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Abstract 

The modified Wiener index is an algebraic modification of the classical Wiener index under 
symmetry group. This graph invariant was presented by Graovac and Pisanski in 1991. In this 
paper, the modified Wiener polynomial Ŵ(G,x) of a graph G is presented by which we extend 
some well−known results of the classical Wiener index to its modified version. Moreover, the 
modified Wiener polynomials of some classes of chemical graphs containing linear phenylene 
and its hexagonal squeeze, and the ortho−, meta− and para−polyphenylene chains are 
computed.  

 

1. Introduction 

Let G = (V(G), E(G)) be a simple connected graph with non−empty vertex set V(G) and edge 

set E(G). The distance dG(u,v) between vertices u and v of G is the length of a shortest path 

connecting u and v. The diameter of G, d(G) = diam(G), is the maximum distances between 

vertices in G. The sum of all distances between pair of vertices in G is called the Wiener 

index of G and denoted by W(G) [18]. Graovac and Pisanski in their seminal paper [4] applied 

the symmetry group of the graph under consideration to obtain an algebraic modification of 

the classical Wiener index. We encourage the interested readers to consult [12] for more 

information on the modified Wiener index and its relationship with representation theory of 

finite groups. 

Suppose G is a graph, Γ is a subset of the automorphism group of G (Aut(G)) and λ is a 

real number. The λ−distance number of G is defined as  
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For λ = 1, δ1(G) = δ(G) is the ordinary distance number. The modified Wiener index is 

defined as )(|)(|2/1)( 2 GGVGW δ=
∧

 and the modified hyper−−−−Wiener index [3] is defined 

as ).(|)(|4/1)(|)(|2/1)( 2
22 GGVGGVGWW δδ +=

∧
 In [16], the present authors computed 

the modified Wiener index of some graph operations. In this paper we continue our work by 

considering a polynomial version of this graph invariant.  

Throughout this paper our notation is standard. We encourage the interested readers to 

consult papers [6,13,14] and references therein for more information on this topic. 

 

2. Modified Wiener Polynomial 

Hosoya [7] introduced the generating function H(G,x) of distances in a given graph G 

and termed it the Wiener polynomial for H(G,x). In an exact phrase, 

,),(),(
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=
k

kxkGdxGH  where d(G,k) denotes the number of pairs of vertices of the 

graph G whose distance is k. Some papers denote Hosoya polynomial as W(G,x) and called it 

the Wiener polynomial. Similarly, we define the modified Wiener polynomial as follows: 

 

Definition 1. Suppose G is a simple connected graph and Γ is a subgroup of Aut(G). The 

“modified Wiener polynomial” of G is defined as 
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It is obvious that, the degree of the modified Wiener polynomial is ≤ d(G). For a subset 

U of vertices of G, we assume that ∑ ∈

∧∧
=

Uu
iudiUd ),(),( , where 1 ≤ i ≤ d(G). Then we 

define the U−−−−locally modified Wiener polynomial of G as  
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In the following lemma, an algebraic method for computing ),( xGW
∧

 is presented. 

 

Theorem 1. Suppse V1, V2, …, Vr are orbits of natural action of Γ on vertices of G. Then, 
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Indeed, if G is vertex transitive then ),(),( xGWxGW =
∧

. 
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If G is vertex transitive then for each i, ),(),( iGdiGd =
∧

. This proves the theorem.     ■ 

 

Example 1. Let Kn and Cn be complete and cyclic graphs with n vertices. It is well known 

that the automorphism group of Kn is isomorphic to symmetric group Sym(n) on n letters and 

the automorphism of Cn is isomorphic to dihedral group Dn of order 2n and these graphs are 

vertex transitive. Then, x
n
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Example 2. Let Pn be the path graph with n vertices and let Sn and Wn be star and wheel 

graphs with n + 1 vertices, where n ≥ 3. The automorphism group of Pn is isomorphic to the 

cyclic group of order 2 and it has  2/n  orbits, where  x  denotes the ceiling of x. Then 
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The automorphism groups of Sn and Wn are isomorphic to Sym(n). These graphs have 2 orbits 

on vertices and so x
nn

xSW n 2
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Example 3. Let Kr,s be the complete bipartite graph with vertex set {x1, x2, …, xr, y1, y2, …, 

ys}. If r ≠ s, then the automorphism group of Kr,s is isomorphic to Sym(r) × Sym(s). In this 

case, there are two orbits {x1, x2, … , xr} and { y1, y2, …, ys}. Then 
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semi−direct product of cyclic group of order 2 and Sym(r) × Sym(s). This graph is vertex 

transitive and so 22
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Let g be an arbitrary automorphism of a graph G. Define the polynomial δ(g,x) as 
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For every subgroup Γ of Aut(G), we define: 
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The distance polynomial of a graph G is simply )),((),( xGAutx δδ =Γ . 

 

Theorem 2. Let Γ be a subset of Aut(G). The modified Wiener polynomial can be rewritten as  
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Proof. Suppose that u is an arbitrary vertex of G. By definition, ),( iud
∧

 is equal to the number 

of automorphisms g ∈ Γ such that d(u,g(u)) = i. Choose arbitrary vertices u and v of G in an 

orbit Vk such that d(u,v) = i. Therefore, all automorphisms which map u to v, have been 

considered in the set { }iugudgugu =Γ∈ ))(,(&|)}(,{ . Now the repetition of xi in 
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This completes the proof.                                                                                                           ■ 
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Corollary 1. The modified Wiener polynomial satisfies the following conditions: 

a) )()1,(' GWGW
∧∧

= ,  

b) )()1,(''2/1)1,(' GWWGWGW
∧∧∧
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Proof. It is obtained directly from definition.                                                                            ■ 

 

As in Theorem 2, for every subset U of V(G), we can rewrite the U−locally modified 

Wiener polynomial of G as 
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We can also define the U−−−−locally modified Wiener index and U−−−−locally modified 

hyper−−−−Wiener index as: 
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Obviously, if Γ = Aut(G) and U is an orbit of V(G) then )()( UWUW =
∧

 and 

)()( UWWUWW =
∧

. 

 

Corollary 2. If V1, V2, …, Vr are orbits of the action of Γ on V(G) then the modified Wiener 

index and the modified hyper−Wiener index can be computed by the following formulas: 
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3. Modified Wiener Polynomial of Some Chemical Graphs 

Most calculations of this section are done for the families of graphs that can be viewed 

as fasciagraphs. For the introduction to polygraphs (i.e. fasciagraphs and rotagraphs) the 

interested readers are referred to the paper [1]. The idea there is to use the transfer matrix 

method to help calculate an invariant of a fasciagraph or rotagraphs. This method was first 
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used for calculation of the matching polynomial but was later applied to some other graph 

invariant such as the Wiener index; see for instance [8,10]. 

In this section, the modified Wiener polynomial, modified Wiener index and modified 

hyper−Wiener index of linear phenylene and its hexagonal squeeze, ortho−, meta− and 

para−polyphenylene chains are computed. It is merit to mention here that the modified 

hyper−Wiener index is a symmetry version of so called topological index hyper−Wiener 

index was introduced by Klein et al.  

 

3.1. Linear phenylene and its hexagonal squeeze 
 

Phenylenes are polycyclic conjugated molecules with six– and four–membered rings, Figure 

1. A phenylene LP is a planar 2−connected graph containing mutually congruent regular 

hexagons and mutually congruent squares, both with edges of equal length. Each square is 

joined to exactly two hexagons, whereas all hexagons are mutually disjoint. Each phenylene is 

in a one–to–one correspondence with a catacondensed benzenoid system called “hexagonal 

squeeze”, Figure 2, denoted by LH [5].  
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Figure 1. Linear phenylene LPhn. 
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Figure 2. Linear hexagonal squeeze LHn. 

 

Theorem 3. Let n be a positive integer greater than 1. Then the modified Wiener polynomial 

of linear hexagonal squeeze of length n is equals to  
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Proof. In the molecular graph of LHn, we have n hexagons, n ≥ 2, and |V(LHn)| = 4n + 2. One 

can easily prove that the automorphism group of this graph can be generated by two 

automorphisms  
 

),24,14)(4,14()4,3)(2,1( ++−= nnnn…α
).22)(42,2()4,4)(24,2)(12)(32,12()14,3)(14,1( +++++−−+= nnnnnnnnnn ……β  

It is clear that this group is isomorphic to Z2 × Z2 and this group has exactly n + 1 

orbits as follows: 

Vi = {2i − 1, 2i, 4n − 2i + 3, 4n − 2i + 4}; 1 ≤ i ≤ n + 1. 

For 1 ≤ i ≤ n, |Vi| = 4 and if i is even then 
∧

W (Vi,x) = 2(x2n−2i+2 + x2n−2i+3 + x3) and if i is 

odd, then 
∧

W (Vi,x) = 2(x2n−2i+2 + x2n−2i+3 + x). For i = n + 1, |Vn+1| = 2 and so 


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∧

oddisnx

evenisnx
xVW n 31 ),( . By applying Theorem 2, the result is obtained.                        ■ 

 

By applying Corollary 1 of Theorem 2, the modified Wiener index and modified 

hyper−Wiener index of linear hexagonal squeezes can be computed by formulas Ŵ(LHn) = 

16n3 + 28n2 + 12n + 1 and 
∧

WW (LHn) = 1/3(64n4 + 128n3 + 134n2 + 49n + 3).  

 
Theorem 4. Let n > 1 be a positive integer. Then the modified Wiener polynomial of the 

linear phenylene of length n is computed as follows:  
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Proof. The automorphism group of LPhn can be generated by automorphisms α and β such 

that  

    )6,16)(26,36()4,3)(2,1( nnnn −−−= …α , 

    )23,3()26,4)(6,2)(13,13()36,3)(16,1( +−+−−−= nnnnnnnn ……β , n is even, 

    ),13)(33,13()26,4)(6,2)(3)(23,23()36,3)(16,1( ++−−+−−−= nnnnnnnnnn ……β n is 

odd. This group is isomorphic to Z2 × Z2. It is clear that Vi = {2i − 1, 2i, 6n − 2i + 1, 6n − 2i + 

2}, 1 ≤ i ≤ 3n/2 (n is even) and 1 ≤ i ≤ (3n + 1)/2 (n is odd) are orbits of this group under its 

natural action. For each n and each i, else n is odd and i = (3n + 1)/2, we have: 
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When n is odd and i = (3n+1)/2, 3
2/)13( 2),( xxVW n =+

∧
. The result is now an immediate 

consequence of Theorem 2.                                                                                                        ■ 

By applying Corollary 1 of Theorem 2, the modified Wiener and modified 

hyper−Wiener indices of linear chains can be computed as follows: 
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3.2. Linear polyphenylene chains 

Any of numerous polymers in which the basic building block is a phenylene is called a 

polyphenylene. In fact, a polyphenylene is a graph obtained from a hexagonal cactus by 

expanding each of its cut−vertices to an edge. Here, a cactus graph is a connected graph in 

which no edge is contained in more than one cycle. In such graphs, each block is either a 

cycle or an edge. If all blocks of a cactus graph G are cycles of the same size m, then G is 

called an m−uniform cactus graph. A hexagonal cactus is a 6−uniform cactus.  

An internal hexagon in a polyphenylene is called ortho−hexagon, meta−hexagon, or 

para−hexagon, Figure 3, if its cut−vertices are at distance 1, 2 or 3, respectively. If all internal 

hexagons in a polyphenylene chain are of the same type, say ortho, the chain is an 

ortho−chain. The meta− and para−chains can be defined analogously, Figure 4. We denote an 

ortho−, a meta− and a para−chain of length n by OPn, MPn and LPn, respectively. We refer the 

interested readers to [2] for some results on this topic.  

O M P

x y x

y

x

y  

Figure 3. Ortho−, meta− and para−positions of atoms in benzene. 
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Figure 4. Para−polyphenylenes chain PPn.  

Suppose Γ is a group with subgroups H and K such that H is normal in Γ, H ∩ K = 1 

and Γ = HK. Then we say Γ is a semi-direct product of H by K and write G = H:K. 

 

Theorem 5. Let n > 1 be a positive integer. Then the modified Wiener polynomial of 

para−polyphenylenes is equals to  
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Proof. The molecular graph of a para−polyphenylenes is of the shape shown in Figure 4. 

Suppose )16,36)(26,46( −−−−= iiiiiα , 1 ≤ i ≤ n. Then one can easily prove that all of ai are 

graph automorphisms. 

Case I: n is even. For each i, <αi> ≅ Z2 and therefore the direct product of these groups 

is a normal subgroup of Aut(PPn). On the other hand, there will be another automorphism τ of 

order 2 and the automorphism group of PPn is the semi-direct product >τ<×× :)( 22 ZZ ⋯ , 

where 2Z>≅<τ . In fact, ,
2/

1∏ =
= n

j jjjjjj ρλµπηγτ  where ),66,56( inij −−=γ  

),366,46( +−−=η inij  ),266,36( +−−=π inij  ),566,26( +−−=µ inij  

)466,16( +−−=λ inij  and )166,6( +−=ρ inij . 

For 1 ≤ i ≤ n/2, the orbits of vertices are V4i − 3 = {6i − 5, 6n − 6i + 6}, V4i − 2 = {6i − 4, 

6i − 2, 6n − 6i + 3, 6n − 6i + 5}, V4i−1 = {6i − 3, 6i − 1, 6n − 6i + 2, 6n − 6i + 4} and V4i = {6i, 

6n − 6i + 1}. Then for any i we have 









+

+=
=

+−

+−
∧

.
2

1

4,14
2

1

),(
212

124

otherwisexx

ttkx
xVW

in

in

k  

The result follows from Theorem 2. 
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Case II: n is odd. Then Aut(PPn) has a subgroup H such that, H is the semi-direct 

product ,: >ω<K  where ,2Z≅>ω<  ,
2/)1(

1∏ −
= ρλµπηγχ=ω n

j jjjjjj  

)23,13)(3,13)(33,23( ++−+−= nnnnnnχ  and 

.2/)3(2/)1(21 >α<××>α<×>α<××>α<×>α<= +− nnnK ⋯⋯ . 

Therefore, HPPAut nn ×>α<≅ + 2/)1()( . For 1 ≤ i ≤ (n−1)/2, the orbits of the automorphism 

group on vertices are as in the case I. Note that, V2n-1 = V2n+2 and V2n+1 = V2n. Then for any i, 

we have: 
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Now, the result is an immediate consequence of Theorem 2.                                                    ■ 

 

By Corollary 1, the modified Wiener and hyper−Wiener indices of linear chains can 

be computed and so  
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Figure 5. Ortho−polyphenylene chain OPn. 

 

Theorem 6. Let n > 1 be a positive integer. Then the modified Wiener polynomial of 

ortho−polyphenylene is equal to  
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Proof. The molecular graph of polyphenylene is depicted in Figure 5. There are n hexagons 

such that the i-th hexagon, i = 1, …, n, is joined to the next and the previous one by an edge. 

The automorphism group of OPn is generated by automorphisms α1 = (1,5)(2,4), α2 = (6n − 

1,6n − 3)(6n,6n − 4) and ∏ =
+−= n

i
ini

3

1
)16,(β . Therefore Aut(OPn) is isomorphic to 

dihedral group of order 8.  

Suppose Ai = {i, 6n−i+1}. There are 3n − 2 orbits as V1 = A3, V2 = A4∪A1, V3 = A5∪A2, 

Vi = Ai+2 and i ≤ 3n-2. Then, 212
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and if n is odd then, xxVWxVW nn == −
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Now, the result is an immediate consequence of Theorem 2.                                                    ■ 

 

Apply Corollary 1, the modified Wiener and hyper−Wiener indices of linear chains 

can be obtained as:  
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Figure 6. Meta−polyphenylene chain MPn. 
 

Theorem 7. Let n > 1 be a positive integer. Then the modified Wiener polynomial of a 

meta−polyphenylene is equals to  
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Proof. The molecular graph of a polyphenylene is depicted in Figure 6. There are n hexagons 

such that the i-th hexagon, i = 1, …, n, is joined to the next and the previous one by an edge. 

The automorphism group of MPn is generated by automorphisms α1 = (1,3)(4,6), α2 = (6n − 

1,6n − 3)(6n,6n − 4) and 
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Aut(MPn) is isomorphic to dihedral group of order 8. 

For any i, (1 ≤ i ≤ 3n), let Ai = {i, 6n-i} if i ≠ 6k and Ai = {i, 6n – i + 6} if i = 6k, and if 

n is odd then for i = 3n + 1 let A3n+1 = {3n + 3}. Consider V1 = A1, V2 = A2 ∪ A3, V3 = A4 ∪ A5 

and for other values of i, Vi = Ai+2. If n is even then, there are 3n – 2 orbits and in other case 

there are    3n – 1 orbits.  
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and if n is odd then, 0),(),( 1323 == −
∧

−
∧
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∧
. 

Now, the result is an immediate consequence of Theorem 2.                                                    ■ 

 

To calculate the modified Wiener hyper−Wiener indices of linear chains, it is enough 

to apply Corollary 1. We can see that  
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4. Conclusions 

Finally, we compute different derivatives of the modified Wiener polynomial to extend 

the main results of [15] to the modified Wiener index. To do this, we assume that m is a 

positive integer. Then  
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is a graph invariant with properties, )()()1( GWGW
∧∧

=  and )()()2( GWWGW
∧∧

= . For m = 3 we 

have: 
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which is related to the definition of Tratch−Stankevich−Zefirov index (TSZ index for short) 

[17,9] and so we let )(:)( )3( GWGTSZ
∧∧

= . We assume that n is a positive integer. The 

nth−order modified Wiener index of G is defined as:  
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Obviously, )()(1 GWGW
∧∧

= . We show that )()( GW m
∧

 and )(GWn
∧

 can be calculated without 

the use of the modified Wiener polynomial.  

Define the modified distance moments of a graph G as  
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where k is a positive integer. Then, we have: 
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Let (t)n = t (t − 1)…( t − n +1) and (t)(n) = t (t + 1)…(t + n − 1). The Stirling numbers of 

the first kind s(n,k) and the unsigned Stirling numbers of the first kind, c(n,k), are the 

coefficients in the expansions (t)n and (t)(n), respectively.  

 

Theorem 8.  

1) For any positive integer n, we have ,)(),(
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2) For any positive integer n and 1 ≤ n ≤ d(G), we have, ,)(),()(
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The Stirling number of the second kind, S(n,k), is the number of partitions of {1, …, 

n} into k non-empty parts. It is well-known that ∑ =
= n

k k
n tknSt

1
))(,( . A similar argument as 

in [15] shows that the following result holds. 

 

Theorem 9. For any positive integer n,  
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The number of r-permutations of a collection of s distinct objects is denoted by P(s,r). 

This number is equal to 0 when r ≥ s and otherwise P(s,r) = s!/(s–r)!. Obviously, P(s,r) = (s)r. 

In the following theorem the quantities )(nW
∧

 and 
∧

Wn  are computed.  
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Theorem 10. Suppose G is a graph. Then, 
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where 1 ≤ n ≤ diam(G). 

 

Theorem 11. If 1 ≤ n ≤ d(G), then:  
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In this paper some new modifications of the modified Wiener index are presented. 

Also, it can be proved that if we define:  
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then we have the following orthogonality relations:  
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