson, L. Liljas,

The refined structure of a protein catenane: The HK97 bacteriophage capsid at 3.44
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