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Abstract 

The Review traces the detailed development of the graph-theoretical, topological approach 
to the concept of π-electron ring-currents and bond-currents in conjugated systems and covers 
the period from its original proposal in the 1930s up to the present day. Semi-quantitative and 
quantitative comparisons are made between numerical predictions based on the concept of 
topological ring-currents and the results of several sets of ab initio calculations that have 
become available only over the course of the last five years.  This process reveals the remarkable 
ability of the topological approach to reproduce complex patterns of current in large polycyclic 
hydrocarbons and the surprising extent to which Hückel-based models can capture the essential 
features of the magnetic properties of delocalised systems. Ab initio procedures for the 
calculation of the magnetic properties of conjugated systems frequently depend first on the 
application of elaborate software in order to optimise starting geometries and then on the choice 
of wave-function basis-set employed; despite the appellation ‘ab initio’, such approaches thus 
still require prescriptions for specific wave-functions and possibly other assumptions.  It is, 
accordingly, claimed that, even with the present-day routine availability of ab initio 
calculations, the simple topological Hückel–London–Pople–McWeeny approach, dating back 
to the very early days of molecular-orbital theory, still has intuitive and even quantitative 
contributions to make to our understanding of the magnetic properties of conjugated systems. 
Application of this approach depends on knowledge only (a) of the molecular graph of the 
conjugated system in question (in the form of a vertex-adjacency matrix that describes its 
connectivity) and (b) of the areas of its constituent rings — and on no other parameters or 
procedures whatsoever. 

                                                           
1 RBM would like to dedicate this Review to his mentor in this field, Mr. C. W. Haigh, on the fiftieth anniversary of 

their initial collaboration in 1966 and in anticipation of CWH’s ninetieth birthday (on April 2nd, 2017). 
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1. Introduction and Scope 

In this contribution, we review the concept of topological ring-currents in conjugated 
systems and outline the historical development of ideas about them. We emphasise from 
the outset that the somewhat unfortunate use of the adjective ‘topological’ in this context 
is confined to its effectively being nothing more than a synonym for the description ‘graph-
theoretical’; accordingly, the term ‘topological’, as applied here, carries none of the 
connotations usually associated with algebraic topology per se (e.g., ref. [1]).  The 
appellation ‘topological’ is also liable to create even more ambiguity in the present context 
of magnetic properties in view of Gomes’s seminal and complete description [2] of the 
electronic probability current-density field in molecules under the influence of an external 
homogeneous magnetic field.  Nevertheless, we do, however, continue the practice of using 
the description ‘topological’ in this review, in deference to what has become common 

usage (e.g., refs. [3–12]) — it was initially invoked more than sixty years ago [3] and is 
now well established — even though, if the terminology were being devised anew in the 
modern era, we should prefer to call the subject of our review ‘graph-theoretical ring-
currents’. 

 That said, however, one area [13–20] of what might properly be called ‘graph-
theoretical ring-currents’ is expressly excluded from our consideration here: this is the 
approach based on the concept of what Randić [13, 17, 18] calls ‘conjugated circuits’ and 
what Gomes and one of the present authors (RBM) [14, 15] independently named ‘circuits 
of conjugation’. We shall instead be concentrating solely on the quantum-mechanical 
Hückel [9]–London [21–23] formalism (1937) of π-electron ring-currents, and on 
subsequent versions of it up to the present day. In its own right, the Hückel–London method 
[21–23] has previously featured prominently in numerous extensive reviews (see, for 
example, refs. [24–31]). We begin by setting the historical scene for the appearance of the 
Hückel–London approach [9, 21–23]. 

2. Before Hückel–London  

During the 1920s and 1930s a large body of experimental evidence accumulated for the 
belief that there existed a pronounced anisotropy in the diamagnetic susceptibility of 
benzene and other (geometrically) planar, conjugated hydrocarbons [28]. The component 
of this susceptibility perpendicular to the molecular plane was observed to be appreciably 
larger than that measured along each of two mutually perpendicular axes situated in the 
molecular plane itself, when the conjugated system in question is subjected to an external 
magnetic field with a component perpendicular to the plane containing the carbon atoms 
[28].  

 In the mid-1930s Linus Pauling [32], working at the California Institute of 
Technology, and Dame Kathleen Lonsdale [33], at the Royal Institution, London, 
independently, and almost simultaneously, presented formal calculations based on similar 
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models that purported to account quantitatively for this phenomenon. They both proposed 
that this manifest anisotropy in the diamagnetic susceptibility of such molecules might be 
explained by a model in which inter-atomic currents arise, as Pauling [32] put it, from the 
ability of the π-electrons in benzene to pass ‘ . . . almost imperceptibly from the field of 
one carbon atom to that of the next . . .’, in a preferred sense around the ring. Dame Kathleen 
[33] argued that the excess diamagnetism at right angles to the molecular plane in benzene 
‘. . . is due solely to, and is the entire contribution of, the precession of the π-electron orbits 
. . .’ and she further observed that such electronic movement ‘. . . is implicit in the theory 
of molecular orbitals, as applied by Hückel [34] to aromatic and unsaturated molecules.’ 
Moreover, Pauling [32] classically invoked Maxwell’s Rules and Kirchhoff’s Conservation 
Law [19, 35] and treated a general conjugated system in the presence of an external 
magnetic field as if it were a microscopic version of a macroscopic Kirchhoff network with 
a fall of electrical potential applied across it (cf. ref. [29]). The work of these two eminent 
scientists demonstrates a classic ‘priority issue’: Lonsdale [33] published in the 
Proceedings of the Royal Society of London and Pauling [32] published in the (then) 
recently established Journal of Chemical Physics which, in those days, had a shorter 
publication time [29, 30]. Lonsdale wrote, in her Introduction to ref. [33]: ‘This work was 
begun and completed and the following paper written, in ignorance that Pauling was 
making the calculations described in his recent paper, and it therefore adds independent 
evidence in favour of the essential principle.’  Pauling’s paper was received by the 
American Institute of Physics on July 11th, 1936, and published in the October issue of the 
Journal of Chemical Physics; Dame Kathleen’s contribution was received by the Royal 
Society, in London, on October 21st, 1936, but was not published until March 2nd, 1937. 
Many more authors, therefore, over the years, have acknowledged only Pauling than have 
recognised the two proponents of this model. This dichotomy continues even to the present 
day — witness Kutzelnigg’s otherwise impeccable recent essay entitled ‘What I like about 
Hückel Theory’ [36]. 

 It should, however, be emphasised that, although Pauling [32] and (less so, as 
noted) Lonsdale [33] are traditionally credited with the concept of ‘inter-atomic currents’ 
in these situations, such suggestions did not just suddenly appear from nowhere, in their 
work: precursors of such ideas had in fact previously been mooted by others [28]. Some 
three or four years earlier Ubbelohde [37] had explicitly stated that what are now known 
as the π-electrons in certain three-ring and four-ring condensed benzenoid hydrocarbons 
that had then just been shown (by Iball and Robertson [38]) to be geometrically planar ‘. . 
. have a certain possibility of movement to other nuclei within the same molecule. . .’ and 
that this would lead to an expected anisotropy in magnetic susceptibility. Ubbelohde [37] 
also made comparisons with the theory of metallic bonding, delocalisation effects in which 
were then being examined by Peierls [39]. These hypotheses and suggestions had certain 
parallels with analogous, and even earlier, ideas of Ehrenfest [40] and of Raman [41]. 
Accordingly, although Linus Pauling [32] and Dame Kathleen Lonsdale [33] are usually 
credited with what is now known as the ‘ring-current’ model — though they emphatically 
did not use that term, which arose [in English] only 15–20 years later [42, 43], and in French 
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(‘courant annulaire’) within a year [22] — it should be borne in mind that even they (like, 
apocryphally, Sir Isaac Newton himself) ‘. . . stood on the shoulders of giants’. 

 Furthermore, despite the appearance, five years earlier, of Hückel’s revolutionary 
ideas [34, 9] on unsaturated hydrocarbons, and the (then) recent availability of Van Vleck’s 
celebrated quantum-mechanical treatise on magnetism [44], the theoretical treatments 
offered by Pauling [32] and by Lonsdale [33] were both ‘avowedly classical’ [28–30] in 
nature, relying, as they did, on the phenomenon of Larmor precession and on formulae 
derived from the classical Langevin scheme [28]. It was London [21–23], in 1937, who 
successfully coalesced the quantitative classical ideas of Pauling [32] and Lonsdale [33] 
— and the qualitative deliberations of their predecessors [37–41] — with Hückel’s 
contemporary theory [34] of molecular orbitals, finally to give an elegant quantum-
mechanical rationalisation of the observed anisotropy in the magnetic susceptibility of 
conjugated systems. London’s main account was a substantial publication [21] in the 7th 
series of Journal de Physique et le Radium but, in addition, he heralded this with two 
shorter communications — presumably for the purposes of wider dissemination of his 
message — aimed, respectively, at European, and at American, readers: a contribution to 
the 1937 Comptes Rendus (Paris) (in French) [22] and a note in the Journal of Chemical 
Physics (in English) [23]. It is to the London approach [21–23] that we now turn attention 
for much of the rest of this review. 

3. The Hückel–London Approach 

In this section we give just the bare bones of the London method that are going to be needed 
in the subsequent discussion: readers requiring further details are referred to London’s own 
papers [21–23] and to numerous reviews that have become available over the course of 
many years (e.g., refs. [24–31] and [45] & [46]). For the world-historical context of this 
work in the form of a detailed account of London’s life and times a detailed biography by 
Gavroglu may be consulted [47], while Hückel’s circumstances and career during the 
turbulent decade of the 1930s are well documented in the book by Berson [48]. 

 The essence of London’s approach was to show that, when a planar conjugated 
system is in the presence of an external magnetic field with a component at right angles to 

the molecular plane, the non-zero off-diagonal elements,β pq , p q≠ , of the Hückel secular 

determinant [9, 34] are modified from the corresponding field-free values, (0)β pq , by 

imaginary exponential phase-factors that depend on the external magnetic field and on 
certain geometrical areas.  Thus (e.g., ref. [49]): 

 
2πi(0)β β e pqf

pq pq=  (1), 

where  
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pq pq

eB
f S

hc
=  (2), 

in which 0B  is the magnitude of the component of the external magnetic field perpendicular 

to the molecular plane and pqS is the area of the triangle formed by the (arbitrarily selected) 

origin, in the molecular plane [50], and the vertices (carbon atoms) p and q of the 
conjugated system being considered; (e, h, and c are the usual constants with these symbols 

and i = √−1).  It is important to note that pqS is an algebraical area — that is, Sqp = –Spq. 

It can then be shown [21–31] that (in modern units and symbolism, consistent with the 

Système International) the molecular diamagnetic susceptibility, χπ , arising from the inter-

atomic π-electron currents — what might be called ‘the London contribution to magnetic 
susceptibility’ —  is given by 

 
0

2

0 2
0 0

χ
B

E

B

π
π µ

=

 ∂
= −  

∂ 
 (3), 

where 0µ is the permeability of  a vacuum, and Eπ is the total magnetic energy, itself 

defined by 

 K K
K

E Eπ ν=∑  (4), 

in which Kν is the electron occupation number of the orbital with energy KE when the 

Aufbau process has been applied [10, 12, 51–53]. 

 In the light of all the experimental activity reviewed in the preceding section 
London [21–23] was of course entirely concerned solely with the overall magnetic 
susceptibilities of the conjugated systems that he studied, applying his method to calculate 
the π-electron contribution (the ‘London contribution’) to the diamagnetic anisotropies of 
benzene, diphenyl, naphthalene, phenanthrene and pyrene. He did not feel the need to 
compute individual ring-current intensities in the several rings of such systems: the impetus 
for that activity did not arise until the advent of 1H-nuclear-magnetic-resonance (NMR) 
spectroscopy, some twenty years later, in the early 1950s [54]. Subsequent work [25–31] 
did, however, show that, in the London method [21–23], the individual ring-current 

intensity, iJ , in the ith ring may be represented by 

 i
i

e E
J

h f

π ∂
= −  ∂ 

 (5), 

where 
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 (6), 

and iS  is the signed area of the ith ring of the conjugated system; in the case of a closed-

shell system, by combining equations (4) and (5) we may write the latter thus [20, 29]: 

 
occ

1

2 K
i

K i

Ee
J

h f=

 ∂
= −  ∂ 

∑  (7). 

Furthermore, for a system comprising r rings, the quantity χπ in equation (3) — the 

quantities that London was primarily interested in — may be cast in terms of the individual 

ring-currents, { }iJ , as [29]: 

 0

(rings)0
1

χ
r

i i

i

S J
B

π µ

=

 
 =   
 

∑  (8). 

Finally, as Gomes and one of the present authors (RBM) have emphasised [29], if benzeneχπ

stands for the ‘London’ contribution to the diamagnetic susceptibility of benzene, 

perpendicular to its molecular plane (calculated from equation (8)), whilst benzeneS

represents the area of a standard benzene hexagon and benzeneJ  is the ring-current intensity 

calculated, by the same method, for benzene, then the following pleasingly simple result 
[29] is obtained: 

 
π

π
(rings)benzene benzene benzene

 = 1

χ

χ

r
i i

i

S J

S J

    
=    

    
∑  (9). 

 The equivalent of equations (3), (7) and (9) was applied by London [21–23] to the 
several condensed, benzenoid hydrocarbons mentioned above, thereby providing the first 
quantum-mechanical account of the diamagnetic anisotropies in these fundamental 
conjugated structures.  

 Two years later, however, World War II intervened — an event that had 
considerable effect on London’s personal life [47] — and, pre-1941, there was one 
application by Squire [55], in 1938, (which studied coronene by London’s method), two by 
Brooks [56, 57] (investigating the relevance of overlap integrals in the context of London’s 
method), and the introduction of the free-electron (‘box’ [‘Kasten’]) model [58], by 
Schmidt (e.g., ref. [59]). After that, little more was done on the subject until the late 1940s 
and early 1950s. When activities did resume, a decade after London’s original papers [21–
23], this was largely in France (where London had taken refuge [47] at the time when he 
wrote his 1937 papers [21–23]) and in the United Kingdom. The French work [24, 60–66] 
was largely by Berthier, Mayot, Bergmann, Bernard Pullman, Alberte Pullman, Hoarau, 
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and Pacault, and the British contribution was almost exclusively due to McWeeny [42, 67–
70]. Rogers [71], and Evans, De Heer & Gergely [72] and Pauncz & Berencz [73, 74] also 
applied or discussed the London method during this immediate post-war period. Some of 
this concerned the minutiae of the pre-war work: for example, Rogers [71] claimed that 
there were errors in Squire’s results [55] on coronene, and McWeeny [42] later expressed 
satisfaction that this discrepancy had eventually been resolved. It may be noted in passing 
that the value (9.796) quoted by McWeeny [42] 65 years ago in 1951 for the diamagnetic 
anisotropy of coronene, expressed as a ratio to the benzene value, is consistent (to within 
four digits in the third decimal-place) with the most-recent [31] topological ring-current 
values for coronene (1.038 for the inner ring, 1.459 for the six outer rings). These are the 
result of a modern, double-precision computer calculation reported by the present authors 
in ref. [31]; (this agreement arises because, on applying equation (9), above, we see that 
(1×1.038) + (6×1.459) = 9.792 — to be compared with McWeeny’s value [42] of 9.796). 
This is also consistent with another modern (and independent) calculation, by Aihara [75]. 

4. The 1950s — Pople & McWeeny 

As has been observed by Haigh and one of the present authors (RBM) [28], there are two 
distinct processes for calculating the ‘London’ magnetic susceptibility [21–23] of a 
conjugated system: either directly, from the eigenvalues and eigenvectors of the modified 
secular determinant [9, 34] (via equation (3)) and knowledge of an assumed molecular 

geometry — this was the approach adopted by London himself [21–23] — or χπ can be 

computed, by means of equation (9), via an intermediate calculation of the π-electron ring-
currents associated with each individual ring of the conjugated system in question (together 
with, once again, knowledge of an assumed molecular geometry). 

 The motivation for considering intermediate ring-currents arose only when the 
phenomenon of NMR spectroscopy more widely presented itself in the early 1950s [28, 
43, 54]. This caused Sir John Pople [76], in 1956, to resurrect the Pauling–Lonsdale model 
[32, 33] of 1936/1937 and extend it so that, in addition to explaining diamagnetic 
anisotropy, it was also able to account for the 1H-NMR downfield-shifts of in-planar 
protons in conjugated molecules such as benzene [76] and in polycyclic conjugated systems 
[43]. Pople’s first contribution [76] was unashamedly classical, along the lines of Pauling’s 
[32] and Lonsdale’s [33] formulations on benzene, and, with Bernstein and Schneider [43], 
he extended these investigations to polycyclic systems. One of the present authors (RBM) 

has claimed that the latter study was the first explicitly to use the term ‘ring current’ (in 
English), in this context [30]. This assertion is in fact not correct, as we now find that the 
term was used at least five years earlier — by McWeeny, during the course of his classic 
work reported in ref. [42] and discussed above. In addition, it may be noted that London 
had already used the French equivalent of the term ‘ring current’ — ‘courant annulaire’ 
— in one [22] of his classic papers from 1937. 
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 Very soon afterwards, however, in 1958, Pople did offer a quantum-mechanical 
model of π-electron ring-currents, based on the Hückel–London approach [21–23], in a 
seminal paper entitled [77] ‘Molecular Orbital Theory of Aromatic Ring Currents’ 
published in Volume 1 of Molecular Physics. Independently, in an article in the same 
volume of the same journal entitled ‘Ring Currents and Proton Magnetic Resonance in 
Aromatic Molecules’, McWeeny published an alternative (but equivalent) approach [78] 
to the calculation of relative ring-current intensities — also based on the Hückel–London 
formalism [21–23] — that was expressly tailor-made for application to the (then) recently 
established phenomenon of 1H-NMR (e.g., refs. [28, 43 & 54]).  

 Before discussing these classic contributions to the field, we just make mention of 
an advance that should chronologically be placed in the early 1950s (May 16th, 1953, to be 
precise) but which was not known to a wider public for some 35 years. In a hand-written 
manuscript bearing the said date [79], a mentor of one of the present authors (RBM), the 
late Professor C. A. Coulson, FRS, cast the London theory [21–23] in terms of his own 
contour-integral formulation [80] of the Hückel model [9, 34]. In 1953, Coulson was 
presumably inspired by the contemporary work going on in France [24, 60–66] and in 
England [42, 67–70], already mentioned: he does indeed make reference to some of these 
papers in the document in question [79]. Especially connected with it is McWeeny’s [42] 
pioneering work of two years earlier, which also invoked a Coulson contour-integral 
approach [80]. As Haigh and one of the present authors (RBM) have pointed out [28], 
Coulson’s 1953 contour-integral formulation [79] of the Hückel–London formalism [21–
23],  being based, as it is, on bond-bond polarisabilities (discussed later), ‘. . . provides an 
interesting parallel to certain aspects of the McWeeny polarisability method [78]. . .’, which 
was to emerge five years later, although the former ‘. . . does not provide for the explicit 
computation of individual “ring current” intensities nor . . . (since it preceded the 
experimental observation [43, 54]) for direct calculation of “ring current” secondary fields 
(and hence 1H-NMR chemical shifts).’ Coulson’s contribution [79] of May 16th, 1953 did, 
however, remain unpublished and it came to light only when, more than twenty years later, 
one of us (RBM) was helping Mrs. Coulson to sort and catalogue her late husband’s papers 
after the latter’s death (which occurred on January 7th, 1974). Even then, Coulson’s hand-
written manuscript was not at the time explicitly made public, it being simply deposited 
with the rest of his papers in the Coulson Collection held by the Department of Western 
Manuscripts at the Bodleian Library, University of Oxford [79]. Some fifteen years after 
Professor Coulson’s demise — and more than 35 years after he had assembled his original 
notes — Mizoguchi [81] independently published a further elegant exposition of the 
London method [21–23] in terms of the Coulson contour-integral formalism [80]; it was 
therefore decided (with Mrs. Coulson’s permission) to write up and publish Coulson’s 
contribution which, up till then, had been ‘private’. This project was achieved in 
collaboration with Professor Brian O’Leary, another former member of Professor 
Coulson’s group, and the result was published (as what was designated as a ‘Special 
Paper’) in the 1989 Journal of Mathematical Chemistry [49]. 
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 What Pople [77] and McWeeny [78] did in their respective 1958 modifications of 
the original Hückel [9, 34]–London [21–23] formalism had slightly different emphases: 
Pople [77] was concerned with calculating individual ring-current intensities and, in order 
to effect this, he offered an expression (equations (2.23), (2.24) and (3.4) of ref. [77], which 
amount to equation (82) of ref. [28]) that — at least, implicitly — is equivalent to our 
equation (7), above. McWeeny [78], by contrast, was more interested in accounting for 1H-
NMR chemical shifts by a direct quantum-mechanical calculation of the total secondary 
magnetic field at a given peripheral proton in a conjugated molecule, due cumulatively to 
the influence of the ring currents in each and every one of the several rings within such a 
polycyclic system. McWeeny did this by introducing a ‘test dipole’ [78, 82–84] and he 
presented essentially three (numerically equivalent) versions of his theory [78];  

(i) one (represented by equations (4.4) and (4.5) of ref. [78]) in which the secondary 
magnetic field at a peripheral proton is estimated as a sum of contributions due 
to the bond currents in each of the individual carbon–carbon bonds in the 
conjugated system under study, and 

(ii) one (embodied in equations (4.4) and (5.4) of ref. [78]) that involves a 
summation over a certain set of r cycles within the r-ring system (the so-called 
Fundamental System of Cycles, to be discussed later), and 

(iii) one (equation (6.1) of ref. [78]) in which a sum is effected, over the r rings 
possessed by the structure, of all the contributions due to the ring currents in 
each of its individual rings — though without necessarily invoking any 
intermediate explicit calculation of actual numerical ring-current intensities per 
se. 

The latter two versions were achieved by devising and applying a clever unitary 
transformation on the basis orbitals in such a way that all the perturbation brought about 
by the presence of the external magnetic field with a component normal to the molecular 
plane is concentrated into just one bond in each ring of the conjugated system under study 
— the so-called ‘circuit/cycle-completing’ bonds (e.g., refs. [29–31 & 78]), discussed later. 
This transformation not only simplified the calculation but demonstrated that the presence 
of what McWeeny called ‘closed circuits’ of carbon atoms in the conjugated system under 
study is a necessary requirement for ring currents to arise at all, and that, ‘ . . without such 
circuits, the [external] field has no effect . . .’ in exciting ring currents [78]. Pople [77] had 
also explicitly demonstrated a similar result, in a different (but equivalent) way, and he 
concluded that ‘. . . if there are no closed cycles of bonds (as in linear polyenes for 
example), all solutions . . . will be independent of the magnetic field, corresponding 
physically to the absence of ring currents’.  Many years earlier, London himself [22] had 
further pointed out that the electrons in a cyclic, but saturated, system (such as 
cyclohexane) ‘. .  au contraire . . . ne donnent donc, dans un champ magnétique, naissance 
à aucun courant annulaire résultant.’ This translates as ‘. . . so [such electrons], on the 
contrary, in a magnetic field, give rise to no resultant ring-current’. Note incidentally that 
this quotation also clinches the first use of (the French equivalent) of the term ‘ring current’. 
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 As already remarked, although an expression for ring-current intensity is implicit 
in equation (6.1) of ref. [78], McWeeny [78] did not explicitly formulate calculation of 
individual ring-current intensities by his method. However, a straightforward extension by 
one of the present authors (RBM) provided for this. Two versions were given: one [84] a 
generalised expression that can be used if variable Hückel Coulomb and resonance 
integrals [9, 34] are to be invoked, and another [85], which is a simplified special case of 
the first, that is appropriate if all Coulomb and resonance integrals, in whatever conjugated 
structure be considered, are set at the respective standard values for benzene.  In view of 
the ‘topological’/‘graph-theoretical’ approaches almost exclusively being reviewed here, 
this second, simplified, version is the one presented in equation (10), for the moment. (The 
full version will, however, arise later, as equation (12), when extensions to this method are 
considered.) 

� ����	
�	
	� = 9 ��[���� +  βπ�������]������� ����� + � � βπ�������[��������� + ����� ����] ����� �� ! 

 (10). 

The {����} are the standard Coulson bond-orders [9] of the individual circuit/cycle-

completing bonds [31] and the {π�������} and {π������� } (which are self- and mutual 

imaginary bond-bond polarisabilities [78, 85], respectively, of such bonds) are all 
quantities that are calculable (a) from the (field-free) Hückel energy-levels and LCAO-MO 
coefficients and (b) from knowledge of an electronic ground-state for the structure, as 
constructed from the Aufbau process [10, 12, 51–53], and as described in detail in, for 
example, refs. [78, 84 & 85] (especially Appendix A of that latter reference), and refs. [29–
31], and also as prescribed in the equations below.  For the bonds between carbon atoms r 
and s and between carbon atoms t and u: 

   ��$%� =  �   &' ('$ ('%    
)

'*+  

(11) 

and π��$%��,-� =  π$%,,- −  π$%,-, + π%$,-, −  π%$,,- 

 (12), 

where 

π$%,,- =  2 β  � � (0$ ('% (', (0-10 −  1'
)

'*23+
2

0*+  

 (13), 
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where the orbitals 1 to M are (doubly) occupied and N is the total number of orbitals. In 
equations (11) and (13), 45'6'*+,7,...,) (= 4�('+ ('7 . . . , (')�96'*+,7,...,)) is the set of eigenvectors 

of the vertex-adjacency matrix [86] of the (N-vertex) molecular graph [11] (i.e., the 
standard, field-free LCAO-MO Hückel coefficients [9]), 41'6'*+,7,…,), is the family of 

eigenvalues of that molecular graph (that is, the Hückel energy levels, when expressed in 
the conventional [9] form ;' =  α +  1'β�, and 4&'6'*+,7…,) are the energy-level/eigenvalue 

occupation numbers, obtained by an application of the Aufbau Principle [10, 12, 51–53]. 

 The meaning of the term ‘circuit/cycle-completing bond’ will become clear in the 
course of studying the example that follows. Also in equation (10), it is important to note 

that the {����� } are purely topological in nature (and will also be discussed later) but that 

the quantities {����} are, by contrast, geometrical, because they depend on the areas of the 

several individual rings comprising the polycyclic conjugated system in question. 

5. Worked Example of Application of the McWeeny Method 

In a recent account [31], the present authors gave an extended example of equation (10)’s 
application to a seven-ring system (coronene); earlier, Gomes and one of us (RBM) 
illustrated an application of the method to the four-ring benzenoid hydrocarbon pyrene [29, 
30] (originally presented in ref. [45]) while a later work [87] illustrated the method as 
applied to the carcinogen 3,4 benzopyrene. We present a simpler example here, which 
should make McWeeny’s methodology [78] even more clear because — as in the case of 
McWeeny’s original example (naphthalene) [78] — the molecule in question has a small 
enough number of rings (just two) that, once the required molecular-orbital quantities have 
been computed, the ‘master’ equation ((10)) can be applied to it ‘by hand’, ‘on the back of 
an envelope’, as-it-were, without having to invoke extensive arithmetical electronic 
computation. The detailed steps of the calculation should, accordingly, be easier for the 
reader to follow. We therefore now perform a calculation by the McWeeny method [78] on 
the paradigm non-alternant two-ring system azulene, with its carbon-atoms and its rings 
numbered as in Figure 1. (This structure was, incidentally, the one used by Pople, in his 
original paper of 1958 [77], in order to demonstrate application of his own method [77], 
computationally numerically equivalent to McWeeny’s [78], which appeared later that 
same year.) It is hoped that the example may serve to justify a previous claim [87] of one 
of the present authors (RBM) — who, like Kutzelnigg [36] has an unashamed attachment 
to the HMO method — that the McWeeny formalism is ‘. . . one of the most exquisite 
applications of Hückel Theory’ [87]. 
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Figure 1.  A (vertex-) labelled molecular graph [11] of azulene, with ring labellings added. 

 From here onwards it will be necessary to move more formally into the language 
of Graph Theory [11, 12, 86, 88, 89]. We shall therefore refer to Figure 1 — though without 
the added embellishments ‘Ring 1’ and ‘Ring 2’— as the (arbitrarily) labelled molecular 
graph of azulene. A Chemist would say that azulene has two rings: a Graph-Theorist [88] 
would say that the molecular graph of azulene is of circuit rank 2.  Accordingly, in order 
to apply the McWeeny method [78] it is first necessary to delete exactly two bonds (in the 
graph-theoretical language: edges) from the molecular graph in such a way as to leave a 
structure in which all the original carbon-atoms (in graph-theoretical language: the 
vertices) are still joined by edges (bonds) but the graph now no longer contains any closed 
circuits of vertices. Such an object (shown in Figure 2) is known as a spanning tree of the 
original molecular graph [31, 90–92]. In the case of azulene, there are 34 different ways 
[90–92] in which this could have been done and the way illustrated in Figure 2 has resulted 
in a path through the vertices that constitutes what McWeeny [78]  called a ‘. . .  chain 
which is continuous and open . . .’ — that is, without branches. (In graph-theoretical 
language: we have chosen a semi-Hamiltonian path [31, 85, 93] through the original 
molecular graph of azulene.)  
 

 
Figure 2. A continuous, unbranched spanning-tree of the azulene molecular graph depicted in 
Figure 1. 
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Figure 3. (Above): The continuous, unbranched spanning-tree (shown in Figure 2) of the labelled 
molecular graph of azulene depicted in Figure 1; (Below) the Fundamental System of Cycles [31, 
88] associated with this spanning tree. 

This was the procedure originally prescribed by McWeeny [78] when applying his unitary 
transformation on the basis orbitals. A later unitary transformation proposed by Gayoso 
and Boucekkine [94] enabled a branched spanning-tree to be chosen, if necessary (or, if 
not actually necessary, if desired). We shall give an example of the McWeeny [78] 

/Gayoso–Boucekkine [94] method, applied to such a spanning tree, a little later. 

 The next stage is to re-insert the removed edges, singly and one at a time, and to 
consider the closed circuits that are, thereby, re-formed. We also agree to associate a sense 
with each ‘circuit-completing bond’ by defining its direction as being from the vertex of 
higher number to the vertex of lower number, in the bond. (The opposite, or no, convention 
could equally well have been used, however.) The lower part of Figure 3 then shows what 
is known in Graph Theory as a Fundamental System of Cycles [31, 88] for the spanning 
tree depicted in Figure 2 (and at the top of Figure 3) — a ‘cycle’ being taken to mean a 
‘circuit’ that has a sense of direction — clockwise or anti-clockwise — associated with it 
[31, 95, 96]. (It may, incidentally, be noted in passing [31] that this is precisely the 
procedure adopted by Kirchhoff [19, 35] in his classic work on macroscopic electrical 
networks, more than 160 years ago.) 

 Referring back to equation (10) we are now in a position to define the quantities 

{����} and {����� }. ���� is the area created when the μth cycle-completing bond (only) is 

inserted into the chosen spanning-tree and this area is counted as positive if the direction 
of the arrow on that cycle-completing bond points in the anti-clockwise sense around the 
cycle that it completes and negative if the direction of its arrow points in the clockwise 
sense around the cycle that it completes. Thus, from Figure 3, ��+� is the area of a standard 

seven-membered ring with side equal in length to the carbon–carbon bond-length in 
benzene — i.e., ��+� = 1.398693552 benzene-hexagon units — and ��7� is equal to  (minus)  
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the  area  of  a regular  pentagon  of  that  same  side-length;  hence,  ��7�  =  –0.662212060 

benzene-hexagon units. The quantity �����  in equation (10) is +1, –1 or 0, according to the 

following rules: 

(a) �����  = +1 if ring i is contained within the cycle completed when the μth cycle-

completing bond (only) is inserted, and the arrow borne by that cycle-completing 
bond points in the anti-clockwise sense around the cycle that it completes; 

(b) �����  = –1 if ring i is contained within the cycle completed when the μth cycle-

completing bond (only) is inserted, and the arrow borne by that cycle-completing 
bond points in the clockwise direction around the cycle that it completes; 

(c) �����  = 0 if ring i is not contained within the cycle completed when the μth cycle-

completing bond (only) is inserted. 

With these definitions, it can be seen from the Fundamental System of Cycles shown in 

Figure 3 that, in this case, ��+�+   = +1; ��+�7  = 0; ��7�+  = 0; and ��7�7  = –1.  The two bond-orders 

required are  ��+� = 0.5857956297 and ��7� = 0.5956317960 and the two imaginary, self-

bond-bond polarisabilities needed are βπ��+��+�  =  –0.5292672672 and βπ��7��7�  =   

–0.5292672667.  The one mutual imaginary bond-bond polarisability wanted is βπ��+��7� (= βπ��7��+�) = – 0.0599151042. The necessary bond-orders are calculated from equation (11) 

and the imaginary bond-bond polarisabilities required are evaluated by means of equations 
(12) and (13); both the bond orders and the polarisabilities are computed from the 
unperturbed, field-free Hückel energy-levels and the LCAO-MO coefficients [9, 34], as 
well as from a knowledge of the ground-state π-electronic configuration, determined by an 

application of the Aufbau process [9, 10, 12, 51–53]. 

 Finally, in the case of the two-ring system (azulene) being dealt with here, the 
summations and multiple summations featuring in our ‘master’ equation (10) may be 
dropped, and explicit expressions for the ring-current intensities in Ring 1 and Ring 2 of 

azulene (expressed as a ratio the ring-current intensity in benzene — equal to 
1

9
− , in these 

units [31, 78], hence the factor of 9 in equations (10) and (14) — may explicitly be written 
out in full, as follows: 

= '>'?@AB@A@C = 9{[��+� +  βπ��+��+�]��+���+�+  + [��7� +  βπ��7��7�]��7���7�+  + βπ��+��7�[��+���7�+ + ��+�+ ��7�]} 

= 'D'?@AB@A@C = 9{[��+� +  βπ��+��+�]��+���+�7  + [��7� +  βπ��7��7�]��7���7�7  + βπ��+��7�[��+���7�7 + ��+�7 ��7�]} 

 (14) 

When all the data provided above are inserted into equations (14), it is found that the 

relative ring-current intensity in the seven-membered ring, = '>'?@AB@A@C,  is 1.068706423 and 
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that in the five-membered ring is calculated to be 1.149752354 — agreeing, when rounded 
to three decimal-places, with the values originally published by Pople [77] (though not 
actually calculated by the McWeeny [78] method but rather by an application of Pople’s 
own method [77]) and also agreeing with values recently re-calculated (using the 
McWeeny approach [78]) in a double-precision calculation carried out by the present 
authors [97]. This again empirically illustrates that the Pople [77] and McWeeny [78] 
methods, though superficially different, are in fact entirely equivalent, numerically, when 
comparable Hückel conventions are adopted and the same assumptions are made about 
molecular geometry. 

 It may be noted that any one of the 34 spanning trees [31, 90–92] of the azulene 
molecular graph (Figure 1) could have been selected as the starting point: for example, 
another unbranched spanning-tree which, in fact, also represents a semi-Hamiltonian path 
[31, 85, 93] through the original molecular graph shown in Figure 1, is illustrated in Figure 
4, along with the Fundamental System of Cycles [31, 88] that is associated with it. 

  

 

Figure 4. (Above): A second unbranched spanning-tree of the labelled molecular graph of azulene 
shown in Figure 1; this spanning tree is an alternative to the unbranched spanning-tree depicted in 
Figure 2. (Below) the Fundamental System of Cycles [31, 88] associated with the above spanning 
tree. 

The relevant data needed here in order to apply equations (14) are now as follows: ��+�  =  0.4009446296; ��7�  =  0.5956317960; βπ��+��+�  =  – 0.3978799460;  βπ��7��7�  = 

–0.5292672670; βπ��+��7� = 0.0064494251; ��+� = –1.398693552 benzene-hexagon units; ��7� = (0.662212060 + 1.398693552) = 2.060905612 [the sum of the area, in benzene-

hexagon units, of a regular five-membered ring and a regular seven-membered ring of the 

same side length]; ��+�+   = –1; ��+�7  = 0; ��7�+  = +1; and ��7�7  = +1. When these data are 

inserted into equations (14), the values 1.068706426 for the seven-membered ring, and 
1.149752346 for the five-membered ring, are obtained.  These agree with the results of 
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previous calculations in the first seven or eight decimal-places and thus they certainly 
round to the same three-decimal-place values — traditionally reported for topological ring-
currents [87] — as have previously, and independently, been obtained for azulene [77, 97]. 

 For completeness, we conclude this illustrative example by carrying out the 
calculation one more time but, on this occasion, basing it on a branched spanning-tree 
which, therefore, does not represent a semi-Hamiltonian path [85, 93] through the azulene 
molecular graph [31, 85, 93]. This situation was not explicitly dealt with by McWeeny [78] 
but Gayoso and Boucekkine [94] showed how McWeeny’s unitary transformation [78] can 
be generalised in order to encompass this case. The present authors have found from 
practical experience that, with persistence, a continuous (‘non-branched’) spanning-tree 
can be found through the molecular graphs of most conjugated systems commonly 
encountered, but not always [31, 85]: the Gayoso–Boucekkine transformation [94] 
therefore comes into its own in such cases — please see refs.  [31 & 85] for discussion of  
this aspect. One practical repercussion is that the use of branched spanning-trees can 
frequently reduce the round-off error [31] in the calculation of topological ring-currents 
because, in general, each ring appears less frequently in the intermediate calculations than 
it does when the computation is based on a non-branched (‘continuous’) spanning-tree.  
Figure 5 shows a branched spanning-tree and the Fundamental System of Cycles [31, 85, 
88] associated with it. 
 

 
 
 

 

 

 

 

Figure 5. (Above): A branched spanning-tree of the labelled molecular graph of azulene shown in 
Figure 1. (Below): the Fundamental System of Cycles [31, 85, 88] associated with the above 
spanning tree. 
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The relevant data needed here in order to apply equations (14) are as follows: ��+�  =  0.6388989804; ��7�  =  0.6560392954; βπ��+��+� =  – 0.5823686174;  βπ��7��7�  = 

–0.5896747660; βπ��+��7� = –0.0599151041; ��+� = –1.398693552 benzene-hexagon units; ��7� = 0.662212060 benzene-hexagon units; ��+�+   = –1; ��+�7  = 0; ��7�+  = 0; and ��7�7  = +1. 

When these data are inserted into equations (14), we obtain ring-currents 1.068706427 for 
the seven-membered ring, and 1.149752347 for the five-membered ring.  These agree with 
the previous estimates in the first eight decimal-places and so they again round to the same 
three-decimal-place values as have been obtained above, and in previously published 
independent calculations on this structure [77, 97]. The results are summarised in Figure 6, 
in which the diamagnetic ring-current in each of azulene’s two rings are appropriately 
shown circulating in an anti-clockwise direction around that ring.  

 
Figure 6. Summary of results of a McWeeny [78] ring-current calculation on azulene (Figure 1) 
when the constituent rings are assumed to have the areas of the corresponding regular polygons of 
side equal to the carbon–carbon bond-length in benzene.  The ‘topological’ ring-currents are 
dimensionless quantities because they are expressed as a ratio to the corresponding ring-current 
intensity calculated, by the same method, for benzene. 

 So far as bond currents are concerned, by virtue of Kirchhoff’s Law of Conservation 
of Current at a Junction [19, 35], there is a flow of magnitude 1.069 in the directions 
indicated in the bonds — in Figure 6 — (7→1), (1→2), (2→3), (3→4), (4→5) and (5→6) 
and a bond-current of magnitude 1.150 in the bonds (6→10), (10→9), (9→8) and (8→7). 

Because of the electronic competition in the bond (6–7), which is shared between the two 

rings, the net direction of flow of a current of magnitude 0.0081 (= 1.150 – 1.069) is in the 
direction 7→6. As Pople pointed out originally [77] (when he presented a calculation on 
azulene in order to illustrate application of his own method [77]), although the ring-current 
intensity in the seven-membered ring is the smaller (by some 7%, below that in the five-
membered ring), this ring will, nevertheless, make the greater contribution to the London 

contribution to χπ , by virtue of its much larger ring area; this is more than twice the area 

of the five-membered ring — approximately 1.399 benzene hexagons for the seven-
membered ring compared with ca. 0.662 benzene-hexagon units for the five-membered 
ring. This observation is evident, from example, from a consideration of equation (9). 

 Finally, bearing in mind that, as previously observed, in the case of azulene there 

are 34 graph-theoretically distinct spanning-trees [90–92] on which the ring-current 
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calculation could have been based, we draw attention to the following previous remarks 
[31] of the present authors that  

 ‘. . . an HLPM ring-current calculation that capitalises on the McWeeny [78] and Gayoso–
Boucekkine [94] unitary-transformations on the basis orbitals can be effected by beginning the 
computation starting from any spanning-tree whatsoever. This means, in the case of Coronene [31], 
that any one of 176400 spanning trees may be selected as the starting point. Furthermore, the 
remarkable fact is that, because of the myriad of relationships [46, 78, 81, 84] that exist between 
the Coulson bond-orders and the self- and mutual imaginary bond-bond polarisabilities for the 
‘circuit-completing’ bonds, the final calculated ring-current intensities are independent of this 
overwhelming choice of starting spanning-tree that is available. No matter what spanning tree is 
chosen, the same ring-current intensities will, in the end, always result.’ 

6. The early 1960s – the late 1980s 

A few years after McWeeny’s work [78], Veillard, in a much-neglected paper [98], 
elegantly adapted it so that it could be applied to hetero-conjugated systems and to calculate 
ring currents in hydrocarbons without the restriction of having all resonance integrals [9] 
the same as the benzene value (or, indeed, having all Coulomb integrals [9] the same as the 
benzene Coulomb integral). Veillard’s extension [98] can be expressed by the formulation 
below (first explicitly presented in ref. [84]) :  

� ����	
�	
	� = 9 ��[����E��� +  βπ�������E���7 ]������� �����

+ � � βπ�������E���E���[��������� + ����� ����] ����� �� ! 

 (15), 

where the symbols that also occur in equation (10) have the same meaning as they have 
there, and there are now two new symbols, E���and E���.  The resonance integral, β���, of 

the μth cycle-completing bond in the absence of an external magnetic field is given by  

 β��� =  βE��� (16), 

in which β is, as usual, the standard, Hückel resonance-integral in benzene [9]. It should be 
noted that any non-standard values chosen for some, or all, of the Coulomb integrals 
manifest themselves only implicitly in equation (15), by means of the effect that they have 
on the eigenvalues and eigenvectors of the molecular graph — that is, of the Hückel 
Hamiltonian matrix for the conjugated system — by virtue of changing some (or, possibly, 
all) diagonal elements of that matrix. These eigenvectors and eigenvalues then themselves, 
in turn, determine the values of those Coulson bond-orders, ���� , (via equation (11)) and 

imaginary bond-bond polarisabilities, π������� , (via equations (12) and (13)) that do feature 
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explicitly in equation (15). Accordingly, setting some (or all) Coulomb integrals to a value 
different from the standard benzene value, α, does not give rise to any explicit mention, in 
equation (15), of any such non-standard Coulomb integrals per se. Any resonance integrals 
that are different from the standard benzene value, β, (as per equation (16), above) likewise 
have an implicit influence on the eigenvalues and eigenvectors of the molecular graph — 
by virtue of the change that they cause in some of the off-diagonal elements of the vertex-
adjacency matrix/Hückel Hamiltonian matrix — thus affecting ����  (via equation (11)) 

and π������� (via equations (12) and (13)).  However, any modified resonance-integrals 

(βE��� — equation (16)) associated with the cycle-completing bonds are (unlike the 

modified Coulomb integrals) additionally — and  explicitly  —  referred to in equation (15).  

 Figeys [99, 100] exploited the above facility, in the context of hydrocarbons, whilst 
one of the present authors (RBM) provided what have subsequently turned out to be rare 
examples of the application of Veillard’s approach [98] to heterocycles (which, in these 
cases, yielded estimates of ring currents in some sulphur-heterocyclic analogues of 
fluoranthene [101] and some nitrogen analogues of certain carcinogenic, polycyclic 
hydrocarbons [102]). These calculations adopted the parameters suggested by Streitwieser 
[103] for Coulomb and resonance integrals that involve sulphur atoms and nitrogen atoms. 
Gayoso [104] further introduced the refinement of variation of resonance and Coulomb 
integrals into the original McWeeny [78]–Veillard [98] method — the reader is referred to 
p. 1359 of ref. [30] for more information about extensions and applications of the Veillard 
approach [98]. We do not go into further details here because, elegant as it is, the Veillard 
[98] formalism takes us away from purely ‘topological’ aspects because it is necessary to 
adopt (possibly subjective) parameters, such as Streitwieser’s [103], or empirical/possibly 
subjective schemes for making wave-functions self-consistent with respect to iteratively 

calculated charges and bond-orders [105–109], specifically applied to magnetic properties 
by Gayoso [104] and (with Coulson [110] and with de Castro and with Gomes [111, 112]) 
by one of the present authors (RBM).  Another major extension of the London method at 
this time was by Hall and Hardisson [113], who refined the McWeeny formalism [78] by 
using a self-consistent-field molecular orbital; however, as this is also somewhat removed 
from the realms of topological ring-currents, we do not discuss this approach any further, 
here. 

 The unmodified methods of Pople [77] and McWeeny [78] were applied to a wide 

range of conjugated systems from the early 1960s until the late 1980s [110–112, 114–128]. 

The majority of these calculations concerned the condensed, benzenoid hydrocarbons, ring-
current intensities in large numbers of which were summarised in ref. [87].  The uptake of 
the McWeeny formalism [78] in these computations was much more frequent than the 
adoption of Pople’s [77] method; to the authors’ knowledge, the latter was used only three 
times — in refs. [115, 118 & 119]. In that latter reference, Jung [119] made a very important 
remark (these days very seldom cited) — namely, that π-electron systems exist which 
sustain diamagnetic currents in some rings and at the same time paramagnetic ring-currents 
in others. Jung therefore concluded [119] that aromaticity cannot be defined in terms of 
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ring current for such systems. This pertinent observation was re-emphasised by one of the 
present authors (RBM) a decade later [124] and further given prominence in a major review 
(p. 1362 of ref. [30]); nevertheless, Jung’s conclusion [119] appears not to be taken into 
account very frequently when modern authors invoke ‘ring-current’ criteria for 
‘aromaticity’. 

 It has been observed on several occasions [110–112, 123, 124, 126, 129, 130] that 

calculated paramagnetic currents — which are especially sensitive to HOMO–LUMO 
separations — tend to be over-estimated by methods (such as the topological, non-iterative 
version of the HLPM [31] approach) which do not make Hückel resonance-integrals 
iteratively self-consistent with respect to the corresponding calculated Coulson bond-
orders, and which, likewise, do not make Coulomb integrals iteratively self-consistent with 
calculated charge-densities on the carbon atoms. Again, however, we do not further discuss 
these refinements here because we are specifically reviewing concepts (topological ring-
currents and bond-currents) that claim to depend on no empirical or subjective parameters 
or prescriptions whatsoever. 

 Before (in the next section) we move specifically to a consideration of what we call 
‘topological ring-currents’ per se, we make brief mention of an explicitly graph-theoretical 

formalism, also based on the Hückel [9]–London [21–23] method, proposed by Aihara and 

co-workers [131–134]. This couches the London equations ((1) – (10)) in terms of graph-
theoretical characteristic polynomials [9, 86, 89], �I�1�, of the molecular graph, J, 
representing the conjugated system in question, and of graphs obtained from it by 

appropriately deleting certain cycles, KL. Thus, in the notation of Aihara et al. [131–134]: 

� MLM�	
�	
	� = 18 � (L(�	
�	
	� � �IO$P�1Q��IR�1Q�
STT
Q  

(17). 

In equation (17), ML is the current associated with the Uth cycle, KL, within J — which is not 
in general just a single ring — and M�	
�	
	 is the corresponding current around the single 
cycle in benzene.  In addition, (L and (�	
�	
	  (the latter previously referred to in this 

Review as benzeneS )  are the areas of the cycle KL and of a standard benzene ring, respectively; J − KL  is the graph remaining when the cycle KL is deleted from J, and �I�1� and �IO$P�1� are the characteristic polynomials [9, 86, 89] of the graphs J and J − KL, 

respectively. �IR �1� is the derivative, with respect to 1, of �I�1�. 1Q  (with the same 
meaning as in equation (4))  is the Vth largest  root of �I�1� and the summation runs over 
all occupied molecular orbitals, V, which, here, are assumed to be doubly occupied. (If �I�1� has repeated roots, this situation, too, can appropriately be accommodated — as 

described in refs. [131–133]).  The ring-current intensity in the ith ring, relative to benzene 
(��/��	
�	
	  — cf. equation (10)), is then obtained by just adding the quantities ML/M�	
�	
	  
— some of which may be negative —  computed from equation (17), over all cycles, KL , 
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that contain a specified ring, i, in which the ring current is required [131–134].  This 
approach, in the form of equation (13), gives numerical results that are entirely equivalent 
(within the limits of machine error) to those obtained from, for example, equations (7) and 
(10), when comparable Hückel assumptions [9] are made and the same molecular geometry 
is adopted.  This now conveniently brings us to the central idea of a ‘topological ring-
current’. 

7. The Concept of Topological Ring-Current 

For more than fifty years it has been widely acknowledged (e.g., refs. [4–12]) that 
computing the Hückel energy-levels and Linear-Combination-of-Atomic-Orbitals 
Molecular Orbitals (LCAO MOs) for a given conjugated hydrocarbon is isomorphically 
equivalent to finding the eigenvalues and eigenvectors, respectively, of the associated 
(labelled) molecular graph [11] — that is to say, the eigenvalues and eigenvectors [89] of 
the vertex-adjacency matrix [86] of that molecular graph. Because that matrix is sometimes 
called the ‘topological matrix’ (e.g. refs. 4 and 7) of the graph in question, there has been 
a tendency — perhaps, in retrospect, an unfortunate one — to describe Hückel calculations 

as being ‘topological’ (e.g., refs. [4–12]). However, as was emphasised right at the 
beginning of this Review, in our present context the term ‘topological’ does not have the 
connotations that are associated with it in the realms of Algebraic Topology (e.g., ref. [1]): 
here, by contrast, it effectively means, simply, ‘graph-theoretical’. 

 This much is, perhaps, intuitively self-evident to anyone who has ever actually 
carried out a Hückel calculation in practice. Less well emphasised and less frequently 
referred to is the fact that the Aufbau process is, in the context of Hückel Theory [e.g., 9, 

34], itself also entirely ‘topological’ (graph-theoretical) in nature [10, 12, 51–53], 
depending, as it does, on the relative order of the calculated HMO energy-levels.  

Application of the Aufbau Prinzip is needed [10, 12, 51–53], once the Hückel energy-
levels/eigenvalues and LCAO-MOs have been calculated, in order to obtain a ground-state 
configuration for the π-electrons so that Hückel quantities — such as charge densities [9, 
51], Coulson bond-orders [9] (equation (11)) and other indices such as imaginary bond-
bond polarisabilities [12, 31, 78, 85] (equations (12) and (13)) — can be calculated; (see 
also especially Appendix A of ref. [85]).  It is therefore important to emphasise that the 
Aufbau procedure may itself also be mimicked by means of an entirely abstract, graph-

theoretical algorithm; for full details on this claim, please see refs. [10, 12, 51–53]. 

 Coulson and one of the present authors (RBM) described some of the ring currents 
that they reported in ref. [110] not as being, in themselves, explicitly ‘topological’, but 
nevertheless being based on a ‘topological wave-function (such as the simple Hückel one 
[9]). The same present author had earlier [85] considered whether ring currents were 
themselves topological quantities and concluded that, manifestly, they were not, because 
the expressions for ring currents (such as equations (10) and (15)) involve terms (the 
quantities {����} in equations (10) and (15)) that represent areas which are, thereby, 
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dependent on the actual geometrical areas that are assumed for the rings that comprise the 
conjugated system under study. Prima facie, therefore, it seemed that the ring currents 
themselves could not properly be described as being topological quantities, even when a 
topological wave-function (such as the simplest Hückel one with all Coulomb integrals and 
all resonance integrals set at the corresponding benzene values) has been used to calculate 
them.  In 1976, Coulson and one of the present authors (RBM) put it this way [110].   

  ‘The Hückel matrix, with all α’s the same and all β’s equal, is isomorphic with [the] 
topological adjacency matrix. An attractive feature of the use of such an MO is that once given the 
areas of the various rings, no subjective or arbitrary parameters whatsoever are involved in the 
ring-current ratios (expressed relative to the benzene value). . . all are immediately and 
automatically determined (via, for example, [equation (10), here]. . .) once the carbon-atom 
connectivity and ring areas have been specified’ [110].    

 After that, although the topic was briefly alluded to in a review [30] a quarter of a 
century later, little more was said on the matter for some thirty years until one of the present 
authors (RBM) revived the idea [87] of a ‘topological ring-current’ by initially restricting 
the concept only to ring currents calculated for, specifically, benzenoid hydrocarbons, in 
which all rings are hexagonal and are taken to be of equal area. It was pointed out that [87] 

(a) when the Hückel [9, 34]–London [21–24]–Pople [77]–McWeeny [78] (HLPM) 
method is used, and 

(b) when only benzenoid hydrocarbons are considered, and 

(c) when all Hückel [9, 34] Coulomb integrals (α) and resonance integrals (β) are fixed 
at the respective  benzene values, and 

(d) when the benzenoid hydrocarbon under study (assumed to be geometrically planar) 
is considered to consist of regular hexagons of carbon atoms of benzene 
dimensions, and, finally,  

(e) when ring-current intensities (as calculated, for example, from equation (10)) are 
expressed as a ratio to the ring-current intensity evaluated, by the same method, for 
benzene,  

then [87] 

‘. . . once the carbon–carbon connectivity of a benzenoid system has been specified, the 
(topological) ring-current intensities so-calculated are predetermined and do not further depend on 
any subjective (or other) parameters. In that sense, the ring-current intensity that characterises each 
of the diverse rings in benzenoid molecules is a purely graph-theoretical index that depends solely 
on the knowledge of a vertex-adjacency matrix for the graph representing the connectivity of the 
carbon atoms in the particular benzenoid molecule under study’ [87].  

 The idea of a topological ring-current, at one time abandoned after due 
consideration [85], was thus retrieved by restricting attention just to benzenoid 
hydrocarbons.  However, as a result of a casual suggestion from Professor T. Pisanski at 
the MATH / CHEM / COMP meeting at Verbania in June, 2009, the idea of a topological 
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ring-current was soon extended so as to encompass conjugated systems containing rings of 
more than one size. The definition of ‘topological ring-current’ was, thereby, generalised 
[135] so that any rings in an arbitrary conjugated system — still, however, assumed to be 
geometrically planar — that are N-membered are considered to be regular N-sided 
polygons of side equal in length to the carbon–carbon bond-length in benzene. This 
effectively meant adopting the following relationship for the areas of regular polygons of 
equal side-length, a result [77] that may easily be demonstrated by appeal to elementary 
trigonometry:  

� Area of a Regular Polygon with g Sides  Area of a Regular Hexagon with Sides of the Same Length� =  ngcot =πgC
6cot =π6C q 

 (18). 

This, therefore, replaces conditions (b) and (d), in the list presented above, to give the 
generalised definition of a topological ring-current [135]. With the adoption of this 
convention about molecular geometry, Balaban et al. [135] thus concluded that the 
topological ring-current, so defined, 

‘. . . is a purely graph-theoretical index that depends solely on the knowledge of a vertex-adjacency 
matrix [86] for the graph representing the connectivity of the carbon atoms in the particular . . . 
molecule under study.  The values of the topological ring-currents . . . are, in a sense, “latent”, as 
soon as the system’s structure has been written down’ [135]. 

These authors also emphasised that [135]  

‘. . . once the eigenvectors and eigenvalues of the system’s (arbitrarily labelled) adjacency-matrix 
[86] are known, their use for the calculation of the HMO quantities needed for the ring-current 
computations [as in equations (10) and (15), here] also requires knowledge of the ground-state π-
electronic configuration for the conjugated system in question, determined by an application of the 

Aufbau Principle — a process which  . . . may itself be simulated [10, 12, 51–53] by an entirely 
graph-theoretical algorithm based solely on knowledge simply of the order of the eigenvalues 
possessed by the system’s adjacency matrix, arbitrarily labelled’ [135].  

 Another intrinsic aspect of the concept of topological ring-current concerns the 
planarity (in the geometrical, rather than the graph-theoretical, sense) of the conjugated 
system under study. Some structures are so severely overcrowded because of steric 
interactions amongst their peripheral protons or between carbon atoms actually within their 
network (such as in the helicenes [50]) that they are non-planar (e.g., ref. [50] — see also 
the Appendix of ref. [136]). Strictly, the unmodified HLPM method should not be applied 
to these because the concept of ‘ring-current’ in the HLPM model is precisely defined as 
an exact quantity only for planar molecules [50].  The topological ring-currents calculated 
for such geometrically non-planar structures are thus, in effect, those for a hypothetical 
species having the same carbon–carbon connectivity as the actual molecule under 
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consideration, but envisaged as if it were (geometrically) planar. The justification for this 
is that the topological ring-current is here essentially being regarded purely as a 
mathematical, graph-theoretical index, and not as an assumed ‘physical’ quantity per se 
[87, 135]. That said, even if there is some non-planarity, the idea of a ring current may still 
conceptually and semi-quantitatively — if not strictly mathematically [50] — be 
maintained provided that molecular overcrowding is such that ‘. . . the skeletal distortion 
about any bond is comparatively mild.’ (Please see ref. [50] and the Appendix to ref. [136] 
for further discussion of this aspect). Haigh and one of the present authors (RBM) [50] 
have claimed that 

‘. . . because of the way in which the strains from overcrowding are spread over many degrees of 
freedom, this condition does appear to be satisfied in the case of the helicenes [50], even though 

the overall non-planarity between well-separated parts of such molecules may in fact be very large.’  

 Topological ring-currents thus depend only on the following properties of an 
arbitrary conjugated hydrocarbon system: 

(a) The occurrence/assumption of a (geometrically) planar structure; 

(b) The carbon–carbon connectivity in the network represented by the system’s 
molecular graph;  

(c) The areas of its constituent rings, as determined by an application of equation 
(14). 

 In his recent instructive and entertaining essay entitled ‘What I like about Hückel 
Theory’, Kutzelnigg [36] has asked whether Hückel theory [9, 34] should be regarded as 
‘semi-empirical’ or ‘parameter-free’. As he puts it:  

‘These days, when ab-initio calculations to any desired accuracy are almost routinely possible, the 
label semiempirical is regarded as a stain.’ 

Kutzelnigg [36] goes on to argue that closer examination reveals that the most important 
results in Hückel theory depend only on the resonance integral, β.  He thus concludes that  

‘. . . HMO is effectively a one-parameter theory. . . .’  

and he further observes that  

‘. . . one can decide to discuss only parameter-free quantities within the HMO model’.  

This is precisely what the present authors have argued for topological ring-current. 
In ref. [137] we claimed that  

‘. . . topological ring-currents and bond-currents are even independent of whatever value might be 
assumed for the Hückel resonance-integral, β, because “topological” currents (proportional, as they 
are, to β) are conventionally expressed as a ratio to the corresponding values calculated, by the 
same method, for benzene, and so β cancels.’ 
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This is so because [137], although it looks, from equation (10), as though topological ring-
currents do explicitly depend on β, the quantities βπ������� and βπ�������  are in fact 

dimensionally independent of β, despite explicitly mentioning this parameter, because 
[137] π������� and π�������  are themselves — from their very definitions, in, for example, 

equations (A1) and (A2) of the Appendix of ref. [85], and in equations (12) and (13), here 
— expressed in units of 1/β. Hence our claim that topological ring-currents, as defined, are 
latent in a conjugated structure and are immediately pre-determined at the moment when 
its molecular graph has been specified, without the need for knowledge of any parameters. 

8. Recent Considerations Concerning of the Concept of 

Topological Ring-Current 

The present authors [19, 31, 87, 97, 135–145], and others [130, 146–148], have applied 
these ideas in several studies within the last five years.  The aims of our own calculations 
have mainly been (a) to test the veracity of the so-called ‘Annulene-Within-an-Annulene 

Rule’ (AWA, now largely discredited) — refs. [31, 136–138 & 140–142] — and (b) to see 
how well a simple-minded theory such as is our subject (the topological HLPM model [87, 
135]) in this Review can mimic the trends predicted by much more sophisticated ab initio 
calculations (please see refs. [19, 97, 140, 143 & 145]). 

8.1. Assumptions about Ring Areas 

Figure 7.  The molecular graph [11] of kekulene.  The area of the ([18]-membered) central 
ring is considered to be that of seven benzene rings, rather than the area of a regular polygon 
with 18 sides. 

Not all of the calculations reported in the papers just cited give rise to strictly ‘topological’ 
ring-currents in the sense defined here, in that relation (18) has not always been used to 
estimate all ring areas. For example, the central ring of kekulene (Figure 7) is [18]-
membered but, in our own calculations [31, 97, 138], and in those performed by others 

[149–152], it was clearly considered to be more intuitive to estimate the central ring as 
being the area of the hexagons that are missing from an otherwise perfectly tessellated 
hexagonal network  —  in the case of kekulene, seven of them  —  rather than the area of 
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an [18]-sided regular polygon. A similar consideration applies to the central rings of several 

other benzenoid structures (e.g., the conjugated systems studied in refs. [149–152]). The 
approximation of assuming regular polygons for the central rings of the p-coronenes 
(defined in ref. [142]) would also seem somewhat unrealistic, as was discussed in ref. [142]. 

In the majority of cases, however — e.g., in refs. [19, 31, 87, 97, 130 & 135–148] — the 
ring currents reported are genuinely toplogical ring-currents, in the sense defined here [87, 
135], with ring areas effectively estimated from equation (18).  

 It should finally be said, on this subject of areas, that what little experimentation 
there has been on varying the assumptions about ring areas — for example, using ring areas 
experimentally determined by means of X-ray crystallography — has concluded that such 
refinements affect the HLPM ring-currents only very marginally: in refs. [121 & 153], a 
change of < 3% was reported as a result of taking into account actual ring areas rather than 
using idealised ones. 

8.2. The Relative Merits of Considering Topological Ring-Currents or 

Topological Bond-Currents 

It is appropriate to insert at this point a brief consideration of the pros and cons of 
contemplating topological bond-currents as an alternative to topological ring-currents.  
Over the years, ring currents have been discussed far more frequently than have bond 
currents (especially by organic chemists), despite the fact that bond currents were 
thoroughly considered by early pioneers in the field such as Longuet-Higgins and Salem 
[25, 154] — and their ideas on ‘line currents’ and application of the Biot-Savart Law were 
taken up, in a limited way, by the next generation (e.g., refs. [84 & 155]). In recent years, 
however, much more attention has been devoted to bond currents than to ring currents. 

 As has been pointed out [19, 29], the collection of ring-currents for an arbitrary 
conjugated system (which may be considered [29] classically as a microscpic electrical 
network) represents the anaolgy of the family of loop currents [29, 156, 157] in a 
macroscopic network such as is encountered in the laboratory; the list of bond currents, on 
the other hand, is the analogy of the various currents in the wires forming the arms of a 
macroscopic network of the type considered by Kirchhoff [19, 35, 156, 157]. Both are 
rigorously equivalent representations if (as is precisely the case with HLPM topological 
bond-currents) Kirchhoff’s Law of Conservation of Current at a Junction is respected.  

 We have, however, remarked [19] that ring currents do represent a more efficient 
way of characterising a structure, because a list of r ring currents, one for each of the r 
rings of that structure, constitutes a minimal and independent family of quantities 
containing all the required information about π-electron currents. The list of all bond 
currents in the structure, on the other hand, contains some redundances: because of 
applicability of the Kirchhoff Conservation Law at Junctions, if all but one of the bond 
currents entering and leaving a given junction are known, then the last one is automatically 
predetermined, by virtue of Kirchhoff’s Law.  
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 By contrast, consideration of individual bond-currents rather than overall ring-
currents may frequently give more insight [19, 97, 137, 143, 144]. This is because it is 
possible [137]   

‘. . . for structures to have very different ring-currents and yet — because the bond currents in bonds 
shared by two rings are the result of algebraic summation of the ring currents in those adjacent rings 
— for them still to exhibit corresponding bonds that bear . . .  comparable bond-currents’ [137]. 

 An extreme example of this is [10,5]-coronene (the left-hand structure of Figure 8) 
and its so-called ‘altan’, structure (Figure 8, right-hand side). Remarkably, this qualitative 
similarity of bond currents between the inner and perimeter cycles of [10,5]-coronene, on 
the one hand, and (respectively) the corresponding bonds in the innermost and middle 
cycles of altan-[10,5]-coronene, on the other hand, arises even though all rings in [10,5]-
coronene bear diamagnetic topological ring-currents and all rings in altan-(10,5)-cononene 
support paramagnetic topological ring-currents [137], as emphasised in Figure 8. (It may 
be noted in passing that Monaco [158] has suggested that what we have called altan-[10,5]-
coronene, above, might more appropriately be regarded as a ‘double’ altan of [10]-
annulene and thus called altan2-[10]-annulene.) The question of these so-called ‘altan’ 
structures will be discussed further, in §9. 

 

 

 

   

 

 

 

 

 

Figure 8. HLPM Topological bond-currents and ring-currents for [10,5]-coronene (left) and altan-
[10,5]-coronene (also called [158] altan 2-[10]annulene) (right), taken from ref. [137]. The 
topological ring-currents are depicted in black, written in the centre of the relevant ring, and the 
associated topological bond-currents are illustrated in red. The topological ring-currents and bond-
currents are dimensionless quantities. Positive (diamagnetic) ring-currents are considered to 
circulate anti-clockwise around their respective rings whilst negative (paramagnetic) ring-currents 
flow in the clockwise sense around those rings. The various bond-currents flow in the direction 
indicated by the arrow pointing along each bond.  Reproduced from T.K. Dickens & R.B. Mallion, 

Chem. Commun. 51 (2015) 1819–1822 with permission from The Royal Society of Chemistry. 
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8.3 Conceptual and Numerical Equivalence of the ‘Topological HLPM’ 

Method and the ‘Graph-Theoretical HL-CD’ Approach 

For the avoidance of possible confusion, it ought perhaps explicitly to be mentioned at this 

stage that what the present authors have defined and called [87, 135] ‘the Hückel–London–

Pople–McWeeny (HLPM) procedure for calculating topological ring-currents’ has recently 
been dubbed by Fowler et al. [146–148] ‘the graph-theoretical current-density Hückel–

London (CD–HL)’ method. It is, however, clear from refs. [87 & 135] on the one hand, 

and from refs. [146–148] on the other hand, that the ‘HLPM’ and the ‘CD–HL’ approaches 
are theoretically and numerically equivalent, being based, as the two are, on the simplest 
Hückel model [9] and employing, as they both do, the assumption of regular polygons for 
the constituent rings. Both formalisms end by expressing calculated ring-currents and 
bond-currents as a ratio to the corresponding values computed, by the same method, for 
benzene — thereby both properly giving rise to dimensionless ring-currents and bond-

currents. As the present authors understand it, in refs. [146–148] ring currents (bond 
currents) are effectively calculated from equation (7) of the present Review, which 
simultaneously takes into account carbon–carbon connectivity and molecular geometry, 
the latter by means of input information on the Cartesian coordinates of the constituent 
carbon-atoms, through which ring areas are implicitly pre-determined and from which they 
may subsequently explicitly be calculated. In the HLPM approach, by contrast, the 
calculation is carried out, following the philosophy of one of the formulations of the 
McWeeny method [78], in two distinct stages (which the present authors find conceptually 
helpful [31]): 

(a) the topological (Hückel) quantities required are first calculated from the vertex-
adjacency matrix [86] of the associated labelled molecular graph [11], and an application 

of the Aufbau process [10, 12, 51–53], and then  

(b) these topological quantities are combined with separately inputted geometrical 
information supplied by explicitly specifying the area of each individual ring of the 
conjugated system in question and, thereby, the areas of the cycles in the Fundamental 
System [31, 88] that contain these rings; (information about how individual rings feature 
in the Fundamental System of Cycles (§5) is also inputted in the course of this second 
stage). 

This process was fully described in detail in ref. [31] and, more briefly, in our ‘Worked 
Example’ (§5) in this present Review (and elsewhere — e.g., ref. [30]).  

 Given the same geometrical and Hückel assumptions, the two alternative strategies 

for calculation (‘HLPM’ and ‘CD–HL’) should, therefore, yield identical numerical ring-
currents and bond-currents (within the machine error of the computation.)  When it comes 

to actual application of the Hückel–London method, it would thus seem to be a matter of 
taste which approach is adopted. As just stated, we ourselves find the two-stage process 
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described above conceptually helpful. This is indeed all very satisfactory when relatively 
small conjugated systems are studied. It has to be conceded, however, that one practical 
disadvantage of the two-stage calculation is that, as the number of rings in the conjugated 
systems under study increases — and we have recently studied systems containing as many 
as 43 rings — the amount of data that has to be transferred from the first stage to the second 
stage begins to become extensive enough to make the procedure too labour-intensive.   

 Nevertheless, despite this latter small reservation — which, if desired, could be 
obviated by automating the process of joining the two stages computationally — these 

considerations are all consistent with the fact that Fowler et al. [146–148] have implicitly 
agreed with our own previous claim [30, 31, 87, 135] by observing that, in the case of 

benzenoid hydrocarbons, the Hückel–London (HL) model is based on ‘. . . a single graph-
theoretically defined matrix. . .’ [146] and that, with the assumption of regular hexagons, 
it  ‘. . . becomes a purely graph-theoretical approach’ [148]. 

9. Use of HLPM Topological Currents in Assessing the 

‘Annulene-Within-an-Annulene’ (AWA) Model (with Special 

Reference to ‘Altan’ Structures) 

9.1 Formal Construction of ‘Altan’ Systems 

Much of the subsequent discussion will draw on the so-called ‘altans’ of various ‘parent’ 
structures in order to illustrate recent applications of the HLPM topological approach. The 
idea of an altan seems first to have been proposed by Monaco & Zanasi [159] as a means 
of ‘designing’ conjugated systems that might have intriguing ring-current properties and, 

subsequently, the concept was further developed by them and Memoli [160–162]. The 
general mathematical properties of the process of what the present authors have (somewhat 
inelegantly) called [97] ‘altanisation’ have recently been exhaustively studied, by Gutman 
[163, 164] and by Bašić & Pisanski [165]. 

The altan derivative of a given conjugated hydrocarbon is constructed so that each 
peripheral hydrogen atom in it is considered to be replaced by a vinyl group, and each pair 
of adjacent vinyl groups is then thought of as being condensed into a new (outer) cycle. 
Gutman [163] has illustrated the process of forming the altan of phenanthrene by means of 
Figure 9. 
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Figure 9. Construction of altan-phenanthrene from phenanthrene. Note that the perimeter of altan-
phenanthrene is a [20]-annulene, encircling the ‘parent’ phenanthrene structure (shaded). 

Reproduced from I. Gutman, J. Serb. Chem. Soc. 79 (2014) 1515–1521 with the kind permission 
of Academician Professor Dr Ivan Gutman and the Serbian Chemical Society. [© 2014 Serbian 
Chemical Society] 

The entire process may formally be thought of [97] as notionally placing the parent 
hydrocarbon ‘inside’ a [4n] annulene of appropriate size — in the phenanthrene example, 
above, it is a [20]-annulene — and then altering the bonds in such as way that an outgoing 

C–H bond from the inner (‘parent’) structure and an internal C–H bond from the (outer) 

annulene are replaced by a C–C bond [97]; at the end of the process, such C–C bonds join 
certain carbon atoms of the inner (parent) structure to alternating carbon-atoms of the 
surrounding annulene (and only to those carbon atoms.) Hence, the appellation ‘altan’. For 
example, in altan-phrenanthrene (Figure 9), the inner structure (shaded, in Figure 9) has 
the carbon-atom connectivity of phenanthrene, and the outer structure, to which the inner 
one is joined as just described, has the carbon–carbon connectivity of [20]-annulene. The 
(shaded) inner moiety, and the outer ([20]-) annulene are thereby joined by the connecting 
bonds that are sometimes referred to as ‘spokes’ bonds, as can be seen in Figure 9. These 

spokes bonds have been shown [159, 161, 163–165] to be formally fixed as single bonds 
in all Kekulé structures that may be devised for the conjugated system as a whole [97]. In 
this respect, the inner cycle and the outer perimeter are often said to be ‘uncoupled’. 
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9.2 The ‘Annulene-Within-an-Annulene’ (AWA) Model 

 

Figure 10. The molecular graph of altan-coronene, with the coronene ‘parent’, which constitutes 
the ‘inner core’, highlighted in blue.  

The ‘Annulene-Within-an-Annulene’ (AWA) ‘Rule’ arises from Pople & Unch’s 1966 
idea [118] that for (monocyclic) annulenes (only) [4n]-annulenes should bear paramagnetic 
currents (circulating clockwise around the annulenic ring) whilst [4n+2]-annulenes should 
bear diamagnetic (anti-clockwise) ring-currents.  The idea was extended to conjugated 
systems that did not consist of just a single annulenic ring. According to the AWA ‘Rule’, 
[4n]-membered cycles in these polycyclic systems should bear paramagnetic currents and 
[4n+2]-membered cycles should bear currents that circulate in the diamagnetic direction. 
For example, in altan-coronene (Figure 10, above), which may be considered to be ‘a [6]-
annulene-within-an-[18]-annulene-within-a-[24]annulene’, the bonds in the innermost 
([6]-membered) cycle would be predicted by the AWA ‘Rule’ to bear diamagnetic currents, 
the bonds in the middle ([18]-membered) cycle would also be expected (on the basis of the 
‘Rule’) to bear diamagnetic currents (flowing in the anti-clockwise direction around that 
cycle), whilst the bonds in the [24]-membered perimeter cycle would be predicted to bear 
currents circulating in the clockwise (paramagnetic) sense. In other words, the AWA Rule 
would predict (for cycles listed outwards from the central one): 

Diamagnetic/Diamagnetic/Paramagnetic 

in the three cycles. Figure 11 shows that what is actually found by means of HLPM 
calculations — and the  HLPM  [143] conclusions are confirmed by an ab initio [160]  

approach (the so-called ‘ipso-centric’ [166–170] one) — is: 

Paramagnetic/Diamagnetic/Paramagnetic. 
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Figure 11.  HLPM Topological bond-currents and ring-currents for altan-coronene taken from 
ref. [143]. For the conventions on displaying bond currents and ring currents please see the 
caption to Figure 8. Reprinted with permission from T. K. Dickens & R. B. Mallion, J. Phys. 

Chem. A 118 (2014) 933–939.  Copyright 2014 American Chemical Society. 

 

Figure 12. The molecular graph of altan-kekulene, with the kekulene ‘parent’, which constitutes 
the ‘inner core’ of the altan-structure, highlighted in blue. 

Another example is altan-kekulene (Figure 12, above). This can be considered as 
‘an [18]-annulene-within-a-[30]-annulene-within-a-[36]annulene’. The innermost cycle is 
[18]-membered, the middle one is [30]-membered and the perimeter is [36]-membered. If 
the AWA model held, we should thus expect (again, with cycles being listed from the 
innermost one, outwards — the last one listed being the perimeter): 

Diamagnetic/Diamagnetic/Paramagnetic. 
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The topological ring-current and bond-current maps (taken from ref. [97]) are presented 
in Figure 13. From this it is seen that the HLPM approach predicts the pattern 

Paramagnetic/Diamagnetic/Diamagnetic. 

This qualitative conclusion is supported by calculations [158] based on the (ipso-centric) 

[166–170] ab initio approach.  Once again, therefore, the AWA ‘Rule’ is seen not to be 
respected.  

 

 

 

 

 

 

 

 

 

 

Figure 13.  HLPM Topological bond-currents and ring-currents for altan-kekulene taken from ref. 
[97]. For the conventions on displaying bond currents and ring currents please see the caption to 
Figure 8. Adapted with permission from T. K. Dickens & R. B. Mallion, J. Phys. Chem. A 118 

(2014) 3688–3697.  Copyright 2014 American Chemical Society. 

There are, however, occasional examples of compliance with the AWA ‘Rule’. 
[10,5]-coronene (illustrated on the left-hand side of Figure 8) is a case in point. The ring-
current and bond-current maps for this structure have already been presented in Figure 8: 
although the ring-current intensities in all rings in [10,5]-coronene are paramagnetic 
(negative), the net currents in the bonds of the inner ([10]-membered) cycle flow in the 
diamagnetic (anti-clockwise) sense, and the circulation in the [20]-membered perimeter is 
strongly paramagnetic (clockwise). Altan-[10,5]-coronene (dubbed altan2-[10]-annulene 
by Monaco [158]) — whose HLPM bond-current and ring-current maps are depicted on 
the right-hand side of Figure 8 — does not obey the AWA Rule, as the perimeter cycle 
should bear currents in the paramagnetic direction in order to comply with the ‘rule’ but 
this perimeter cycle is actually predicted by the HLPM computations to bear a diamagnetic 
current. This apparent anomaly arising from our unsophisticated topological calculations 
[97] has also been definitively confirmed by Monaco [158], who applied the much more 

sophisticated ab initio ipso-centric [166–170] formulation to the same structure. 
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We finish this section on the AWA Rule on a positive note by drawing attention to 
what might be regarded as the ‘paradigm’ altan structure: namely, altan-benzene [31] 
(Figure 14). 

 

Figure 14. Ring-current and bond-current maps for altan-benzene [31], having a [6]-membered 
central ring ([4n+2], with n = 1) and [12]-membered periphery ([4m], with m = 3). For conventions 
on ring currents (black) and bond currents (red) please see the caption to Figure 8. Taken from T. 

K. Dickens & R. B. Mallion, Croat. Chem. Acta 86 (2013) 397–406 and reproduced with the kind 
permission of the Croatian Chemical Society [© 2013 The Croatian Chemical Society] 

The HLPM topological ring-current and bond-current maps exhibited in Figure 14 
indicate that altan-benzene respects the AWA model because (a) the bonds in the [6]-
membered central ring bear currents, of magnitude of approximately the benzene value, 
that flow in the diamagnetic direction, whilst (b) the bonds that form the [12]-membered 
periphery bear a substantial current (more than three times the benzene value) that flows in 
the paramagnetic (clockwise) sense.  
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10. Application to the Altans of ‘K-Factorisable’ Conjugated 

Systems    Containing ‘Fixed’ Single-Bonds 

Structures classically described by Clar [171] as having bonds that are ‘fixed’ as single 
bonds (because they never appear other than as single bonds in any Kekulé structure that 
may be devised for the system as a whole) have recently been referred to as ‘K-
Factorisable’ [130,159]. The paradigm for a benzenoid structure of this type is perylene 
(depicted on the left-hand side of Figure 15), in which the unshared bonds in the central 
ring are fixed as single (in the sense just defined). This is to be compared (and contrasted) 
with the ostensibly similar but electronically very different central ring of peropyrene 
(illustrated on the right-hand side of Figure 15) in which there is no such bond-fixation. In 
his renowned book The Aromatic Sextet, Clar [171] claimed that perylene ‘. . . can be 
considered to be built up from two naphthalenic complexes connected by two single bonds, 
whereas peropyrene ‘. . . consists of three sextets and four fixed double bonds.’ The Clar 
description is exemplified by Figure 16.  

Figure 15. Kekulé structures for perylene (left), with the bonds depicted in red ‘fixed’ as single 
bonds and peropyrene (right), with no such bond-fixation in the central ring. The topological ring-
current intensity in the central ring of perylene (in which there is this ‘bond fixation’) is only 0.239 
(expressed as a ratio to the benzene ring-current), whereas the analogous central ring of peropyrene, 
in which there is no such ‘bond fixation’, the ring-current intensity is six times the size, (1.445). 

Reprinted with permission from T. K. Dickens & R. B. Mallion, J. Phys. Chem. A 119 (2015) 5019–
5025.  Copyright 2015 American Chemical Society. 
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Figure 16.  Clar structures [171–173] for perylene (left)) and peropyrene (right). Perylene is 
considered (by Clar [171]) ‘. . . to be built up from two naphthalene complexes connected by two 
single bonds . . .’ and the peropyrene structure is regarded as consisting ‘. . .  of three sextets and 
four fixed double-bonds.’ Reprinted with permission from T. K. Dickens & R. B. Mallion, J. Phys. 

Chem. A 119 (2015) 5019–5025.  Copyright 2015 American Chemical Society. 

Forty-five years ago, one of us (RBM) [122] drew attention to the fact that the HLPM 
topological ring-current in the central ring of peropyrene (1.445) is more than six times that 
(0.239) [115, 116, 139, 153] in the (superficially) analogous central-ring of perylene. Much 
later, in collaboration with Haigh [128], this observation was rationalised. Very recent 
work by the present authors [144] has asked the question as to whether this pattern of 
currents in the ‘red’ bonds and the ‘green’ bonds in Figure 15 survives the process of 
altanisation. The altans of perylene and peropyrene are depicted in Figure 17. 
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Figure 17. The molecular graphs of altan-perylene (left) and altan-peropyrene, with the respective 
‘parent’ inner-cores highlighted in blue. Adapted with permission from T. K. Dickens & R. B. 

Mallion, J. Phys. Chem. A 119 (2015) 5019–5025.  Copyright 2015 American Chemical Society. 

Figure 18. Topological HLPM bond-currents and ring-currents in perylene (left) and altan-
perylene (right). Note that the unshared bonds in the central ring of perylene bear currents of size 
0.239 (depicted in green figures) and the currents associated with the corresponding bonds in the 
central ring of altan-perylene (also depicted in green figures) are of comparable magnitude (0.259). 
For the other conventions on displaying bond currents and ring currents please see the caption to 
Figure 8. Adapted with permission from T. K. Dickens & R. B. Mallion, J. Phys. Chem. A 119 

(2015) 5019–5025.  Copyright 2015 American Chemical Society. 

It is manifest from Figure 18 that the unshared bonds in the central ring of perylene bear 
currents of size 0.239 (depicted in green figures) and that the currents borne by the 
corresponding bonds (which, here, are shared bonds) in the central ring of altan-perylene 
(also depicted in green figures) are of comparable magnitude (0.259). A similar comparison 
may be made between the unshared bonds in the central ring of peropyrene and the 
corresponding (shared) bonds in the central ring of altan-peropyrene. This is presented in 
Figure 19.  
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Figure 19. Topological HLPM bond-currents and ring-currents in peropyrene (left) and altan-
peropyrene (right). Note that the unshared bonds in the central ring of peropyrene bear currents of 
size 1.445 (depicted in green figures) and the currents associated with the corresponding bonds in 
the central ring of altan-peropyrene (also depicted in green figures) are 0.986. For the other 
conventions on displaying bond currents and ring currents please see the caption to Figure 8. 

Adapted with permission from T. K. Dickens & R. B. Mallion, J. Phys. Chem. A 119 (2015) 5019–
5025.  Copyright 2015 American Chemical Society. 

It is seen from Figure 19 that the unshared bonds in the central ring of peropyrene bear 
currents of 1.445 (depicted in green figures) and the currents borne by the corresponding 
bonds in the central ring of altan-peroyrene (also depicted in green figures) are 
approximately the same as the benzene current — not as large as the 1.445 in peropyrene, 
but still substantial, at just under the benzene value. As the present authors observed in ref. 
[144]: ‘This [0.986] is still almost four times the current [0.259] in the analogous bonds of 
altan-perylene. . .’ and that ‘. . .the phenomenon previously observed concerning the starkly 
contrasting magnitudes of the currents in the unshared bonds in the central rings of perylene 
and peropyrene is thus also seen to be displayed in the corresponding bonds of the 
respective altans of these two structures.’  

As we also pointed out in ref. [144], because it has been proved [159, 163–165] that 
the bonds joining the parent to the peripheral [4n]-annulene in an altan-structure are also 
all fixed as single bonds, it follows that the bonds in altan-perylene corresponding to the 
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unshared bonds in the central ring of perylene are themselves also ‘fixed’ as single — even 
when they are embedded in the altan. As we stated in ref. [144], this rationalises, albeit 
only intuitively, the empirical observation that the currents in the bonds of altan-
peropyrene that correspond to the unshared bonds in peropyrene are some four times the 
size of the HLPM currents in those bonds in altan-perylene that correspond to the central, 
unshared bonds in perylene. 

The HLPM topological studies reported in refs. [97, 143 & 144] thus generally 

support the conclusions of Monaco & Zanasi [159–162] that ‘. . . current patterns in the 
parent structures frequently remain semi-quantitatively intact when the parent is converted 
to the corresponding altan.’ 

11. Comparisons with the Predictions of Ab Initio Calculations 

11.1 Qualitative and Semi-Quantitative Comparisons 

Having carefully defined, in §7, the graph-theoretically calculated ‘HLPM topological 

ring-currents’ (and bond-currents), and, in §§8–10, having considered their use and 
application in some considerable detail, we are naturally then led to ask how well these 
compare, both qualitatively and numerically, with ab initio calculations of the 
corresponding quantities. Such an assessment is the subject of this sub-section of the 
Review, and the next one (§11.2). 

 The ab initio techniques that we consider are confined to those formulations that 
have been applied in the literature to calculate the current maps of conjugated hydrocarbon 
systems, which can then be compared with the corresponding maps calculated by the 
HLPM method.  This determines that we shall focus on  

(a) what has become known as the ‘ipso-centric’ ab initio formulation [166–170] to 
molecular magnetic-response theory. This approach was pioneered more than two 
decades ago by Keith & Bader [166] and by Lazzeretti et al. (e.g., ref. [167]) and, 
in the succeeding 20 years, it has been much taken up by Fowler et al. (Please see 
refs. [168 & 169] for representative early examples, ref. [170] for complete details, 

and pp. 230–235 of ref. [29] for a review of the first fifteen years of what was there 
called ‘the ab initio era’ in this field).  The main philosophy of this method is 
characterised by the fact that the origin of vector potential — for calculation of the 
current density induced at any point — is placed actually at the point itself (hence, 
the appellation ‘ipso’). Later, a computationally more economical ‘pseudo-π’ 
approximation to this formalism was proposed [174], which can often numerically 
mimic predictions of the ‘computationally more expensive’ ipso-centric 

calculations [146–148]; 
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(b)  what is known as the method of ‘gauge-including magnetically induced current’ 
(GIMIC), also an ab initio approach, which has recently been developed by the 

Sundholm group [e.g.,175–177].  

 Until recently, these ab initio approaches were capable of providing only pictorial 

current-density maps (e.g. refs. [168–170]) and so any comparison with topological HLPM 
calculations had, necessarily, to be qualitative or, at best, semi-quantitative; (see, for 
example, refs. [178] & [179], corresponding with refs. [145] & [140], respectively).  In 
recent years, however, it has become possible [180], in the context of these ab initio 
formalisms, to calculate the analogy of what the graph-theoretical HLPM approach calls 
‘bond current’. This so-called ‘integrated current strength’ [177] is achieved by numerical 
integration of the current density passing through planes at right angles to the bonds in 
question, selected from the conjugated system under study [177]. Kirchhoff’s Law of 
Current Conservation at Junctions [19, 35] — automatically guaranteed to be rigorously 
obeyed in the case of the (graph-theoretical) ‘topological HLPM’ [19, 31] and the (graph-

theoretical) ‘HL–CD’ [146–148] bond-currents — is, however, not, in general, precisely 
respected in the ab initio calculations [177] (except [181] in the ideal case of a complete 
basis-set) [182, 183].  

 In the majority of cases where comparison has been made between qualitative ab 
initio current-density maps and HPLM topological ring-currents and bond-currents, the 
qualitative and, sometimes, semi-quantitative agreement achieved has been encouraging 
(not to say surprising) — see, for example, refs. [97, 140, 143 & 145]. The altan structures 
(fully described in §9.1) have been of especial service in this context. These conjugated 

networks are specifically designed [137, 142, 144, 159–162] to yield two- or three-layered 
annulenic systems — though not, in general, planar ones: they are thought usually to be 

‘bowl’-shaped [136, 158–162, 184]. As already discussed for the case of altan-coronene in 
§9.2, by use of topological HLPM calculations the present authors have confirmed [97, 
143] the paramagnetic/diamagnetic nature of the π-electron currents circulating around the 
several ‘layers’ of some representative altan-structures, directions of circulation that had 
previously been predicted by Monaco, Zanasi and Memoli from their ipso-centric ab initio 

computations [159–162] on these same conjugated systems. Furthermore, these altan 

structures have been proved [158–165] always to have outer perimeters of [4n] carbon-
atoms, where n is an integer, no matter what parent conjugated system the altan in question 
has been created from. Intuitively, therefore, as was discussed in §9.1, one would expect 
— by an extension (not necessarily justified) of the considerations of ref. [118] from 
monocyclic to polycyclic systems — paramagnetic circulations around the perimeters of 
all altan-conjugated hydrocarbons. With one exception, this anticipation was indeed 

realised by Monaco et al. [159–162] by means of their ipso-centric ab initio calculations 
and this exception was independently confirmed [97] by the present authors using the 
HLPM graph-theoretical approach that is the subject of this Review. The topological 
HLPM calculations did indeed highlight the same exception to what had been expected: 
namely, that the outer perimeter of altan-kekulene (depicted in Figure 12) was predicted 
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by both approaches (ipso-centric ab initio [162] and topological HLPM [97]) to be 
unambiguously diamagnetic, rather than the paramagnetic nature that would be anticipated 
by a naïve extension, to polycyclic systems, of Pople & Untch’s pioneering ideas on 

paramagnetic ring-currents in — specifically – [4n]-membered monocycles [118].  Later 
investigations by the present authors revealed another such exception — the [4n]-perimeter 
of altan-[10,5]-coronene (the structure depicted on the right-hand side of Figure 8). 
According to the HLPM graph-theoretical calculation that the present authors reported in 
ref. [137], it, too, bears an unmistakable diamagnetic current (of size almost exactly that of 
the diamagnetic current in the carbon–carbon bonds of benzene) circulating around its outer 
([4n])-perimeter. Motivated by this, Monaco [158] has since verified the diamagnetic 
nature of the perimeter of altan-[10,5]-coronene (which that author recommends be called 
altan2-[10]-annulene). These more sophisticated calculations thus confirm this unexpected 
prediction of the much more rudimentary HLPM ‘topological’ approach. In fact, our 
current investigations into triple altans (inspired by Bašić & Pisanski’s recent study [165] 
of multiple altans — or, as those authors call them, ‘iterated’ altans) indicate that altans 
with diamagnetic circulations in their [4n] outer-perimeters are, perhaps, not as rare as, 
until recently, was generally [137, 158] thought. Monaco has recently argued [158] on the 
basis of his ab initio calculations of the current density that diamagnetic circulations in the 
[4n] perimeters of altan structures ‘. . . can be expected whenever the outermost and middle 
annulenes of the altan-molecule have similar sizes’ [158]. This claim is consistent with the 
observation that the two altan-structures discussed here that exhibit anti-clockwise 
(diamagnetic) circulations in their [4n]-peripheries — whether these circulations are 
calculated  by the simple-minded HLPM topological approach or by sophisticated ab initio 
formalisms — do in fact fulfil this criterion: altan-kekulene (Figure 12) has middle and 
peripheral annulenic cycles of  length 30 and 36, respectively, whilst altan-[10,5]-coronene 
(altan2-[10]-annulene), displayed on the right-hand side of Figure 8, has middle and 
peripheral annulenic cycles of precisely the same length (namely, 20). Recent mathematical 
consideration of ‘multiple’ (or ‘iterated’) altans has revealed that the latter example is not 
just a coincidence: the equal size of the middle and outer (peripheral) annulenic cycles in, 
specifically, iterated altans is in fact guaranteed [158, 165]. Our own recent, unpublished 
HLPM topological calculations on four iterated altans — altan2- and altan3- corannulene 
and coronene — also bear out the expectation of a diamagnetic (anti-clockwise) flow 
around the [4n]-peripheries of these structures. 

11.2 Quantitative Comparisons with the Predictions of Ab Initio 

Calculations 

All the foregoing has been concerned with qualitative or semi-quantitative comparisons 

between the predictions of the ipso-centric [166–170] ab initio calculations (or the ‘pseudo-
π’ approximation to it [174]), and those predictions effected by means of the ‘topological’ 
[87, 135] HLPM approach. However, potentially of much more interest is the fact that, as 
was mentioned in the previous sub-section, it has become possible in recent years [142, 

160–162, 177, 180] quantitatively to calculate what are called ‘integrated current strengths’ 
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[177], which are the analogy, in these more sophisticated methods, of what the HLPM 
method refers to as ‘bond currents’. When all currents are expressed as a ratio the current 
calculated, by the corresponding method, for a bond in benzene, this facility does, thereby, 
now allow direct and quantitative comparison of the predictions of the two approaches — 
the one (HLPM) relying only on the knowledge of the carbon-atom connectivity and the 
areas of the constituent rings of the conjugated system under study, and the other which 

invokes a full ab initio calculation — or, possibly, if the ipso-centric approach [166–170] 

is being employed, the pseudo-π approximation [174] to it — with all that that implies (e.g., 

refs. [166–170, 174–181]).  Accordingly, we now turn attention to such quantitative 
comparisons. 

 One of the most striking demonstrations of how the topological HLPM [31, 87, 

135] (graph-theoretical HL–CD [146–148]) methods can give ‘. . . predictions of similar 
quality to those obtained from much more onerous methods. . .’ [146] is provided by Figure 
3 of ref. [146]. In that Figure, Gershoni-Poranne et al. [146] compare the ring currents 
calculated by the method just referred to with those obtained by the pseudo-π 

approximation [174] to the ipso-centric ab initio formalism [166–170] for 143 rings (not 
all of them necessarily symmetrically distinct) in 17 different conjugated systems that 
consist of alternatingly condensed four-membered and six-membered rings (all of which 
may be viewed in Scheme 1 of ref. [146]). The results are presented in Figure 3 of ref. 
[146] as a least-squares best-fit straight-line whose correlation coefficient is 0.995. As 
Gershoni-Poranne et al. pointed out [146], this shows that ring-currents calculated by the 

graph-theoretical HLPM/HL–CD method ‘. . . are remarkably similar to those extracted 

from the pseudo-π maps [174], which themselves mirror the full ab initio maps’ [166–170]. 

The present authors have examined a more limited set of ab initio bond-currents 
provided by Monaco and Zanasi [160] for corannulene and coronene and their respective 
altans (illustrated, along with appropriate bond labellings, in Figure 20). Figure 21 shows 
a ‘comparator’ diagram for the predictions of bond currents in these systems by the ipso-
centric ab initio method [160] (the red curve) and the HLPM formalism (the black curve) 
[143]. For both sets of calculations, the currents (along the vertical axis) are dimensionless, 
being expressed as a ratio to the bond current/integrated current strength (as the case may 
be) calculated, by the corresponding method, for benzene.  The patterns are seen to be 
reassuringly similar for the two curves — this observation being consistent with the 
agreement found in ref. [146], referred to above. 
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Figure 20. The molecular graphs of four conjugated species: corannulene (the inner-core, 
highlighted in blue, of the structure on the left), altan-corannulene (the entire left-hand structure), 
coronene (the inner-core, highlighted in blue, of the structure on the right), and altan-coronene (the 
entire right-hand structure). In all cases, symmetrically non-equivalent bonds are labelled according 
to the scheme adopted by Monaco and Zanasi [160].  Adapted with permission from T. K. Dickens 

& R. B. Mallion J. Phys. Chem. A 118 (2014) 933–939.  Copyright 2014 American Chemical 
Society. 
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Figure 21. ‘Comparator’ diagrams for (a) corannulene, (b) coronene, (c) altan-corannulene and (d) 
altan-coronene.  The comparison in each case is between the predictions of ab initio ipso-centric 
calculations [160] (the red curve) and those of topological HLPM calculations [143] (the black 
curve).  For both sets of calculations, the currents (along the vertical axis) are dimensionless, being 
expressed as a ratio to the bond current or the integrated current strength (as appropriate) calculated, 
by the corresponding method, for benzene.  The labellings along the horizontal axis — a,b,c, . . — 
refer to the individual bonds of the four structures, as depicted in Figure 20. Adapted with 

permission from T. K. Dickens & R. B. Mallion J. Phys. Chem. A 118 (2014) 933–939.  Copyright 
2014 American Chemical Society. 

 We now examine how the HLPM [87, 135] bond-currents, from various sources 
[31, 87, 125], compare with analogous quantities (‘integrated current strengths’ [177]) 
extracted from the calculations based on the GIMIC formalism [175—177] that the 
Sundholm group has presented [177] for 69 bonds in the ten different condensed, benzenoid 
hydrocarbons that are illustrated on the left-hand sides of Figures 4, 7 and 10 in ref. [177].  

 Least-squares regression-lines are presented in Figure 22 between HLPM 
topological bond-currents [31, 87, 125] (expressed as a ratio to the benzene value) — 
plotted along the vertical axis — and (plotted along the horizontal axis) the GIMIC 
‘integrated current strengths’ (defined in ref. [177] and likewise expressed relative to the 
integrated current strength calculated, by the same method, for benzene) for 69 bonds in 
the ten condensed, benzenoid hydrocarbons illustrated on the left-hand sides of Figures 4, 

7 and 10 in ref. [177]; the latter are calculated by the GIMIC ab initio formalism [175–177] 
described by Kaipio et al. in that ref. [177].  By means of the GIMIC formalism, the 
integrated current strength for a bond in benzene is calculated [177] to be 11.6 nA/T; 
accordingly, all the integrated current strengths reported for bonds in certain condensed 
benzenoid hydrocarbons by Kaipio et al. in ref. [177] have here been divided by this value 
to give GIMIC integrated current strengths that are dimensionless numbers expressed as a 
ratio to this absolute value (11.6 nA/T) calculated as the integrated current strength for 
benzene.  These ratios are the data that were then used in our two regression lines (Figure 
22) and in our comparator diagram (Figure 23). 

 In Figure 22, the left-hand plot (with correlation coefficient 0.977) is for an 
unrestricted regression, and the right-hand plot (with only a marginally smaller correlation 
coefficient of 0.976) is for a regression that is additionally constrained to go through the 
origin. The regression constrained to go through the origin does, nevertheless, have a slope 
that is somewhat nearer to the ideal of 1 — 0.961, rather than 0.934.  
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Figure 22. Least-squares regression-lines between HLPM topological bond-currents [31, 87, 135] 
— plotted along the vertical axis — and (plotted along the horizontal axis) the integrated current 

strengths calculated by the GIMIC ab initio formalism [175–177] for 69 bonds in the ten 
condensed, benzenoid hydrocarbons illustrated on the left-hand sides of Figures 4, 7 and 10 in ref. 
[177]. In each case, the currents plotted along both axes are dimensionless, being expressed as a 
ratio to the bond current or the integrated current strength (as the case may be) calculated, by the 
corresponding method, for benzene.  The left-hand plot is for an unrestricted regression, and the 
right-hand plot is for a regression that is additionally constrained to pass through the origin. 

 As Kaipio et al. point out [177], and as we emphasised earlier, the ab intio methods 
do not, in general, enable the calculation of the equivalent of ‘bond currents’ — the 
‘integrated current strengths’ — that rigorously respect Kirchhoff’s Law of Current-
Conservation at Junctions [19, 35] (except [181] in the idealised limit of a complete basis-

set [182, 183]). Bond currents calculated by the HLPM/HL–CD approach are, by contrast, 
automatically guaranteed to be entirely consistent with the ring currents calculated for the 
system as a whole because, by the very way in which they are constructed, the ring currents 
and bond currents calculated by that method do all strictly obey Kirchhoff’s Law.  It seems, 
therefore, that, in the topological model, the conjugated system under study really does 
behave as it if were a microscopic version of a macroscopic Kirchhoff network [19, 29, 
156, 157].  Because of this general non-compliance with the Conservation Law when ab 
initio calculations are envisaged, integrated current strengths calculated for what are in fact 
symmetrically equivalent bonds are not in general quite the same — in, for example, the 
data presented in ref. [177].  It should be mentioned in passing that Professor Sundholm 
has confirmed (in a personal communication to RBM on March 13th, 2015) our suspicion 
that there is a transcription error in one integrated current strength reported in ref. [177]: 
the integrated current strength for one of the bonds in anthanthrene (the one given as ‘13.8’ 
(nA/T) on the left-hand side of Figure 7 in ref. [177]) should in fact be ‘16.4’. The latter 
value was, accordingly, the one used in our correlations presented in Figures 22 and 23. 

 In addition to the regression lines displayed in Figure 22, a comparator diagram was 
also constructed in which the integrated current strengths of Kaipio et al. [177] (expressed 
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as a ratio to the benzene value of 11.6 nA/T) were compared with the corresponding HLPM 
topological bond-currents (also expressed relative to benzene), accumulated from various 
sources [31, 87, 125].  This comparator diagram is illustrated in Figure 23. In each case, 
the two sets of bond currents/integrated current strengths (along the vertical axis) are 
dimensionless, being expressed as a ratio to the bond current/integrated current strength (as 
the case may be) calculated, by the corresponding method, for benzene.  The red curve 
depicts the GIMIC integrated current strengths and the black curve represents the HLPM 
topological bond-currents.  Once again, a very gratifying visual agreement is found 
between the two approaches, concerning the relative variation of the currents borne by the 
69 bonds considered in these ten condensed benzenoid hydrocarbons. 

Figure 23.  Comparator diagram between relative integrated current strengths from the GIMIC data 
reported in ref. [177] for 69 bonds in ten different condensed, benzenoid hydrocarbons (the red 
curve) and the corresponding relative HLPM topological bond-currents, selected from various 
sources  [31, 87, 125], (the black curve). In each case, the currents (along the vertical axis) are 
dimensionless, being expressed as a ratio to the bond current/integrated current strength (as the case 
may be) calculated, by the corresponding method, for benzene. The labellings along the horizontal 
axis refer to the 69 bonds in the ten condensed benzenoid structures for which integrated current 
strengths are documented in ref. [177]; these labellings are thus arbitrary and hence are of no 
consequence: the 69 bonds could equally well have been listed in any desired order whatsoever and 
an equivalent comparator diagram, just as valid, would have resulted from each and every possible 
such permutation. 
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12. Conclusions 

It will be seen from the previous two sections that there is growing evidence (and 
agreement) for a belief in what an anonymous referee to ref. [97] described as ‘. . . the 
remarkable ability of the topological approach to reproduce complex patterns of current in 
large polycyclic hydrocarbons.’ Gershoni-Poranne et al. [146] have also noted ‘. . . the 
surprising ability of Hückel-based models to capture essential features of delocalised 
systems . . .’  

Ab initio procedures frequently depend first on the application of elaborate software 
in order to optimise starting geometries [145] and then on the choice of wave-function 
basis-set employed; (see, for example, ‘Computational Details’ [p. 848] of ref [185], ‘Ab 
Initio Calculations’ [p. 7448] of ref. [186] and ‘Method’ [p. 655] of ref. [178]). It is clear, 
therefore, that such approaches ‘. . . still require prescriptions for specific wave-functions 
and possibly other assumptions . . .’ [31]. We claim, therefore, that, even with the present-
day routine availability of ab initio calculations, the simple topological HLPM approach 
[31, 87, 135] still has intuitive and even quantitative contributions to make [30] to our 
understanding of the magnetic properties of conjugated systems, displaying, as it does, a 
possibly unexpected capacity to account for such properties.  Application of this approach 
depends on knowledge only  

(a) of the molecular graph [11] of the conjugated system in question (in the form of a 
vertex-adjacency matrix [86] that describes its carbon–carbon connectivity) and 

(b) of the areas of its constituent rings.  

According to common belief, this impressive predictive success should ostensibly be 
the preserve only of sophisticated, and much more complex — both conceptually and 
computationally — ab initio calculations [137].  We have previously suggested [137] that 

 ‘. . . for any given particular molecule, ab initio methods may well give rise to more accurate 
numerical predictions that might more closely mirror observed experimental data. . .’,  

but they do not so readily afford the more basic physical insight that is appreciated by the 
wider chemical community.  We have also observed [97] that  

‘. . . the fact that a simple-minded theory (the HLPM formalism)…’ can yield ‘. . . the same . . . 
conclusions as a more sophisticated ab initio one . . . brings to mind Coulson’s celebrated remark 
[187] about the conceptual value, even in . . . this “ab initio age”, of simple theories that bring about 
intuitive and “. . . primitive patterns of understanding’”.   

In the same vein, Kutzelnigg [36] has emphasised that the HMO model is these days used  

‘. . . to give a simple interpretation a posteriori to ab initio calculations, because these give too 
detailed information. So, HMO is used as a filter to extract relevant features.’ 
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 Furthermore, as Haigh and one of the present authors (RBM) [28] put it, many years 
ago: the ring-current model itself  

‘… is so pictorial that one can almost feel what is happening when a molecule is subjected to a 
magnetic field.’ 

 Be that (somewhat anthropomorphic) observation as it may, we finish by 
emphasising three important and incontrovertible facts:  

(a) Kutzelnigg’s [36] point that Hückel Theory may be regarded as a ‘one-parameter 
theory’ (the parameter in question here being β, the standard Hückel resonance 
integral in benzene), and that 

(b) even granted point a), just mentioned, topological bond-currents and ring currents 
are themselves independent of β because, when the results are expressed as a ratio 
to the corresponding quantities calculated (by the same HLPM approach) for 
benzene, β cancels  [137]. 

(c) Computed numerical values of topological ring-currents and bond-currents are 
thus, to use Kutzelnigg’s [36] terminology, the fruits of a parameter-free theory.    

 We conclude by coming full circle and pointing out that such observations are not 
new: even London, in one of his pioneering papers [23] in the field from nearly eighty 
years ago, properly and succinctly claimed that his calculation ‘. . . makes no use of any 
adjustable parameter.’ 
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