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Abstract

For a connected undirected graph G = (V,E) with vertex set {1, 2, . . . , n} and
degrees di, for 1 ≤ i ≤ n, we show that

ABC(G) ≤
√

(n− 1)(|E| −R−1(G)),

where R−1(G) =
∑

(i,j)∈E

1

didj
is the Randić index. This bound allows us to obtain

some maximal results for the ABC index with elementary proofs and to improve
all the upper bounds in [20], as well as some in [17], using lower bounds for R−1(G)
found in the literature and some new ones found through the application of ma-
jorization.

1 Introduction

Among the various descriptors in Mathematical Chemistry, the ABC index has received

considerable attention in recent times. For a connected undirected graph G = (V,E) with

vertex set {1, 2, . . . , n} and edge set E, the ABC index, proposed by Estrada et al. in

[11], and reintroduced in [12] was defined as

ABC(G) =
∑
i∼j

√
di + dj − 2

didj
, (1)
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where i ∼ j means that the vertices i and j are neighbors and di is the degree of the

vertex i. (For all graph theoretical terms the reader is referred to reference [22])

The index ABC(G) has been studied in a large number of references of which we

mention [9], [14] and [18] for their own interest and for many other related references

found in them.

In this article we want to give a new upper bound for ABC(G) given in terms of the

Randić index R−1(G). This upper bound yields a number of particular bounds (which

improve all those in [20] and some in [17]) and maximal results as corollaries of numerous

lower bounds for the Randić index found in the literature. We also find new lower bounds

for R−1(G) through majorization, yielding additional upper bounds for ABC(G).

In what follows we will assume that the graphs satisfy n ≥ 3 in order to avoid cases

where i ∼ j and di = dj = 1.

2 New Upper Bounds for the ABC Index

In this section we find an upper bound for the ABC index in terms of the Randić index

R−1(G), for which there exist a large number of lower bounds in the literature that allow

us to obtain some new upper bounds for the ABC index in certain particular cases of

graphs. The first main result is a refinement of an argument found in [20].

2.1 The general bound

Proposition 1. For any graph G we have

ABC(G) ≤
√

(n− 1)(|E| −R−1(G)), (2)

where R−1(G) =
∑

(i,j)∈E

1

didj
is the Randić index.

The inequality becomes an equality if G is either the complete graph or the star graph.

Proof.

ABC(G) =
∑
i∼j

√
di + dj − 2

didj
=
∑
i∼j

√
di + dj − 2

didj − 1

√
didj − 1

didj

≤
∑
i∼j

√
Rij

√
didj − 1

didj
,
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where Rij is the effective resistance between vertices i and j (see Proposition 1 in [20]).

Now the Cauchy Schwarz inequality allows us to bound the above with√∑
i∼j

Rij

∑
i∼j

didj − 1

didj
=

√
(n− 1)

∑
i∼j

didj − 1

didj
=
√

(n− 1)(|E| −R−1(G)),

where the left equality uses Foster’s first formula (see [13]).

The maximality of the complete graph and the star graph will be seen below •

The bound (2) is similar to a bound found by Horoldagva and Gutman with different

means in [17] stating

ABC(G) ≤
√
|E|(n− 2R−1(G)). (3)

Bounds (2) and (3) are not comparable. A bit of algebra shows that our bound is better

when

R−1(G) ≤ |E|
2|E| − n+ 1

= L1. (4)

Horoldagva and Gutman use their inequality (3) as an intermediate step in order to

obtain yet another inequality for ABC(G) in terms of the second Zagreb index, and use

upper bounds on this index in order to get upper bounds on ABC(G). They also provide

the following general bound:

ABC(G) ≤

√√√√m

(
n− 8m(√

8m+ 1− 1
)2
)
. (5)

Here we take the alternative path of producing upper bounds for ABC(G) using (2) and

(3) with the help of lower bounds for R−1(G). Perhaps the best such bound is given in

[21], stating

R−1(G) ≥ n

2d1
, (6)

where d1 is the largest degree of the graph and where the equality is attained in case G

is regular. This allows us to prove the following universal bounds

Proposition 2. For any graph G we have

ABC(G) ≤

√
(n− 1)

(
|E| − n

2d1

)
≤ n

√
n− 2

2
, (7)

and

ABC(G) ≤

√
|E|n

(
1− 1

d1

)
≤ n

√
n− 2

2
. (8)
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Proof. Immediate from (2), (3) and (6) and the fact that |E| ≤ n(n−1)
2
•

Again, the leftmost inequalities in (7) and (8) are not comparable, with (7) giving

better bounds whenever d1 ≥ n(1 − n−1
2|E| ) as in the case d1 = n − 1. Moreover, for

the complete graph Kn, it is easily seen that ABC(Kn) = n
√

n−2
2

, so either (7) or (8)

state that the complete graph is maximal for the ABC index among all graphs. In

addition to the maximality of the complete graphs, we can prove another maximal result

taking advantage of the literature on the Randić index. Reference [19] mentions that the

minimum among trees of R−1(G) is attained by the star graph Sn, and its value is 1.

Therefore, (2) implies that for any tree we have that

ABC(T ) ≤
√

(n− 1)(n− 2). (9)

On the other hand, it is not difficult to compute that ABC(Sn) =
√

(n− 1)(n− 2), and

thus Sn is maximal for the ABC index among trees. This fact can also be shown using

(3) and it was cited in [17], Corollary 3.1.

Furthermore, reference [19] founds that the minimum among unicyclic graphs of

R−1(G) is attained by the graph S∗n which consists of the graph Sn with two leaves

connected by an edge. Using that R−1(S
∗
n) = n−2

n−1 + 1
4

and (3) we get that for unicyclic

graphs

ABC(G) ≤

√
n(2n2 − 7n+ 9)

2(n− 1)
. (10)

Notice, however, that in this case we cannot prove that S∗n is maximal for the ABC

index among unicyclic graphs, because ABC(S∗n) = (n−3)

√
n− 2

n− 1
+

3√
2

, which is strictly

smaller than the upper bound (10) for n ≥ 4.

2.2 C-cyclic and planar graphs

We now consider a particular class of graph, so-called c-cyclic graphs, where c is the

cyclomatic number of a graph G and it is given by c = |E| − n + 1. It corresponds to

the number of independent cycles in G (see [7]). In particular, graphs with cyclomatic

number c = 0 are trees and graphs with cyclomatic number c = 1 are unicyclic graphs.

Immediate applications of (7) and (8) allow us to provide the following bounds that

improve those Propositions 2 and 3 in [20]:
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Proposition 3. If G is c-cyclic, c ≥ 0, then

ABC(G) ≤

√
(n− 1)

(
n− 1 + c− n

2d1

)
, (11)

and

ABC(G) ≤

√
n(n− 1 + c)

(
1− 1

d1

)
. (12)

If G is planar then

ABC(G) ≤

√
(n− 1)

(
3(n− 2)− n

2d1

)
≤
√

6n2 − 19n+ 2

2
. (13)

The bound (11) is better than the bound (12) in case

d1 ≥
n(n− 1 + 2c)

2(n− 1 + c)
. (14)

Thus (11) provides the better general bound when taking d1 = n − 1 and n ≥
3 +
√

1 + 8c

2
:

ABC(G) ≤

√
(n− 1)

(
n− 1 + c− n

2(n− 1)

)
, (15)

There are tight bounds for the ABC index of c-cyclic graphs, for at least c ≤ 4. For

instance, reference [10], through a complex analysis, finds that for any tetracyclic graph

with n ≥ 9 the following tight bound holds:

ABC(G) ≤ (n− 6)

√
n− 2

n− 1
+

√
n+ 2

5(n− 1)
+ 4
√

2. (16)

Our rightmost bound in (15) is slightly worse but asymptotically equivalent to (16): for

n = 10 the respective values of these bounds are 10.58 and 9.94; for n = 100 they are

100.73 and 99.63, etc. Our bound (15) though not optimal, shows a reference value to be

improved by any attempt to crack the best bound for c-cyclic graphs for c ≥ 5.

As expected, for c = 0 and c = 1 , (15) is worse than (9) and (10), respectively.

2.3 Chemical graphs

We briefly recall that a chemical graph is a graph with d1 ≤ 4. Of the two bounds (7)

and (8), for d1 = 4, (8) produces the best bound whenever n ≥ 9, allowing us to state the

following
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Proposition 4. For any chemical graph G with n ≥ 9 we have

ABC(G) ≤
√

3n|E|
4

.

This yields as particular cases the bounds

ABC(T ) ≤
√

3n(n− 1)

4
(17)

for chemical trees T with n ≥ 9,

ABC(U) ≤ n

√
3

4
(18)

for chemical unicyclic graphs U with n ≥ 9, etc.

Bounds (17) and (18) are roughly of order .87n. There are known bounds for the ABC

index of c-cyclic chemical graphs, for c = 0, 1, 2, slightly better than ours, as in [8] and

[15] (their orders are roughly .79n), found with laborious procedures that contrast with

the simplicity of the proof of Proposition 4. Even though Proposition 4 may not get the

best constants, it shows a path for better bounds of the ABC index to be found in the

future for chemical c-cyclic graphs when c ≥ 3.

3 Bounds via Majorization

In this section we report the methodology based on majorization (for more details see [1],

[2], [3], [4], [5] and [6]) that allows us to find further lower bounds for the Randić index

and thus new upper bounds for the ABC index.

The Randić index can be equivalently expressed as:

R−1(G) =
∑

(i,j)∈E

(
1

didj

)
=

1

2

 ∑
(i,j)∈E

(
1

di
+

1

dj

)2

−
n∑
i=1

1

di


Let π = (d1, d2, .., dn) be a fixed degree sequence and x ∈ Rm be the vector whose

components are
1

di
+

1

dj
, with (i, j) ∈ E. Since

n∑
i=1

1

di
is a constant, R−1(G) is a Schur

convex function of x and it is minimal (maximal) if and only f(x) =
m∑
i=1

x2i = ‖x‖22 is

minimal (maximal). It is possible to show that
∑m

i=1 xi =
∑

(vi,vj)∈E

(
1

di
+

1

dj

)
= n and

thus
∑m

i=1 xi is a constant. Let

Σn = {x ∈ Rm
+ : 〈x, sm〉 = n, x1 ≥ x2 ≥ · · · ≥ xm}

-122-



where sm is the unit vector of dimension m. By considering a closed subset S of Σn whose

minimal element with respect to the majorization order is x∗(S), the Randić index can

be bounded below as follows (see (5) in [3]):

R−1(G) ≥
‖x∗(S)‖22 −

n∑
i=1

1

di
2

= L2 (19)

This lower bound is new, to the best of our knowledge, and of interest in itself when

applied to the Randić index. If we can gather more specific information on the degree

sequence of G and characterize suitably the set S, then new different numerical bounds

can be derived. In the sequel we use the bounds (2) or (3), modified with the introduction

of L1 obtained above through majorization technique, and we get:

ABC(G) ≤

√√√√√√√(n− 1)

|E| − ‖x∗(S)‖22 −
n∑
i=1

1

di
2

 (20)

and

ABC(G) ≤

√√√√|E|(n− ‖x∗(S)‖22 +
n∑
i=1

1

di

)
. (21)

It is noteworthy that (21) is better than (20) when L2 ≥ L1.

3.1 First type of degree sequence

In what follows we deal with graphs possessing h pendent vertices that is, graphs with

degree sequence of the type:

π = (d1, · · · , dn−h, 1, · · · , 1︸ ︷︷ ︸
h

), (22)

where h > 0 and n− h ≥ 2 (we do not consider the star graph Sn since it is well-known

that R−1(Sn) = 1). Pointing out that
1

dn−h
+

1

dn−h−1
< 1 +

1

d1
holds, we face the set

S1 =

{
x ∈ Rm

+ : 〈x, sm〉 = n, 1 +
1

d1
≤ xh ≤ · · · ≤ x1 ≤

1

dn−h
+ 1 ,

1

d1
+

1

d2
≤ xm ≤ · · · ≤ xh+1 ≤

1

dn−h
+

1

dn−h−1

}
,

(23)

whose minimal element with respect to the majorization order can be computed by

Corollary 10 in [3] as follows:
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x∗(S1) =



m1, ...,m1︸ ︷︷ ︸
h

,
n− hm1

m− h
, ...,

n− hm1

m− h︸ ︷︷ ︸
m−h

 if n < ã

n−m2(m− h)

h
, ...,

n−m2(m− h)

h︸ ︷︷ ︸
h

,m2, ...,m2︸ ︷︷ ︸
m−h

 if n ≥ ã,

where ã = hm1 + (m− h)m2, m1 = 1 +
1

d1
and m2 =

1

dn−h
+

1

dn−h−1
.

3.2 Second type of degree sequence

In this section we deal with graphs with degree sequences of the type:

π = (n− 1, · · · , n− 1︸ ︷︷ ︸
h

, dh+1, · · · , dn), (24)

where h > 1. In this case there are no pendent nodes since necessarily dn ≥ h.

First of all, notice that the first h nodes are connected each other, hence we have
h(h− 1)

2
summands of the type

1

di
+

1

dj
=

2

n− 1
. In this case we face the set:

S2 =
{
x ∈ Rm

+ : 〈x, sm〉 = n, x1 ≥ x2 ≥ · · · ≥ xm ,

xm = xm−1 = · · · = x
m−h(h−1)

2
+1

=
2

n− 1

}
.

(25)

Now, let m′ = m− h(h− 1)

2
. Since

∑m
i=1 xi = n =

∑m′

i=1 xi +
h(h− 1)

n− 1
, in the sequel

we can deal with m′ variables xi which add up to a′ = n− h(h− 1)

n− 1
.

Assuming that the condition

1

n− 1
+

1

dn
<

1

dh+1

+
1

dh+2

(26)

holds, these variables can be split in two separate sequences and opportunely bounded.

Hence we can consider the following subset S ′2 of S2:

S ′2 =

{
x ∈ Rm′

+ :
〈
x, sm

′
〉

= a′,
1

dh+1

+
1

dh+2

≤ xm′−h(n−h) ≤ · · · ≤ x1 ≤
1

dn
+

1

dn−1
,

1

n− 1
+

1

dh+1

≤ xm′ ≤ · · · ≤ xm′−h(n−h)+1 ≤
1

n− 1
+

1

dn

}
,

(27)
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whose minimal element with respect to the majorization order is:

x∗(S
′
2) =



m1, ...,m1︸ ︷︷ ︸
m′−h(n−h)

,
a′ − (m′ − h(n− h))m1

h(n− h)
, ...,

a′ − (m′ − h(n− h))m1

h(n− h)︸ ︷︷ ︸
h(n−h)

 if a′ < ã

a
′ −m2(h(n− h))

m′ − h(n− h)
, ...,

a′ −m2(h(n− h))

m′ − h(n− h)︸ ︷︷ ︸,m2, ...,m2︸ ︷︷ ︸
h(n−h)

m′−h(n−h)

 if a′ ≥ ã,

where ã = (m′−h(n−h))m1 +h(n−h)m2, m1 =
1

dh+1

+
1

dh+2

and m2 =
1

n− 1
+

1

dn
.

For our purposes, in order to use (19), we need the minimal element of the set S2 that

can be easily written as:

x∗(S2) =



x∗(S
′),

2

n− 1
, ...,

2

n− 1︸ ︷︷ ︸
h(h−1)/2

 if a′ < ã

x∗(S
′),

2

n− 1
, ...,

2

n− 1︸ ︷︷ ︸
h(h−1)/2

 if a′ ≥ ã.

(28)

4 Numerical Examples

In this section we provide some numerical examples, using majorization in order to obtain

bounds on R−1(G) and then we compare our results to those proposed in the literature.

To this aim we briefly recall the bounds we use for our analysis:

� (5): general bound given in [17];

� (7) and (8): bounds obtained by (2) and (3) via the inequality R−1(G) ≥ n
2d1

;

� (9): general bound for trees;

� (10): general bound for unicyclic graphs;

� (11) and (12): bounds for c-cyclic graphs;
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� (20) and (21): bounds obtained by (2) and (3) via majorization technique.

4.1 Examples related to the first type of degree sequence

Example 1. Let us consider the family of trees T with 16 vertices, 10 pendent vertices and

the degree sequence π = (5, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). In this case m = n−1 = 15

(for more details see Section 4, Example i) in [3]).

The minimal element is

x∗(T ) =

19

15
, ...,

19

15︸ ︷︷ ︸
10

,
2

3
, ...,

2

3︸ ︷︷ ︸
5

 .
Replacing these values into (19) we obtain for any T ∈ T :

R−1(T ) ≥ 3.2 = L2.

Since L2 > L1 = 1 we pick (21) that performs better than (20).

The results are summarized in Table 1:

Ref. Bound
(21) 12
(9) 14.491

Table 1: Upper bounds for ABC(T ) for any T ∈ T .

Example 2. We now deal with the family U of unicyclic graphs G, i.e. graphs for which

m = n, with degree sequence π = (3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1).

Since ã > n, the minimal element is:

x∗(U) =

4

3
, ...,

4

3︸ ︷︷ ︸
4

,
23

27
, ...,

23

27︸ ︷︷ ︸
9

 .
Replacing these values into (19) we obtain for any G ∈ U :

R−1(G) ≥ 2.904 = L2

and because of L2 > L1 = 0.926 we choose inequality (21).

Furthermore, since condition (14) is not satisfied, bound (12) is better than (11).

The results are reported in Table 2:
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Ref. Bound
(21) 9.669
(12) 10.614
(10) 11.776
(5) 12.377

Table 2: Upper bounds for ABC(G) for any G ∈ U .

Example 3. Let us consider the family B of bicyclic graphs, i.e. those where m = n+ 1,

with degree sequence π = (3, 3, 3, 3, 2, 1, 1).

We have that ã > n and the minimal vector is:

x∗(G) =

4

3
, ...,

4

3︸ ︷︷ ︸
2

,
13

18
...

13

18︸ ︷︷ ︸
6

 ,
so that for G ∈ B we have

R−1(G) ≥ 1.425 = L2.

Now, L2 > L1 = 0.8 and bound (21) is the best choice.

Moreover, condition (14) is not satisfied and bound (12) is preferable. The results are

summed up in Table 3:

Ref. Bound
(21) 5.762
(12) 6.110
(5) 6.768

Table 3: Upper bounds for ABC(G) for any G ∈ B.

4.2 Examples related to the second type of degree sequence

Example 1. Let us consider the family G of graphs with degree sequence:

π = (14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 12, 11, 11, 10, 10) .

Notice that condition (26) is satisfied. We have n = 15, m = 97 and 45 summands of the

type
1

7
.

Since ã > a′, because of (28), the minimal element is:

x∗(G) =

 23

132
, ...,

23

132︸ ︷︷ ︸
2

,
8223

50000
, ...,

8223

50000︸ ︷︷ ︸
50

,
1

7
, ...,

1

7︸ ︷︷ ︸
45

 ,
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so that we have for any G ∈ G :

R−1(G) ≥ 0.576 = L2,

by reason of L2 > L1 = 0.5389, we select bound (21). Now, in view of d1 = n − 1 = 14

bound (7) is better than (8).

The results are summed up in Table 4:

Ref. Bound
(21) 36.650
(5) 36.753
(7) 38.243

Table 4: Upper bounds for ABC(G) for any G ∈ G.

We can conclude that, for all the considered examples, bound (21) always performs

better. It means that bound (3) modified with our methodology based on majorization

technique is the best choice in these cases.

5 Final Remarks

The ABC index is one of the few chemical descriptors which passes the test of having

a large correlation with the physicochemical properties it claims to describe (see [16]).

It comes as no surprise, then, that both our upper bound (2) and the upper bound (3)

of Horoldagva and Gutman are given in terms of the Randić index with α = −1, which

is also a highly correlated index, indeed the best among the general Randić indices Rα

regarding this criterion.

The appeal of our bounds, such as those in Propositions 2 and 3, is of course their

generality and simple proofs. Their weakness is that they do not produce, in general,

optimal constants. In the case of our bound (2), this is probably due to the inequality

di + dj − 2

didj − 1
≤ Rij,

which becomes an equality only occasionally, for instance when di = 1 6= dj, that is, when

i is a pendent vertex (and that is why our bounds produce the maximality of the star

graph, where all its vertices are pendent). It also becomes an equality when all vertices

other than i and j can be shorted (they have the same voltage) when a battery is placed

between the neighbors i and j. This happens for every pair of vertices in the complete

graph, and that is why our bounds achieve the maximality in this case.
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