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Abstract

Programs for calculating cycle indices with chirality fittingness (CI-CFs) have
been developed as functions of the GAP (Groups, Algorithms, Programming) sys-
tem in order to reinforce the practical usage of Fujita’s proligand method (S. Fujita,
Combinatorial Enumeration of Graphs, Three-Dimensional Structures, and Chem-
ical Compounds, Mathematical Chemistry Monographs Series, Vol. 15, Kragujevac,
2013). After a mirror-permutation representation of a given point group is defined
to differentiate between rotations and (roto)reflections, a combined-permutation
representation is newly defined as a computer-oriented representation of the point
group. Because such a combined-permutation representation can be regarded as
a permutation group, it is generated from an appropriate generators by using the
Group function of the GAP system. Thereby, the program (CalcCICF) for generat-
ing CI-CFs is developed as a function of the GAP system, which is used to calculate
generating functions for combinatorial enumeration of 3D structures under point
groups. The program (CalcCICF_A) for calculating the number of achiral 3D struc-
tures and the program (CalcCICF_E) for calculating the number of enantiomeric
pairs of chiral 3D structures are also developed. A practical procedure for combi-
natorial enumeration of 3D structures is described on the basis of the GAP system.
The source codes of these programs are stored in a file attached as an appendix.
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1 Introduction

Pólya’s theorem [1, 2, 3] has been widely used in gross enumeration of chemical compounds

as graphs, as summarized in reviews [4, 5, 6, 7, 8] and books [9, 10, 11, 12]. Practical

applications of Pólya’s theorem have been supported by several computer systems (e.g.,

the GAP (Groups, Algorithms, Programming) system [13], the Maple system [14], and the

Mathematica system [15]). For example, the GAP system supports a function (named

CycleIndex) for calculating cycle indices (CIs), which are key polynomials for gross

enumeration of graphs on the basis of Pólya’s theorem.

On the other hand, Fujita’s proligand method [16, 17, 18] has been adopted to accom-

plish gross enumeration of chemical compounds as three-dimensional (3D) structures, as

summarized in a review [19] and books [20, 21]. As found by the comparison between

the title of Pólya-Read’s book [3] (“Combinatorial Enumeration of Groups, Graphs, and

Chemical Compounds”) and that of Fujita’s book [20] (“Combinatorial Enumeration of

Graphs, Three-Dimensional Structures, and Chemical Compounds”), Fujita’s proligand

method is different from Pólya’s theorem in the applicability to stereochemical phenom-

ena concerning 3D structures, where cycle indices with chirality fittingness (CI-CFs) are

used in place of Pólya’s CIs (without chirality fittingness (CF)). Such CI-CFs are de-

fined by taking account of sphericities of cycles, in which Pólya’s theorem is deficient, as

discussed in a review [22].

In the process of calculating CI-CFs (cf. Chapter 7 of [20]), permutation representa-

tions for the substitution positions of a given skeleton are formulated in the form of a coset

representation G(/Gi), where the symbol G represents the global point-group symme-

try of the skeleton and the symbol Gi represents the local symmetry (stabilizer) of each

substitution position. When a permutation of G(/Gi) corresponds to a (roto)reflection,

it is attached by an overbar in order to emphasize ligand reflections, so that it is differ-

entiated from a permutation corresponding to a (proper) rotation. Then, a product of

sphericity indices (PSI) is assigned to a permutation in accord with the sphericities of

cycles involved in the permutation. The PSIs for respective permutations are summed up

and the resulting summation is divided by the order of G, so as to give the corresponding

CI-CF.

The process described above works well if we restrict our attention to combinato-

rial enumeration under point-group symmetry. However, the proligand method should
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be extended to support combinatorial enumeration under RS -stereoisomeric-group sym-

metry in Fujita’s stereoisogram approach [21], where permutations of G(/Gi) corre-

sponding to (roto)reflections (with ligand reflections) should be differentiated from RS -

permutations without ligand reflections. The present article is devoted to a new formu-

lation of (roto)reflections, where ligand reflections are taken into explicit consideration,

so as to develop computer-oriented representations of point groups.

2 Computer-Oriented Representations

of Point Groups

2.1 Skeletons for the Proligand-Promolecule Model

Let us consider a set of n positions of a given skeleton belonging to a point group G:

X = {1, 2, 3, . . . , n}, (1)

where the positions are numbered sequentially. The point group G acts on the set

X, so that there appears a permutation representation. For example, Figure 1 shows

an oxirane skeleton 1 belonging to the point group C2v, where the four positions are

numbered sequentially as being {1, 2, 3, 4}.

O

2
3

1
4

O

1
4

2
3

1 1

Figure 1. Numbered and mirror-numbered skeletons for oxirane derivatives.

When a (roto)reflection contained in the point group G acts on the set X, the num-

bered skeleton is converted into a mirror-numbered skeleton, where the set of numbered

positions X (Eq. 1) is converted into a set of mirror-numbered positions X as follows:

X = {1, 2, 3, . . . , n}. (2)

Such a (roto)reflection brings about the mirror-transformation of the skeleton as well as

the mirror-transformation of each position. For example, let us consider a mirror plane

perpendicular to the oxirane ring 1 through the midpoints of the C—C bond and the

oxygen atom, so as to generate a reflection represented by σv(1) ∼ (1 2)(3 4). The action of
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a reflection σv(1) on the numbered skeleton 1 produces the corresponding mirror-numbered

skeleton 1, where the product of cycles in the symbol (1 2)(3 4) represents the mirror-

transformation of the skeleton, while its overline denotes the mirror-transformation of

each position.

Let the symbol P (XX)

G be a permutation representation of G due to the sets of X (Eq.

1) and X (Eq. 2), where it contains permutations without and with an overline. The

mirror-transformation of each position (a permutation with an overline) is difficult to be

treated by a computer system such as a GAP system. Hence, it is necessary to develop

a computer-oriented representation for characterizing the effect of an overline.

2.2 Mirror-Permutation Representations

In order to develop such a computer-oriented representation for the mirror-transformation

of each position, we consider the following set of local chiralities:

χ = {X,X} = {n+ 1, n+ 2}, (3)

where the numbers n+ 1 and n+ 2 are given in accord with the number n of X (Eq. 1).

If the set χ is regarded as an ordered set, it is transformed into itself {X,X} or the other

ordered set {X,X} under the action of the point group G. The action of G on the set χ

gives the following permutations:

P (χ)

G =

(
X X
X X

)
=

(
n+ 1 n+ 2
n+ 1 n+ 2

)
= (n+ 1)(n+ 2) for G: rotations (4)

P (χ)

G =

(
X X
X X

)
=

(
n+ 1 n+ 2
n+ 2 n+ 1

)
= (n+ 1 n+ 2) for G: (roto)reflections (5)

which bring about a permutation representation of degree 2 (G ∈ G). Thereby, the

effect of an overline is replaced by the permutation representation P (χ)

G , which is called a

mirror-permutation representation:

P (χ)

G = {P (χ)

G | ∀G ∈ G}, (6)

each permutation of which is represented by Eqs. 4 and 5.

Let the symbol P (X)

G be a permutation representation of G due to the set of X (Eq. 1),

where it contains permutations without an overline. The permutation representation P (X)

G

is combined with the permutation representation P (χ)

G to give a combined-permutation

representation:

P (Xχ)

G = P (X)

G ⊕P (χ)

G = {P (X)

G ⊕P (χ)

G | ∀G ∈ G}, (7)
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where the symbol P (X)

G ⊕ P (χ)

G is a combination of the two permutations at issue, e.g.,

(1 3)(2 4) ⊕ (5 6) = (1 3)(2 4)(5 6). The representation P (Xχ)

G (Eq. 7) can be used in

place of the permutation representation P (XX)

G .

Figure 2 shows the comparison between P (XX)

C2v
and P (Xχ)

C2v
(G = C2v), where a rotation

C2 (∈ C2v) is operated onto an oxirane skeleton 1 (or 1) belonging to C2v. Because a

permutation P (χ)

G in the P (χ)

G -part of P (Xχ)

G (Eq. 7) for rotations is equal to a product of

1-cycles (cf. Eq. 4, e.g., P (χ)

C2
= (5)(6)), the permutation P (Xχ)

G of P (Xχ)

G (e.g., P (Xχ)

C2
=

(1 3)(2 4)(5)(6) = (1 3)(2 4)) is identical with the permutation P (X)

G of P (X)

G (e.g., P (X)

C2

= (1 3)(2 4)).

O

2
3

1
4 P (XX)

C2
∼ (1 3)(2 4)

P (Xχ)
C2

∼ (1 3)(2 4)(5)(6)
O

4
1

3
2

1 (X) 2 (X)

O

1
4

2
3 P (XX)

C2
∼ (1 3)(2 4)

P (Xχ)
C2

∼ (1 3)(2 4)(5)(6)
O

3
2

4
1

1 (X) 2 (X)

Figure 2. Rotations for an Oxirane Skeleton

On the other hand, Figure 3 shows the comparison between P (XX)

C2v
and P (Xχ)

C2v
(G =

C2v), where a reflection σv(1) (∈ C2v) is operated onto an oxirane skeleton 1 (or 1)

belonging to C2v. Because a permutation P (χ)

G in the P (χ)

G -part of P (Xχ)

G (Eq. 7) for

reflections is equal to a 2-cycle (cf. Eq. 5, e.g., P (χ)

σv(1)
= (5 6)), the permutation P (Xχ)

G of

P (Xχ)

G (e.g., P (Xχ)

C2
= (1 3)(2 4)(5 6)) is different from the permutation P (X)

G of P (X)

G (e.g.,

P (X)

σv(1)
= (1 3)(2 4)). Note that the effect of the overline of (1 3)(2 4) is replaced by the

2-cycle (5 6) in the permutation (1 3)(2 4)(5 6).

The procedures for Figures 2 and 3 are repeated to cover all of the operations of

the point group C2v, so as to give Table 1. Thereby, the permutations listed in the

P (XX)

C2v
-column are represented by the combined permutations listed in the P (Xχ)

C2v
-column

of Table 1. It should be noted that each of rotations (I and C2) is specified by a product

of 1-cycles (i.e., (5)(6)), while each of reflections (σv(1) and σv(2)) is specified by a 2-cycle

(i.e., (5 6)), as listed in the P (χ)

C2v
-column.
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Figure 3. Reflections for an Oxirane Skeleton

Table 1. Symmetry Operations for an Oxirane Skeleton and Products of Sphericity
Indices

C2v P (XX)
C2v

P (χ)
C2v

P (Xχ)
C2v

PSI
symmetry permutation mirror-permutation combined-permutation (product of
operation representation representation representation sphericity index)

I (1)(2)(3)(4) (5)(6) (1)(2)(3)(4)(5)(6) b4
1

C2 (1 3)(2 4) (5)(6) (1 3)(2 4)(5)(6) b2
2

σv(1) (1 2)(3 4) (5 6) (1 2)(3 4)(5 6) c2
2

σv(2) (1 4)(2 3) (5 6) (1 4)(2 3)(5 6) c2
2

2.3 Generation of Combined-Permutation Representations

Combined-permutation representations defined above are generated by the generator

function of of the GAP system, where they are regarded as permutation groups. For

example, a combined-permutation representation P (Xχ)

C2v
of the point group C2v (Table 1)

is generated by inputting the following codes:

gap> C2v := Group((1,3)(2,4), (1,2)(3,4)(5,6));;
gap> element_C2v := Elements(C2v);;
gap> Display(element_C2v);

where the symbol gap> denotes the prompt of the GAP system operated on the command-

prompt screen of the Windows system (or other operating systems). The function Group

of the GAP system takes a list of generators as an argument. Note that each 1-cycle is

omitted in the above codes. The result appears as follows:

[ (), (1,2)(3,4)(5,6), (1,3)(2,4), (1,4)(2,3)(5,6) ]

which is consistent with the list of operators of C2v shown in the P (Xχ)

C2v
-column of Table 1

(each 1-cycle omitted). The elements containing a 2-cycle (5 6) correspond to reflections,
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which are alternatively represented by attaching an overline, as shown in the the P (XX)

C2v
-

column of Table 1.

The procedure described above is applied to the skeletons of ligancy 4 listed in Figure

4, i.e., an allene skeleton 3 (D2d), an ethylene skeleton 4 (D2h), a tetrahedral skeleton 5

(Td), a square-planar (SP-4) skeleton 6 (D4h), and a square-pyramidal (SPY-4) skeleton

7 (C4v). A list of generators of the point group for characterizing each skeleton is shown

in the first line of each point-group row of Table 2 by using the Group function of the

GAP system. The order is calculated by using the Size function, e.g., Size(C2v) for

the point groups C2v. The resulting list of elements due to the Elements function of the

GAP system is shown in the next line of each point-group row of Table 2. The list of

elements can be regarded as a combined-permutation representation, where a vacant pair

of parentheses indicates an identity element, which may be represented by a product of

1-cycles.

C C

2

4

C
3

1

C C

4

1 2

3

C

1

32
4

3 4 5
D2d D2h Td

M
3

21

4

M4 3
1 2

6 (SP-4) 7 (SPY-4)
D4h C4v

Figure 4. Stereoskeletons of ligancy 4. The point-group symmetry of each stere-
oskeleton is shown by using the Schönflies notation. The symbol M
represents a central metal.

3 Combinatorial Enumeration

3.1 Cycle Indices with Chirality Fittingness (CI-CFs)

Fujita’s proligand method for gross enumeration of 3D structures [16, 17, 18, 20] adopts

the concept of sphericities of cycles. Thereby, a k-cycle contained in a given product of

cycles for a rotation G (without an overline or P (χ)

G = (n+ 1)(n+ 2)) is referred to as a

hemispheric cycle (sphericity index: bk), while a k-cycle contained in a given product of
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Table 2. Combined-Permutation Representations of Point Groups for Character-
izing the Skeletons of Ligancy 4

point group a list of generators, order, a list of elements

C2v

C2v := Group( [ (1,3)(2,4), (1,2)(3,4)(5,6) ] )

Order =4

[ (), (1,2)(3,4)(5,6), (1,3)(2,4), (1,4)(2,3)(5,6) ]

D2d

D2d := Group( [ (1,3)(2,4), (1,2)(3,4), (2,4)(5,6) ] )

Order =8

[ (), (2,4)(5,6), (1,2)(3,4), (1,2,3,4)(5,6), (1,3)(5,6),

(1,3)(2,4), (1,4,3,2)(5,6), (1,4)(2,3) ]

D2h

D2h := Group( [ (1,3)(2,4), (1,2)(3,4), (5,6) ] )

Order =8

[ (), (5,6), (1,2)(3,4), (1,2)(3,4)(5,6), (1,3)(2,4),

(1,3)(2,4)(5,6), (1,4)(2,3), (1,4)(2,3)(5,6) ]

Td

Td := Group( [ (1,2)(3,4), (2,3,4), (3,4)(5,6) ] )

Order =24

[ (), (3,4)(5,6), (2,3)(5,6), (2,3,4), (2,4,3), (2,4)(5,6),

(1,2)(5,6), (1,2)(3,4), (1,2,3), (1,2,3,4)(5,6),

(1,2,4,3)(5,6), (1,2,4), (1,3,2), (1,3,4,2)(5,6), (1,3)(5,6),

(1,3,4), (1,3)(2,4), (1,3,2,4)(5,6), (1,4,3,2)(5,6),

(1,4,2), (1,4,3), (1,4)(5,6), (1,4,2,3)(5,6), (1,4)(2,3) ]

D4h

D4h := Group( [ (1,3)(2,4), (1,2)(3,4), (1,2,3,4), (5,6) ] )

Order =16

[ (), (5,6), (2,4), (2,4)(5,6), (1,2)(3,4), (1,2)(3,4)(5,6),

(1,2,3,4), (1,2,3,4)(5,6), (1,3), (1,3)(5,6),

(1,3)(2,4), (1,3)(2,4)(5,6), (1,4,3,2), (1,4,3,2)(5,6),

(1,4)(2,3), (1,4)(2,3)(5,6) ]

C4v

C4v := Group( [ (1,3)(2,4), (1,2,3,4), (1,2)(3,4)(5,6) ] )

Order =8

[ (), (2,4)(5,6), (1,2)(3,4)(5,6), (1,2,3,4), (1,3)(5,6),

(1,3)(2,4), (1,4,3,2), (1,4)(2,3)(5,6) ]

cycles for a (roto)reflection (with an overline or P (χ)

G = (n+1 n+2)) is categorized into a

homospheric cycle (sphericity index: ak if k is odd) or an enantiospheric cycle (sphericity

index: ck if k is even).

Suppose that an element P (X)

G (cf. Eq. 7) is a permutation of degree n, which is repre-

sented by a cycle decomposition involving the number νk(P
(X)

G ) of k-cycles (
n∑
k=1

kνk(P
(X)

G )).

Then the element P (Xχ)

G corresponding to P (X)

G (cf. Eq. 7) is specified by a product of

sphericity indices (PSI):

PSI
P

(Xχ)
G

= $
ν1(P

(X)
G )

1 $
ν2(P

(X)
G )

2 · · · $νn(P
(X)
G )

n , (8)

where $k is ak if P (χ)

G = (n + 1 n + 2) (one 2-cycle) and k is odd; $k is ck if P (χ)

G =

(n + 1 n + 2) (one 2-cycle) and k is even; and $k is bk if P (χ)

G = (n + 1)(n + 2) (two

1-cycles). According to Def. 7.20 of [20], the cycle index with chirality fittingness (CI-CF)
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for P (Xχ)

G is calculated as follows by using the PSIs (Eq. 8):

CI-CF(P (Xχ)

G ; $k) =
1

|G|
∑
G ∈ G

$
ν1(P

(X)
G )

1 $
ν2(P

(X)
G )

2 · · · $νn(P
(X)
G )

n . (9)

For example, the data of the P (Xχ)

C2v
-column of Table 1 give the respective PCIs collected

in the PSI-column of Table 1. These PCIs are summed up and the resulting sum is divided

by the order of C2v (|C2v| = 4) according to Eq. 9. Thereby, we obtain the following

CI-CF:

CI-CF(P (Xχ)

C2v
; $k) =

1

4

{
b41 + b22 + 2c22

}
. (10)

According to Def. 7.25 of [20], the gross enumeration of achiral 3D structures is con-

ducted by using the following CI-CF:

CI-CF(a)(P (Xχ)

G ; $k) =
2

|G|
∑

G ∈ G(a)

$
ν1(P

(X)
G )

1 $
ν2(P

(X)
G )

2 · · · $νn(P
(X)
G )

n . (11)

The symbol G(a) denotes the coset which contains all of the (roto)reflections of G, so

that the coset G(a) satisfies the following coset decomposition:

G = G(m) + G(a), (12)

where the symbol G(m) denotes the maximum chiral subgroup of G. Note that if the

element G is contained in the coset G(a), it exhibits P (χ)

G = (n+ 1 n+ 2).

For example, the elements having a 2-cycle (5 6) in the P (Xχ)

C2v
-column of Table 1

are contained in C
(a)
2v . The corresponding PCIs are summed up and the resulting sum

is multiplied by (2/|C2v| = 2/4 = 1/2) according to Eq. 11. Thereby, we obtain the

following CI-CF:

CI-CF(a)(P (Xχ)

C2v
; $k) =

1

2
× 2c22 = c22. (13)

According to Def. 7.28 of [20], the gross enumeration of enantiomeric pairs of chiral

3D structures is conducted by using the following CI-CF:

CI-CF(e)(P (Xχ)

G ; $k) =

1

|G|

{∑
G ∈ G(m)

b
ν1(P

(X)
G )

1 b
ν2(P

(X)
G )

2 · · · bνn(P
(X)
G )

n −
∑
G ∈ G(a)

$
ν1(P

(X)
G )

1 $
ν2(P

(X)
G )

2 · · · $νn(P
(X)
G )

n

}
, (14)

where the symbols G ∈ G(m) and G ∈ G(a) are shown in Eq. 12.

For example, Eq. 14 is applied to the PCIs listed in the PCI-column of Table 1, so as

to give the following CI-CF:

CI-CF(e)(P (Xχ)

C2v
; $k) =

1

4

{
b41 + b22 − 2c22

}
. (15)
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The CI-CFs for the point group C2v (Eqs. 10, 13, and 15) satisfy the following equa-

tion:

CI-CF(P (Xχ)

C2v
; $k) = CI-CF(a)(P (Xχ)

C2v
; $k) + CI-CF(e)(P (Xχ)

C2v
; $k). (16)

In general, the CI-CF for the point group G (Eq. 9) is equal to the sum of Eq. 11 and

Eq. 14, i.e.,

CI-CF(P (Xχ)

G ; $k) = CI-CF(a)(P (Xχ)

G ; $k) + CI-CF(e)(P (Xχ)

G ; $k). (17)

Because the combined-permutation representations of other point groups have been

calculated (Table 2), the procedures for calculating the CI-CFs for the point group C2v

(Eqs. 10, 13, and 15) are effective to calculate the CI-CFs for the other skeletons of

ligancy 4 (Figure 4).

3.2 GAP Functions for Calculating CI-CFs

The next step is the development of GAP functions for calculating CI-CFs by starting

from the combined-permutation representation of a point group.

The key is the differentiation between rotations and (roto)reflections, where the GAP

function CycleLengths is used to detect permutations without and with P (χ)

G = (n +

1)(n + 2). For example, let us examine the combined-permutation representation P (Xχ)

C2v

corresponding to the point group C2v:

gap> C2v := Group((1,4)(2,3), (1,2)(3,4)(5,6));;
gap> l_elements := Elements(C2v);
[ (), (1,2)(3,4)(5,6), (1,3)(2,4)(5,6), (1,4)(2,3) ]
gap> no_elements := Size(l_elements);
4
gap> temp_cycstrX := CycleLengths(l_elements[2], [1..6]);
[ 2, 2, 2 ]
gap> temp_cycstrX := CycleLengths(l_elements[4], [1..6]);
[ 2, 2, 1, 1 ]

The second permutation (1, 2)(3, 4)(5, 6) with P (χ)

σv(1)
= (5 6), which is the second com-

ponent of the list denoted as l_elements[2], is composed of three 2-cycles, which are

detected as [ 2, 2, 2 ] by means of the GAP function CycleLengths. On the other

hand, the fourth permutation (1, 4)(2, 3) denoted as l_elements[4], which has an im-

plicit set of 1-cycles (i.e., P (χ)

C2
= (5)(6)), is composed of two 2-cycles and two implicit

1-cycles. Because these cycles are detected as [ 2, 2, 1, 1 ], the 1-cycle due to P (χ)

C2

= (5)(6) is detected by the last cycle length ‘1’ appearing in the output of the GAP
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function CycleLengths. Thereby, the fourth permutation (1, 4)(2, 3) is detected as being

a rotation by the GAP system.

The function CalcCICF for calculating the CI-CF of a given group G (Eq. 9) is de-

veloped by using the function keyword of the GAP system, where G is expressed in

the form of a combined-permutation representation P (Xχ)

G . In a similar way, the func-

tion CalcCICF_A for calculating the achiral part CI-CF(a) (Eq. 11) and the function

CalcCICF_E for calculating the chiral part CI-CF(e) (Eq. 14) are also developed:

CalcCICF(group, degree, degreefull)
CalcCICF_A(group, degree, degreefull)
CalcCICF_E(group, degree, degreefull)

where the first argument group denotes a given group G (as a combined-permutation rep-

resentation P (Xχ)

G ), the second argument degree denotes the degree of P (X)

G , and the third

argument degreefull denotes the degree of P (Xχ)

G . The source lists of these functions

are stored in a file named CICFgen.gapfunc, which is attached as Appendix A.

3.3 Calculation of CI-CFs

Let us illustrate a typical procedure for executing the above-developed functions (Calc-

CICF, CalcCICF_A, and CalcCICF_E), where we calculate the CI-CFs (CI-CF, CI-CF(a),

and CI-CF(e)) of an oxirane skeleton of C2v (cf. Table 1). We first make a working

directory with an appropriate name (e.g., c:/fujita0/calcCICF), in which we before-

hand place the file CICFgen.gapfunc containing the functions for generating CI-CFs (cf.

Appendix A). This directory also contains a work file with an appropriate name (e.g.,

C2v-CICF.gap), which contains the following codes:

#Read("c:/fujita0/calcCICF/C2v-CICF.gap");
#Input this line to the gap> prompt

LogTo("c:/fujita0/calcCICF/C2v-CICFlog.txt");

Read("c:/fujita0/calcCICF/CICFgen.gapfunc"); #Loading of CICFgen.gapfunc

C2v := Group((1,3)(2,4), (1,2)(3,4)(5,6)); #C2v
Print("C2v :=", C2v, "\n");
Print("Order =", Size(C2v), "\n", Elements(C2v), "\n");
Print("CICF_C2v := ", CalcCICF(C2v, 4, 6), "\n");
Print("CICF_C2v_A := ", CalcCICF_A(C2v, 4, 6), "\n");
Print("CICF_C2v_E := ", CalcCICF_E(C2v, 4, 6), "\n");

LogTo();
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To execute these codes, the first line commented out by the top symbol # is copied and

pasted after the gap> prompt of the command-prompt window of the Windows system.

Thereby, the above codes contained in the file C2v-CICF.gap are successively executed

after the loading of CICFgen.gapfunc. The calculated CI-CFs are written down into the

log file named C2v-CICFlog.txt (an appropriate name) as follows:

C2v :=Group( [ (1,3)(2,4), (1,2)(3,4)(5,6) ] )
Order =4
[ (), (1,2)(3,4)(5,6), (1,3)(2,4), (1,4)(2,3)(5,6) ]
CICF_C2v := 1/4*b_1^4+1/2*c_2^2+1/4*b_2^2
CICF_C2v_A := c_2^2
CICF_C2v_E := 1/4*b_1^4-1/2*c_2^2+1/4*b_2^2

where each multiplication appearing in the CI-CFs is represented by an asterisk and

sphericity indices are represented by b_1 (for b1), c_2 (for c2), and b_2 (for b2). The

CI-CFs are consistent with Eqs. 10, 13, and 15.

In a similar way, the respective combined-permutation representations listed in Table

2 generate the corresponding CI-CFs, which are collected in Table 3.

Table 3. CI-CFs of Point Groups for Characterizing the Skeletons of Ligancy 4

point group CICFs for total as well as for achiral ( A) and chiral ( C) parts

C2v

CICF_C2v := 1/4*b_1ˆ4+1/2*c_2ˆ2+1/4*b_2ˆ2

CICF_C2v_A := c_2ˆ2

CICF_C2v_E := 1/4*b_1ˆ4-1/2*c_2ˆ2+1/4*b_2ˆ2

D2d

CICF_D2d := 1/8*b_1ˆ4+1/4*c_2*a_1ˆ2+3/8*b_2ˆ2+1/4*c_4

CICF_D2d_A := 1/2*c_2*a_1ˆ2+1/2*c_4

CICF_D2d_E := 1/8*b_1ˆ4-1/4*c_2*a_1ˆ2+3/8*b_2ˆ2-1/4*c_4

D2h

CICF_D2h := 1/8*b_1ˆ4+1/8*a_1ˆ4+3/8*c_2ˆ2+3/8*b_2ˆ2

CICF_D2h_A := 1/4*a_1ˆ4+3/4*c_2ˆ2

CICF_D2h_E := 1/8*b_1ˆ4-1/8*a_1ˆ4-3/8*c_2ˆ2+3/8*b_2ˆ2

Td

CICF_Td := 1/24*b_1ˆ4+1/4*c_2*a_1ˆ2+1/3*b_1*b_3+1/8*b_2ˆ2+1/4*c_4

CICF_Td_A := 1/2*c_2*a_1ˆ2+1/2*c_4

CICF_Td_E := 1/24*b_1ˆ4-1/4*c_2*a_1ˆ2+1/3*b_1*b_3+1/8*b_2ˆ2-1/4*c_4

D4h

CICF_D4h := 1/16*b_1ˆ4+1/16*a_1ˆ4+1/8*b_1ˆ2*b_2+1/8*c_2*a_1ˆ2

+3/16*c_2ˆ2+3/16*b_2ˆ2+1/8*c_4+1/8*b_4

CICF_D4h_A := 1/8*a_1ˆ4+1/4*c_2*a_1ˆ2+3/8*c_2ˆ2+1/4*c_4

CICF_D4h_E := 1/16*b_1ˆ4-1/16*a_1ˆ4+1/8*b_1ˆ2*b_2-1/8*c_2*a_1ˆ2

-3/16*c_2ˆ2+3/16*b_2ˆ2-1/8*c_4+1/8*b_4

C4v

CICF_C4v := 1/8*b_1ˆ4+1/4*c_2*a_1ˆ2+1/4*c_2ˆ2+1/8*b_2ˆ2+1/4*b_4

CICF_C4v_A := 1/2*c_2*a_1ˆ2+1/2*c_2ˆ2

CICF_C4v_E := 1/8*b_1ˆ4-1/4*c_2*a_1ˆ2-1/4*c_2ˆ2+1/8*b_2ˆ2+1/4*b_4

These CI-CFs have been alternatively calculated by using permutation representations

P (XX)

G (cf. Table 1 for G = C2v) in place of combined-permutation representations P (Xχ)

G
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(cf. Table 1 for G = C2v) [23]. Thus, CICF C2v of Table 3 is identical with Eq. 51 of

[23]; CICF D2d with Eq. 8 of [16] and with Eq. 48 of [23]; CICF D2h with Eq. 49 of [23];

CICF Td with Eq. 46 of [23]; CICF D4h with Eq. 47 of [23]; and CICF C4v with Eq. 50

of [23].

3.4 Introduction of Ligand-Inventory Functions into CI-CFs

Suppose that the n positions of a given skeleton accommodate a set of n proligands

selected from a given ligand inventory:

L = {L1,L2, . . . ,Lν ; p1, p2, . . . , pν ; p1, p2, . . . , pν} , (18)

where each uppercase symbol (e.g., L1) denotes an achiral proligands and each pair of

lowercase symbols without and with an overbar (e.g., p1 and p1) denotes an enantiomeric

pair of chiral proligands. The number ν is selected appropriately according to our discus-

sions. According to Theorem 7.14 of [20], the sphericity indices ($k: ak, ck, and bk) control

the modes of proligand packing in the form of ligand-inventory functions as follows:

ak = Lk1 + Lk2 + · · ·+ Lkν (19)

ck = Lk1 + Lk2 + · · ·+ Lkν + 2p
k/2
1 p

k/2
1 + 2p

k/2
2 p

k/2
2 + · · ·+ 2pk/2ν pk/2ν (20)

bk = Lk1 + Lk2 + · · ·+ Lkν + pk1 + pk2 + . . .+ pkν + pk1 + pk2 + · · ·+ pkν . (21)

The ligand-inventory functions (Eqs. 19–21) are introduced into the CI-CF represented

by Eq. 9 according to Theorem 7.21 of [20]. The expansion of the resulting equation give

a generating function, in which the coefficient of each monomial represents the number

of isomers with the corresponding composition, where each pair of (self-)enantiomers is

counted once. Note that a pair of self-enantiomers means an achiral 3D structure.

In a similar way, the introduction of the ligand-inventory functions (Eqs. 19–21) into

the CI-CF represented by Eq. 11 gives a generating function, in which the coefficient of

each monomial represents the number of achiral 3D structures with the corresponding

composition (Theorem 7.27 of [20]). On the other hand, the introduction of the ligand-

inventory functions (Eqs. 19–21) into the CI-CF represented by Eq. 14 gives a generating

function, in which the coefficient of each monomial represents the number of enantiomeric

pairs of chiral 3D structures (Theorem 7.29 of [20]).

As a typical example, let us calculate the numbers of oxirane 3D structures by using
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the following ligand inventory:

L = {A,B,C,D; p, q, r, s; p, q, r, s}. (22)

The ligand-inventory functions (Eqs. 19–21) are obtained from this inventory, where a

pair of an lowercase letter and the corresponding uppercase letter (e.g., p/P) is used

in place of a pair of lowercase letters without and with an overbar (e.g., p/p). The

following codes are stored in a work file named C2v-Enum.gap, which is placed in the

above-mentioned directory c:/fujita0/calcCICF.

#Read("c:/fujita0/calcCICF/C2v-Enum.gap");
LogTo("c:/fujita0/calcCICF/C2v-Enumlog.txt");

Read("c:/fujita0/calcCICF/CICFgen.gapfunc");

A := Indeterminate(Rationals, "A"); B := Indeterminate(Rationals, "B");
C := Indeterminate(Rationals, "C"); D := Indeterminate(Rationals, "D");
p := Indeterminate(Rationals, "p"); P := Indeterminate(Rationals, "P");
q := Indeterminate(Rationals, "q"); Q := Indeterminate(Rationals, "Q");
r := Indeterminate(Rationals, "r"); R := Indeterminate(Rationals, "R");
s := Indeterminate(Rationals, "s"); S := Indeterminate(Rationals, "S");

a_1 := Indeterminate(Rationals, "a_1");
a_2 := Indeterminate(Rationals, "a_2");
a_3 := Indeterminate(Rationals, "a_3");
a_4 := Indeterminate(Rationals, "a_4");
c_2 := Indeterminate(Rationals, "c_2");
c_4 := Indeterminate(Rationals, "c_4");
b_1 := Indeterminate(Rationals, "b_1");
b_2 := Indeterminate(Rationals, "b_2");
b_3 := Indeterminate(Rationals, "b_3");
b_4 := Indeterminate(Rationals, "b_4");

C2v := Group((1,3)(2,4), (1,2)(3,4)(5,6)); #C2v

CICF_C2v := CalcCICF(C2v, 4, 6);
Print("CICF_C2v := ", CICF_C2v, "\n");

aa_1 := A + B + C + D; aa_2 := A^2 + B^2 + C^2 + D^2;
aa_3 := A^3 + B^3 + C^3 + D^3; aa_4 := A^4 + B^4 + C^4 + D^4;
bb_1 := A + B + C + D + p + q + r + s + P + Q + R + S;
bb_2 := A^2 + B^2 + C^2 + D^2

+ p^2 + q^2 + r^2 + s^2 + P^2 + Q^2 + R^2 + S^2;
bb_3 := A^3 + B^3 + C^3 + D^3

+ p^3 + q^3 + r^3 + s^3 + P^3 + Q^3 + R^3 + S^3;
bb_4 := A^4 + B^4 + C^4 + D^4

+ p^4 + q^4 + r^4 + s^4 + P^4 + Q^4 + R^4 + S^4;
cc_2 := A^2 + B^2 + C^2 + D^2 + 2*p*P + 2*q*Q + 2*r*R + 2*s*S;
cc_4 := A^4 + B^4 + C^4 + D^4

+ 2*p^2*P^2 + 2*q^2*Q^2 + 2*r^2*R^2 + 2*s^2*S^2;
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f_C2v := Value(CICF_C2v,
[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],
[aa_1, aa_2, aa_3, aa_4, bb_1, bb_2, bb_3, bb_4, cc_2, cc_4]);

Print("f_C2v := ", f_C2v, "\n");

LogTo();

The first line is copied and pasted after the gap> prompt of the command-prompt win-

dow of the Windows system. Thereby, the above codes contained in the file C2v-Enum.gap

are successively executed after the loading of CICFgen.gapfunc. The set of ligand-

inventory functions (aa_1 etc.) is introduced into the sphericity indices (a_1 etc.) of

the calculated CI-CF for C2v (CICF_C2v). The resulting generating function after expan-

sion (f_C2v) is written down into the log file named C2v-Enumlog.txt (an appropriate

name) as follows:

CICF_C2v := 1/4*b_1^4+1/2*c_2^2+1/4*b_2^2
f_C2v := A^4+A^3*B+A^3*C+A^3*D+A^3*p+A^3*P+A^3*q+A^3*Q+A^3*r+A^3*R+A^3*s
+A^3*S+3*A^2*B^2+3*A^2*B*C+3*A^2*B*D+3*A^2*B*p+3*A^2*B*P+3*A^2*B*q
+3*A^2*B*Q+3*A^2*B*r+3*A^2*B*R+3*A^2*B*s+3*A^2*B*S+3*A^2*C^2+3*A^2*C*D
+3*A^2*C*p+3*A^2*C*P+3*A^2*C*q+3*A^2*C*Q+3*A^2*C*r+3*A^2*C*R+3*A^2*C*s
+3*A^2*C*S+3*A^2*D^2+3*A^2*D*p+3*A^2*D*P+3*A^2*D*q+3*A^2*D*Q+3*A^2*D*r
+3*A^2*D*R+3*A^2*D*s+3*A^2*D*S+2*A^2*p^2+5*A^2*p*P+3*A^2*p*q+3*A^2*p*Q
+3*A^2*p*r+3*A^2*p*R+3*A^2*p*s+3*A^2*p*S+2*A^2*P^2+3*A^2*P*q+3*A^2*P*Q
+3*A^2*P*r+3*A^2*P*R+3*A^2*P*s+3*A^2*P*S+2*A^2*q^2+5*A^2*q*Q+3*A^2*q*r
+3*A^2*q*R+3*A^2*q*s+3*A^2*q*S+2*A^2*Q^2+3*A^2*Q*r+3*A^2*Q*R+3*A^2*Q*s
+3*A^2*Q*S+2*A^2*r^2+5*A^2*r*R+3*A^2*r*s+3*A^2*r*S+2*A^2*R^2+3*A^2*R*s
+3*A^2*R*S+2*A^2*s^2+5*A^2*s*S+2*A^2*S^2+A*B^3+3*A*B^2*C+3*A*B^2*D
+3*A*B^2*p+3*A*B^2*P+3*A*B^2*q+3*A*B^2*Q+3*A*B^2*r+3*A*B^2*R+3*A*B^2*s
+3*A*B^2*S+3*A*B*C^2+6*A*B*C*D+6*A*B*C*p+6*A*B*C*P+6*A*B*C*q+6*A*B*C*Q
+6*A*B*C*r+6*A*B*C*R+6*A*B*C*s+6*A*B*C*S+3*A*B*D^2+6*A*B*D*p+6*A*B*D*P
+6*A*B*D*q+6*A*B*D*Q+6*A*B*D*r+6*A*B*D*R+6*A*B*D*s+6*A*B*D*S+3*A*B*p^2
+6*A*B*p*P+6*A*B*p*q+6*A*B*p*Q+6*A*B*p*r+6*A*B*p*R
(omitted)
+1/2*p^4+p^3*P+p^3*q+p^3*Q+p^3*r+p^3*R+p^3*s+p^3*S+4*p^2*P^2+3*p^2*P*q
+3*p^2*P*Q+3*p^2*P*r+3*p^2*P*R+3*p^2*P*s+3*p^2*P*S+2*p^2*q^2+3*p^2*q*Q
+3*p^2*q*r+3*p^2*q*R+3*p^2*q*s+3*p^2*q*S+2*p^2*Q^2+3*p^2*Q*r+3*p^2*Q*R
+3*p^2*Q*s+3*p^2*Q*S+2*p^2*r^2+3*p^2*r*R+3*p^2*r*s+3*p^2*r*S+2*p^2*R^2
+3*p^2*R*s+3*p^2*R*S+2*p^2*s^2+3*p^2*s*S+2*p^2*S^2+p*P^3+3*p*P^2*q
+3*p*P^2*Q+3*p*P^2*r+3*p*P^2*R+3*p*P^2*s+3*p*P^2*S+3*p*P*q^2+10*p*P*q*Q
+6*p*P*q*r+6*p*P*q*R+6*p*P*q*s+6*p*P*q*S+3*p*P*Q^2
(omitted)

This result is consistent with the previous result which has been reported as a tabular

form (Table 5 of [23]). For example, the coefficient of the term A^4 is equal to 1, which

indicates that there appears one oxirane as a 3D structure with the composition A4.

The term 6*A*B*C*D indicates that there appear six pairs of enantiomeric oxiranes with

the composition ABCD (cf. Figure 8 of [24]). The term 1/2*p^4 corresponds to 1 ×
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1
2
(p4 + p4), which means the presence of one pair of enantiomeric oxiranes with the

compositions p4 and p4. The term 10*p*P*q*Q (10ppqq) indicates the presence of 10

pairs of (self-)enantiomers, which are categorized into two pairs of enantiomers and 8

achiral oxiranes (cf. Figure 16 of [24]).

The codes stored in the work file C2v-Enum.gap are effective to calculated the gen-

erating functions of other groups, if the definition of the group C2v (due to the GAP

function Group) and the descriptions of the remaining codes are replaced by those of the

other groups to be examined (e.g., Table 2). Thereby, the corresponding CI-CFs are cal-

culated as found in Table 3, so that they are used to calculate the respective generating

functions.

3.5 Cycle Indices Without Chirality Fittingness (Pólya’s CIs)

The GAP system originally supports a function (named CycleIndex) for calculating

Pólya’s cycle indices (CIs). Pólya’s cycle indices (CIs) can be regarded as degenerate

cases of Fujita’s CI-CFs [22], i.e., cycle indices without chirality fittingness, so that they

are derived from Fujita’s CI-CFs by putting sk = ak = ck = bk. This derivation is

confirmed by the following source code (stored in the file named Td-Polya4.gap), where

Tσ̃ (denoted by the symbol Ts in this source code) is isomorphic to the symmetric group

of degree 4 (S[4]).

#Read("c:/fujita0/calcCICF/Td-Polya4.gap");
LogTo("c:/fujita0/calcCICF/Td-Polya4log.txt");

s_1 := Indeterminate(Rationals, "s_1");
s_2 := Indeterminate(Rationals, "s_2");
s_3 := Indeterminate(Rationals, "s_3");
s_4 := Indeterminate(Rationals, "s_4");

Ts := Group((1,2)(3,4), (2,3,4), (3,4)); #Ts
CI_Ts := CycleIndex(Ts); #Polya’s CI
Print("CI_Ts :=   ", CI_Ts, "\n");

Read("c:/fujita0/calcCICF/CICFgen.gapfunc");

Td := Group((1,2)(3,4), (2,3,4), (3,4)(5,6)); #Td
CICF_Td := CalcCICF(Td, 4, 6); #Fujita’s CI-CF
Print("CICF_Td := ", CICF_Td, "\n");

a_1 := Indeterminate(Rationals, "a_1");
a_2 := Indeterminate(Rationals, "a_2");
a_3 := Indeterminate(Rationals, "a_3");
a_4 := Indeterminate(Rationals, "a_4");
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c_2 := Indeterminate(Rationals, "c_2");
c_4 := Indeterminate(Rationals, "c_4");
b_1 := Indeterminate(Rationals, "b_1");
b_2 := Indeterminate(Rationals, "b_2");
b_3 := Indeterminate(Rationals, "b_3");
b_4 := Indeterminate(Rationals, "b_4");

CICF_Td_s := Value(CICF_Td,
[a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4, c_2, c_4],
[s_1, s_2, s_3, s_4, s_1, s_2, s_3, s_4, s_2, s_4]);

#degeneration of CI-CF to CI
Print("CICF_Td_s:=", CICF_Td_s, "\n");

Print("validity check: ", CICF_Td_s = CI_Ts, "\n");

LogTo();

The degenerate CI-CF denoted by the symbol CICF_Td_s is calculated by putting

sk = ak = ck = bk in Fujita’s CI-CF denoted by the symbol CICF_Td, where the GAP

function Value is used to accomplish the substitution of sphericity indices (ak, ck, and

bk) by dummy variables sk. The resulting degenerate CI-CF (CICF_Td_s) is identical

with the Pólya’s CI denoted by the symbol CI_Ts, which is calculated by the function

CycleIndex. It follows that the validity check is printed out as being true, as follows:

CI_Ts := 1/24*s_1^4+1/4*s_1^2*s_2+1/3*s_1*s_3+1/8*s_2^2+1/4*s_4
CICF_Td := 1/24*b_1^4+1/4*a_1^2*c_2+1/3*b_1*b_3+1/8*b_2^2+1/4*c_4
CICF_Td_s:=1/24*s_1^4+1/4*s_1^2*s_2+1/3*s_1*s_3+1/8*s_2^2+1/4*s_4
validity check: true

which is output into the log file named Td-Polya4log.txt.

The group Tσ̃ (denoted by the symbol Ts) can be regarded as an RS -permutation

group according to Fujita’s stereoisogram approach [21]. The CI-CF of the group Tσ̃ is

calculated by using the function CalcCICF as follows:

gap> Read("c:/fujita0/calcCICF/CICFgen.gapfunc");
gap> Ts := Group((1,2)(3,4), (2,3,4), (3,4));
Group([ (1,2)(3,4), (2,3,4), (3,4) ])
gap> CICF_Ts := CalcCICF(Ts, 4, 4);
1/24*b_1^4+1/4*b_1^2*b_2+1/3*b_1*b_3+1/8*b_2^2+1/4*b_4

The resulting CI-CF (CICF_Ts) contains the sphericity indices of one kind (bk) and be-

comes identical with Pólya’s CI if we place bk = sk. It should be noted, however, that

the CI-CF (CICF_Ts as a polynomial in indeterminates bk) takes sphericities of cycles

into consideration, whereas Pólya’s CI (CI_Ts a polynomial in indeterminates sk) ignores

sphericities of cycles [22].
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As a result, the ligand-inventory function for bk (Eq. 21 for CICF_Ts) differentiates

between pd and pd (d = 1, 2, . . . , ν), while the ligand-inventory function for sk (for CI_Ts

or CICF_Td_s) does not differentiate between them:

sk = Lk1 + Lk2 + · · ·+ Lkν + p̈k1 + p̈k2 + . . .+ p̈kν , (23)

where the symbol p̈d represents a graph corresponding to a pair of enantiomeric proligands

pd and pd (d = 1, 2, . . . , ν). Thereby, the former CI-CF (CICF_Ts) is concerned with 3D

structures, while the latter CI (CI_Ts or CICF_Td_s) is concerned with graphs (or 2D

structures).

4 Conclusion

After a mirror-permutation representation of a given point group is defined to differen-

tiate between rotations and (roto)reflections, a combined-permutation representation is

developed as a computer-oriented representation of the point group. Such a combined-

permutation representation is regarded as a permutation group, which is generated from

an appropriate generators by using the Group function of the GAP system. Thereby,

the program (CalcCICF) for generating cycle indices with chirality fittingness (CI-CFs) is

developed as a function of the GAP system. This program is used to calculate generating

functions for combinatorial enumeration of 3D structures under point groups. The pro-

gram (CalcCICF_A) for calculating the number of achiral 3D structures and the program

(CalcCICF_E) for calculating the number of enantiomeric pairs of chiral 3D structures are

also developed as functions of the GAP system. A practical procedure for combinatorial

enumeration of 3D structures is described on the basis of the GAP system.

Appendix A. Source Code of CICFgen.gapfunc for

Calculating CI-CFs

The following codes are stored in the file named CICFgen.gapfunc, which is loaded during

the calculation of CI-CFs.

##CICFgen.gapfunc
##for calculating a CI-CF for Fujita’s Proligand Method

##############
# CICF for G #
##############
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CalcCICF := function(G, degree, degreefull)
local i, j, Orig_Grp, l_elements, no_elements, DegGr, DegCGr, CICF,
temp_cycstr, temp_cycstrX, AchOrCh, tempSI, tempSIX, tempSIY, tempCICF;
Orig_Grp := G; #group to be examined
l_elements := Elements(Orig_Grp); #elements of Orig_Grp
#Display(l_elements); #for debug
no_elements := Size(l_elements); #order of Orig_Grp
#Display(no_elements); #for debug
#Degrees of Permutations
DegGr := degreefull; #degree of chiral and achiral parts,

#e.g. 6: [1,2,3,4,5,6]
DegCGr := degree; #degree of chiral parts, e.g. 4: [1,2,3,4]
#Chirality/achirality is determined by the final digit of temp_cycstrX
CICF := 0;
for i in [1..no_elements] do
temp_cycstr := CycleLengths(l_elements[i], [1..DegCGr]); #degree
temp_cycstrX := CycleLengths(l_elements[i], [1..DegGr]); #full degree
#Display(temp_cycstr); #for debug
#Display(temp_cycstrX); #for debug
AchOrCh := temp_cycstrX[Size(temp_cycstrX)]; #chiral 1; achiral 2
#Print("AchOrCh=", AchOrCh, "\n"); #for debug
#Determination of sphericity indices (SIs) of cycles
tempCICF := 1;
for j in [1..Size(temp_cycstr)] do
if DegGr = DegCGr then
tempSI := ["b_", temp_cycstr[j]]; #hemispheric cycle
else
if AchOrCh = 1 then
tempSI := ["b_", temp_cycstr[j]]; #hemispheric cycle

else
if IsOddInt(temp_cycstr[j]) then
tempSI := ["a_", temp_cycstr[j]]; #homospheric cycle
else
tempSI := ["c_", temp_cycstr[j]]; #enantiospheric cycle

fi;
fi;
fi;
#Calculation of products of sphericity indices (PSIs)
tempSIX := JoinStringsWithSeparator(tempSI, "");
tempSIY := Indeterminate(Rationals, tempSIX);
tempCICF := tempCICF*tempSIY;
od;
#Display(tempCICF); #for debug
#Calculation of CI-CF (cycle index with chirality fittingness)
CICF := CICF + (1/no_elements)*tempCICF;
od;
#Display(CICF); #for debug
return CICF;
end; # end of function CalcCICF

##############################
# Achiral Part of CICF for G #
##############################
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CalcCICF_A := function(G, degree, degreefull)
local i, j, Orig_Grp, l_elements, no_elements, DegGr, DegCGr, CICF_A,
temp_cycstr, temp_cycstrX, AchOrCh, tempSI,
tempSIX, tempSIY, tempCICF;
Orig_Grp := G; #group to be examined
l_elements := Elements(Orig_Grp); #elements of Orig_Grp
#Display(l_elements); #for debug
no_elements := Size(l_elements); #order of Orig_Grp
#Display(no_elements); #for debug
#Degrees of Permutations
DegGr := degreefull; #degree of chiral and achiral parts,

#e.g. 6: [1,2,3,4,5,6]
DegCGr := degree; #degree of chiral parts, e.g. 4: [1,2,3,4]
if DegGr = DegCGr then
return false;
break;
fi;
#Chirality/achirality is determined by the final digit of temp_cycstrX
CICF_A := 0;
for i in [1..no_elements] do
temp_cycstr := CycleLengths(l_elements[i], [1..DegCGr]); #degree
temp_cycstrX := CycleLengths(l_elements[i], [1..DegGr]); #full degree
#Display(temp_cycstr); #for debug
#Display(temp_cycstrX); #for debug
#Display(Size(temp_cycstrX)); #for debug

AchOrCh := temp_cycstrX[Size(temp_cycstrX)]; #chiral 1; achiral 2
#Print("AchOrCh=", AchOrCh, "\n"); #for debug

#Determination of sphericity indices (SIs) of cycles
if AchOrCh = 1 then
tempCICF := 0;
else
tempCICF := 1;
for j in [1..Size(temp_cycstr)] do
if DegGr = DegCGr then
else
if IsOddInt(temp_cycstr[j]) then
tempSI := ["a_", temp_cycstr[j]]; #homospheric cycle
else
tempSI := ["c_", temp_cycstr[j]]; #enantiospheric cycle

fi;
#Calculation of products of sphericity indices (PSIs)
tempSIX := JoinStringsWithSeparator(tempSI, "");
tempSIY := Indeterminate(Rationals, tempSIX);
tempCICF := tempCICF*tempSIY;
fi;
od;
fi;
#Display(tempCICF); #for debug
#Calculation of CI-CF (cycle index with chirality fittingness)
CICF_A := CICF_A + (2/no_elements)*tempCICF;
od;
#Display(CICF_A); #for debug
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return CICF_A;
end; # end of function CalcCICF_A

#############################
# Chiral Part of CICF for G #
#############################
CalcCICF_E := function(G, degree, degreefull)
local CICF, CICF_A, CICF_E;
if degree = degreefull then
return false;
break;
fi;
CICF := CalcCICF(G, degree, degreefull);
CICF_A := CalcCICF_A(G, degree, degreefull);
CICF_E := CICF - CICF_A;
return CICF_E;
end; # end of function CalcCICF_E
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