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Abstract

Topological indices are numerical parameters of a graph which characterize its
topology and are usually graph invariant. Among the large number of existing
topological indices, an important class of such measures relies on Shannon’s entropy
to characterize graphs by determining their structural information content. In this
paper, we study the entropy of weighted graphs with the degree–based topological
indices (specially, the first and second Zagreb indices, the general Randić index, the
harmonic and sum–connectivity index) as weights.

1 Introduction

A graph G is an ordered pair of sets V (G) and E(G) such that the elements uv ∈ E(G)

are a sub-collection of the unordered pairs of elements of V (G). For convenience, we

denote a graph by G = (V,E) sometimes. The elements of V (G) are called vertices and

the elements of E(G) are called edges. If e = uv is an edge, then we say vertices u and

v are adjacent, and u, v are two endpoints (or ends) of e. If G is a graph with n vertices

and m edges, then we say the order of G is n and the size of G is m. A graph of order n is

addressed as an n-vertex graph. A graph is connected if, for every partition of its vertex

set into two nonempty sets X and Y , there is an edge with one end in X and one end in

Y . Otherwise, the graph is disconnected. In other words, a graph is disconnected if its

vertex set can be partitioned into two nonempty subsets X and Y so that no edge has

one end in X and one end in Y . All vertices adjacent to vertex u are called neighbors of
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u. The neighborhood of u is the set of the neighbors of u. The number of edges adjacent

to vertex u is the degree of u, denoted by du. Vertices of degrees 0 and 1 are said to

be isolated and pendent vertices, respectively. A pendent vertex is also referred to as a

leaf of the underlying graph. A connected graph without any cycle is a tree. A weighted

graph is a graph in which a number (the weight) is assigned to each edge. Such weights

might represent for example costs, lengths or capacities, depending on the problem at

hand. Some authors call such a graph a network.

A topological index is a numerical parameter mathematically derived from the graph

structure. It is a graph invariant thus it does not depend on the labelling or pictorial rep-

resentation of the graph. The topological indices of molecular graphs are widely used for

establishing correlations between the structure of a molecular compound and its physico-

chemical properties or biological activity (e.g., pharmacology). Gutman [3] introduced

the following general form for degree–based topological indices:

TI = TI(G) =
∑

uv∈E(G)

F (du, dv), (1)

where the summation goes over all pairs of adjacent nodes u, v of graph G, and where

F = F (x, y) is an appropriately chosen function. In particular, F (x, y) = x+y for the first

Zagreb index, F (x, y) = xy for the second Zagreb index, F (x, y) = (xy)λ (λ ∈ R) for the

general Randić index, F (x, y) = 2(x+y)−1 for the harmonic index and F (x, y) = (x+y)−
1
2

for the sum–connectivity index [6].

The plan of the paper is as follows. In Section 2, the entropy of weighted graphs is

defined. The main results are given in Section 3. In this section, we start with the constant

weights. Then we give the main theorem (Theorem 4) with the essential Equation (5) for

degree–based topological indices. In passing, we study some well-known graphs.

2 Entropy of Weighted Graphs

Studies of the information content of complex networks and graphs have been initiated

in the late 1950s based on the seminal work due to Shannon. Numerous measures for

analyzing complex networks quantitatively have been contributed. A variety of problems

in, e.g., discrete mathematics, computer science, information theory, statistics, chemistry,

biology, etc., deal with investigating entropies for relational structures. For example,

graph entropy measures have been used extensively to characterize the structure of graph–
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based systems in mathematical chemistry, biology and in computer science–related areas

[1].

Rashevsky is the first who introduced the so-called structural information content

based on partitions of vertex orbits [12]. Mowshowitz used the the same measure and

proved some properties for graph operations (sum, join, etc.) [11]. Moreover, Rashevsky

used the concept of graph entropy to measure the structural complexity of graphs. Mow-

showitz introduced the entropy of a graph as an information–theoretic quantity, and he

interpreted it as the structural information content of a graph. Mowshowitz later stud-

ied mathematical properties of graph entropies measures thoroughly and also discussed

special applications thereof.

For a given graph G and vertex vi, let di be the degree of vi. For an edge vivj, one

defines:

pij =
w(vivj)∑di
j=1w(vivj)

, (2)

where w(vivj) is the weight of the edge vivj and w(vivj) > 0. The node entropy has been

defined by:

H(vi) = −
di∑
j=1

pij log(pij). (3)

Motivated by this method, Chen et al. [2] introduced the definition of the entropy of

edge-weighted graphs, which also can be interpreted as multiple graphs. For an edge–

weighted graph, G = (V,E,w), where V , E and w denote the vertex set, the edge set and

the edge weight of G, respectively.

Definition 1. For an edge weighted graph G = (V,E,w), the entropy of G is defined by:

I(G,w) = −
∑
uv∈E

pu,v log pu,v, (4)

where

pu,v =
w(uv)∑

uv∈E w(uv)
.

The above definition of the entropy for edge–weighted graphs is based on the proba-

bility function (2).

3 Main Results

As our first result, we prove the following theorem.
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Theorem 1. Let G = (V,E,w) be a graph with n vertices, m edges and w(e) = c > 0 for

each edge e, where c is a constant. Then

log(n− 1) ≤ I(G,w) ≤ log

(
n

2

)
.

Proof. By definition,

I(G,w) = −
∑
uv∈E

1

m
log

1

m
= logm.

Proof is completed since n− 1 ≤ m ≤
(
n
2

)
.

As a corollary, for a tree T with n vertices, I(T,w) = log(n− 1).

Example 1. Let w(e) = w(uv) = du + dv. Then
∑

uv∈E(G)w(e) = M1(G) where M1 is

the first Zagreb index.

1- The path Pn is a tree of order n with exactly two pendent vertices. Thus

M1(Pn) = 4n− 6.

2- The star of order n, denoted by Sn, is the tree with n− 1 pendent vertices. Thus

M1(Sn) = n(n− 1).

3- A complete graph Kn is a simple undirected graph in which every pair of distinct vertices

is connected by a unique edge. Thus

M1(Kn) = n(n− 1)2.

Then

I(Pn, w) = −4(n− 3)

4n− 6
log

4

4n− 6
− 6

4n− 6
log

3

4n− 6
,

I(Sn, w) = log(n− 1),

I(Kn, w) = − log
2

n(n− 1)
.

Theorem 2. Let G = (V,E,w) be a regular graph with n ≥ 3 vertices, m edges and

w(e) = F (du, dv). Then

log n ≤ I(G,w) ≤ log

(
n

2

)
.

Proof. Suppose G is k-regular. Then, k ≥ 2, since G is connected and n ≥ 3. By

definition,

I(G,w) = −
∑
uv∈E

F (k, k)∑
uv∈E F (k, k)

log
F (k, k)∑

uv∈E F (k, k)
= log

nk

2
.

Proof is completed since 2 ≤ k ≤ n− 1.
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Theorem 3. Let G = (V,E,w) be a complete bipartite graph with n vertices and w(e) =

F (du, dv). Then

log(n− 1) ≤ I(G,w) ≤ log
(⌊n

2

⌋⌈n
2

⌉)
.

Proof. Suppose G is a complete bipartite graph with n vertices, and the two parts have

n1 and n2 vertices, respectively. Therefore, n = n1 + n2. By definition,

I(G,w) = −
∑
uv∈E

F (n1, n2)∑
uv∈E F (n1, n2)

log
F (n1, n2)∑

uv∈E F ((n1, n2)
= log(n1n2).

Theorems 2 and 3 show that the entropy of weighted regular and complete bipartite

graphs do not depend on the weights.

Theorem 4. Let G = (V,E, F (du, dv)) be a connected graph with n vertices. Also, let

Tm = minTI(G) and TM = maxTI(G).

1- For the first and second Zagreb indices,

log
Tm

F (n− 1, n− 1)
≤ I(G,w) ≤ log

TM
F (1, 2)

.

2- For the harmonic and sum–connectivity indices,

log
Tm

F (1, 2)
≤ I(G,w) ≤ log

TM
F (n− 1, n− 1)

.

Proof. We have

I(G,w) = −
∑

uv∈E(G)

pu,v log pu,v

= −
∑

uv∈E(G)

F (du, dv)

TI(G)
log

F (du, dv)

TI(G)

= − 1

TI(G)

∑
uv∈E(G)

F (du, dv) log
F (du, dv)

TI(G)

= − 1

TI(G)

∑
uv∈E(G)

F (du, dv)(logF (du, dv)− log TI(G))

= log TI(G)− 1

TI(G)

∑
uv∈E(G)

F (du, dv) logF (du, dv).

Thus I(G,w) can be expressed as:

I(G,w) = log TI(G)− 1

TI(G)

∑
uv∈E(G)

F (du, dv) logF (du, dv). (5)
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1- From (5),

I(G,w) ≤ log TM(G)− 1

TI(G)
logF (1, 2)

∑
uv∈E(G)

F (du, dv)

= log TM(G)− logF (1, 2).

Also,

I(G,w) ≥ log Tm(G)− 1

TI(G)
logF (n− 1, n− 1)

∑
uv∈E(G)

F (du, dv)

= log Tm(G)− logF (n− 1, n− 1).

Part 2 is proved similarly.

Corollary 1. Let G = (V,E, F (du, dv)) be a connected graph with n vertices and w(e) =

(dudv)
λ where λ ∈ R (the general Randić index as weight). Then

1- for λ > 0,

log
Tm

(n− 1)2λ
≤ I(G,w) ≤ log TM − λ.

2- for λ < 0,

log TM − λ ≤ I(G,w) ≤ log
Tm

(n− 1)2λ
.

The following corollary is an immediate consequence of reference [8].

Corollary 2. 1- Let G be a graph with n vertices and no isolated vertices and w(e) =

(dudv)
λ. Then

i) For λ ∈ (−1/2, 0):

log
(

min{(n−1)1+λ,
n

2
(even n),

n− 3

2
+21+λ(odd n)}

)
−λ ≤ I(G,w) ≤ log(n(n−1))−1.

ii) For λ ∈ (−∞,−1), when n is even:

log(n(n− 1)1+2λ)− λ− 1 ≤ I(G,w) ≤ log n− 2λ log(n− 1)− 1

and when n is odd:

log(n(n− 1)1+2λ)− λ− 1 ≤ I(G,w) ≤ log(n− 3 + 22+λ)− 2λ log(n− 1)− 1.

2- Let T be a tree with n vertices and w(e) = (dudv)
λ. Then

i) For λ ∈ [−1/2, 0]:

(λ+ 1) log(n− 1)− λ ≤ I(G,w) ≤ log(1 + (n− 3)2λ−1)− 2λ log(n− 1) + λ+ 1.
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ii) For λ ∈ [−∞,−2], when n is odd:

(λ+ 1) log(n− 1)− λ ≤ I(G,w) ≤ log((n− 1)λ + 2λ) + (1− 2λ) log(n− 1)− 1

and when n is even:

(λ+ 1) log(n− 1)− λ ≤ I(G,w) ≤ log(
n− 2

2
((n− 2)λ + 2λ)) + 4λ)− 2λ log(n− 1).

The reader see reference [10] for evaluating entropy in simple connected graphs and [13]

for trees.

Corollary 3. Let G be a graph with n vertices. Let δ and ∆ be the minimum degree and

the maximum degree of G, respectively.

1- For the first and second Zagreb indices, the general Randić index (λ > 0):

log
Tm

F (∆,∆)
≤ I(G,w) ≤ log

TM
F (δ, δ)

.

2- For the harmonic and sum–connectivity indices, the general Randić index (λ < 0):

log
Tm

F (δ, δ)
≤ I(G,w) ≤ log

TM
F (∆,∆)

.

Let w(e) = (dudv)
λ where λ ∈ R. Then

3- for λ > 0,

log
Tm
∆2λ

≤ I(G,w) ≤ log
Tm
δ2λ

and for λ < 0,

log
Tm
δ2λ
≤ I(G,w) ≤ log

Tm
∆2λ

.

Example 2. Let w(e) = du +dv and Tn be a tree with maximum degree ∆. Then the first

Zagreb index ≤ n2 − 3n+ 2(∆ + 1) [7]. Thus

I(Tn, w) ≤ log
n2 − 3n+ 2(∆ + 1)

2δ
.

Also, 4n− 6 ≤ the first Zagreb index of Tn ≤ n(n− 1) [4]. Then

log
4n− 6

2∆
≤ I(G,w) ≤ log

n(n− 1)

2δ
.

Dendrimers are large and complex molecules with very well–defined chemical struc-

tures. They are nearly perfect monodisperse macromolecules with a regular and highly

branched three-dimensional architecture [5]. A dendrimer is a tree with two additional
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parameters; the progressive degree t and the radius r. Every internal node of the tree

has degree t + 1. As in every tree, a dendrimer has one (monocentric dendrimer) or two

(dicentric dendrimer) central nodes; the radius r denotes the (largest) distance from an

external node to the (closer) center. If all external nodes are at a distance r from the

center, then the dendrimer is called homogeneous. Internal nodes different from the cen-

tral nodes are called branching nodes and are said to be on the i-th orbit if their distance

to the (nearer) center is r. Every branching vertex has one incoming edge, as well as

t outgoing edges. Let D(t; r) denote the dendrimer graph with parameters t and r. If

D(t; r) has only one center, then we have n = 1 + (t+1)(tr−1)
t−1 . As an example, we show a

dendrimer with one center such that t = 3 and r = 3 in Figure 1.

Figure 1: A dendrimer (one center) with t = 3 and r = 3.

Theorem 5. Let D(t; r) be a dendrimer with n vertices with only one center and w(e) =

F (du, dv). Then

I(D(t; r), w) = −(t+ 1)tr−1
F (t+ 1, 1)

TI(D)
log

F (t+ 1, 1)

TI(D)

− (t+ 1)(1− tr−1)F (t+ 1, t+ 1)

TI(D)
log

F (t+ 1, t+ 1)

TI(D)
,

where

TI(D) = (t+ 1)tr−1F (t+ 1, 1) + (t+ 1)(1− tr−1)F (t+ 1, t+ 1).
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Proof. If r = 1, then D(t; 1) is a star. Now, by Example 1 (Part 2), I(D(t; 1), w) =

log(t+ 1) since

n = 1 +
(t+ 1)(t− 1)

t− 1
= t+ 2.

If t = 1, then D(1; r) is a path. Now, similar to Example 1 (Part 1),

I(D(t; 1), w) = −(n− 3)
F (2, 2)

TI(D)
log

F (2, 2)

TI(D)
− 2

F (1, 2)

TI(D)
log

F (1, 2)

TI(D)
.

In a dendrimer D(t; r) with one center, there are (t+ 1)tr−1 leaves and both end vertices

of any edge have degree t+ 1. Then

TI(D) = (t+ 1)tr−1F (t+ 1, 1) + (n− 1− (t+ 1)tr−1)F (t+ 1, t+ 1)

= (n− 1)(n− 2)r−1F (n− 1, 1)

+ (n− 1)(1− (n− 2)r−1)F (n− 1, n− 1).

Proof is completed since n = t+ 2.

In Theorem 5, we can find the lower and upper bounds for the entropy with evaluating

I(D(t; r), w) as a function on t. For example, in the case of Randić weights (λ < 0),

I(D(t; r), w) is an increasing function on t with a maximum at point t = n − 2 and a

minimum at point t = 1.

Corollary 4. If D(t; r) has only two centers, then we have n = 2(tr+1−1)
t−1 . Then we can

obtain a result for this structure with the same manner.

Example 3. Let w(e) = du + dv. Then

TI(D(t; 2)) = n(n− 1)(n− 2) + 2(n− 1)2(3− n).

Then

I(D(t; r), w) = −(n− 1)(n− 2)
n

TI(D(t; 2))
log

n

TI(D(t; 2))

− (n− 1)(3− n)
2n− 2

TI(D(t; 2))
log

2n− 2

TI(D(t; 2))
.

A comet is a tree composed of a star and a pendent path [9]. For any numbers n and

2 ≤ t ≤ n− 1, we denote by C(n; t) the comet of order n with t pendent vertices, i.e., a

tree formed by a path Pn−t of which one end vertex coincides with a pendent vertex of a

star St+1 of order t + 1. Observe that C(n; t) is the path graph if t = 2 and is the star

graph if t = n− 1.
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Theorem 6. Let C(n; t) be a comet and w(e) = F (du, dv). Then

I(C(n; t), w) = − F (1, 2)

TI(C(n; t))
log

F (1, 2)

TI(C(n; t))
− F (2, t)

TI(C(n; t))
log

F (2, t)

TI(C(n; t))

− (t− 1)
F (1, t)

TI(C(n; t))
log

F (1, t)

TI(C(n; t))

− (n− t− 2)
F (2, 2)

TI(C(n; t))
log

F (2, 2)

TI(C(n; t))
,

where

TI(C(n; t)) = F (1, 2) + F (2, t) + (t− 1)F (1, t) + (n− t− 2)F (2, 2).

Proof. It is enough to note that by definition of a comet,

TI(C(n; t)) = F (1, 2) + F (2, t) + (t− 1)F (1, t) + (n− t− 2)F (2, 2).

Example 4. If w(e) = du + dv, then

TI(C(n; t)) = t2 − 3t+ 4n− 4.

Thus

I(C(n; t), w) = − 3

TI(C(n; t))
log

3

TI(C(n; t))
− 2 + t

T I(C(n; t))
log

2 + t

T I(C(n; t))

− (t− 1)
t+ 1

TI(C(n; t))
log

t+ 1

TI(C(n; t))

− (n− t− 2)
4

TI(C(n; t))
log

4

TI(C(n; t))
,

We can extend our results to the multiplicative version of the topological indices. Let

us define

pu,v =
w(uv)∏

uv∈E(G)w(uv)
.

In this case,
∏

uv∈E(G) puv = 1 but puv is not a probability function. Also if w(e) =

F (du, dv), then TImu(G) =
∏

uv∈E(G)w(e) is a multiplicative version of a topological

index. Similar to (5),

I(G,w) = − TI(G)

TImu(G)
log TImu(G)− 1

TImu(G)

∑
uv∈E(G)

F (du, dv) logF (du, dv).

Thus for example,

I(G,w) ≥ − log TImu(G)− logF (∆,∆)

TImu(G)
TI(G) ≥ − log(F (∆,∆)TImu(G)).
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4 Conclusion

This paper mainly considered edge weights defined by some degree–based topological in-

dices. For future work, it would be interesting to consider other degree–based topological

indices, such as the atom-bond connectivity (ABC) index, which is well studied with ap-

plications in chemistry. The entropy for vertex–weighted graphs can be defined similarly,

which has already been studied extensively. Also, we can study the entropy of weighted

graphs with other version of the topological indices such as reformulated version. Studying

the entropy of weighted graphs with an information on degrees or edges is also possible.

In the presented results, equality holds if and only if the graph G is a specified graph.

For example, In Theorem 2, the left equality holds if and only if G is the cycle graph, and

the right equality holds if and only if G is the complete graph.
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