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Abstract

Prediction of protein structural classes plays an important role in protein science, such as
protein function prediction, protein fold recognition and protein folding rate analysis. Currently,
prediction based solely on the position-specific scoring matrix(PSSM) has played a key role in
improving the prediction accuracy. Feature extraction and feature selection are two critical
steps for the prediction quality. In this paper, we propose a novel method using correlation
analysis on the PSSM. Then a 3600-dimensional(3600D) feature vector is constructed and the
dimension is decreased to 200D by using nonnegative matrix factorization (NMF). To evaluate
the proposed method, objective jackknife cross-validation tests are performed on two widely
used low-similarity datasets: 1189 and 25PDB. Our method achieves the favorable performance
on prediction accuracies and also outperforms the other listed PSSM-based methods. The result
shows that our approach will offer a reliable tool for prediction of protein structural classes,
especially for low-similarity sequences.

1 Introduction

Protein structural classes prediction problem is a typical pattern recognition problem and
defined as categorizing a given protein into one of four structural classes namely all-c,
all-8, /B3, and o+ 3, which is proposed by Levitt and Chothia [1]. Knowledge of protein

structural class can provide useful information to understand protein folding patterns, and
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play an important role in improving the prediction quality of protein tertiary structure as
well as protein function [2]. Hence, finding a fast and accurate computational approach
is critical for solving this problem, especially for low-similarity sequences.

During the last two decades, various important efforts that have been made to establish
a really useful statistical predictor to tackle this problem. During the last two decades,
a great number of statistical learning algorithms were developed to tackle this problem.
The main improvement focused on three aspects: the first aspect is feature extraction,
by which the different length sequences are converted into a fixed-length vector. The
methods include amino acid composition (AAC) [3-5], pseudo-amino acid composition
(PseAAC) [6-8], polypeptide composition [9, 10], functional domain composition [11],
PSI-BLAST profile [12-14], sequence comparison [15,16], PsePSSM [17,18] and predicted
protein secondary structure [19,20]. The second aspect is feature selection for reducing
the influence of redundancy, which includes principal component analysis (PCA) [21],
SVM-RFE [22], wrapper and filter [23] and so on. The final aspect is a choice of favorable
classification algorithm. Currently, the algorithm contains neural network [24], support
vector machine (SVM) [5,25,26], fuzzy clustering [27], Bayesian classification [28], rough
sets [29] and k-nearest neighbor [30] and so on. Despite some of the existing methods
have shown the excellent performance, the information embedded in the PSSM has not

been sufficiently explored, there remains have space for further improvement.

In this paper, we propose a novel method using correlation analysis on the PSSM
for feature extraction and nonnegative matrix factorization(NMF) for feature selection.
According to correlation analysis, we construct a 3600D feature vector, which is too large
to input into SVM. The large dimension will lead to a handicap for the computation and
information redundancy. Hence, finding a suitable dimension reduction method is very
important. Originally, Lee and Seung [31,32] applied NMF to decomposed facial images
and derived parts-based representation of whole images. NMF is proposed as a matrix
factorization technique that produces a useful decomposition in the analysis of data. NMF
decomposes the data as a product of two matrices that are constrained by nonnegative
elements. This method results in a reduced representation of the original data that can
be seen either as a feature extraction or a dimensionality reduction technique. In the
field of bioinformatics, NMF has successfully be applied to biclustering of gene expression

data [33], metagenes and molecular pattern discovery [34], improving molecular cancer
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class discovery [35] and improving profile-profile alignment features for fold recognition
and remote homolog detection [36]. Finally, with the help of NMF, 200 features are
obtained for SVM classifier. To evaluate our method, jackknife cross-validation test is
employed on two widely benchmark datasets, the experimental results demonstrate that
our approach is an effective classifier and achieves the competitive performance compared

with the other PSSM-based methods for low-similarity sequences.

2 Materials and methods
2.1 Datasets

In order to test current method strictly and facilitate the comparison with the previous
works, two popular benchmark datasets are adopted for evaluating the performance of our
method: the 1189 dataset [28]and the 25PDB dataset [37], which include 1092 and 1673
protein domains with sequence similarity lower than 40% and 25%, respectively. More
details about the two datasets are listed in Table 1.

Table 1 The compositions of three datasets adopted in this paper.
Dataset All-a All-8 o/ a+ 3 Total
1189 223 294 334 241 1092
25PDB 443 443 346 441 1673

2.2 Feature extraction

To develop a powerful predictor for the protein structural class based on position-specific
scoring matrix(PSSM), one of keys is to formulate the protein samples with an effective
mathematical expression that truly reflect their intrinsic correlation [38]. Here, we define

auto-cross correlation on PSSM to extract features.
2.2.1 Position-specific scoring matrix

To extract the evolutionary information in protein study, we use each protein sequence as a
seed to search and align homogenous sequences from NCBI's NR database(ftp://ftp.ncbi.
nih.gov/blast/db/nr) using the PSI-BLAST program [39] with parameters h=0.001 and
j=3. PSI-BLAST will return a position-specific scoring matrix(PSSM), the (¢, j)th entry
of the obtained matrix represents the score of the amino acid residue in the ith position of

the protein sequence being changed to amino acid type j in the biology evolution process.
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Let us denote the PSSM as
PSSM = (P, Ps,--- ,P;,--- , Pa), (2.1)

where Pj = (Pj, Poj, -+, Pr;)T (j =1,2,---,20), L represents the length of the protein
sequence, 20 represents the 20 native amino acid types and 7T is the transpose operator.
Based on the original PSSM scores, we further normalize each element using the following
logistic function:

() =1/ +e™), (2.2)

where s is the original PSSM value, this process can reduce the bias and noise contained

in the original scores.

2.2.2 Auto-cross correlation analysis

A protein sequence can be viewed as a time sequence of the corresponding physicochemi-
cal properties. Here, only the evolutionary information represented in the form of PSSM
is adopted as the considered properties. In this paper, each amino acid is taken as one
property and the PSSM is considered as the time sequences of all properties. However,
according to the PSSM descriptor, proteins with different lengths will correspond to ma-
trices with different numbers of rows. Here auto-cross correlation analysis is introduced
to transform protein sequences into a uniform representation. As a powerful statistical
tool, autocorrelation descriptor has been successfully adopted by our research group for
prediction of protein structural classes for low-similarity sequences [40]. The autocorrela-
tion only measures the correlation of the same property between two amino acid residues
separated by a certain distance of lag apart along a protein sequence. Whereas, for the
different properties or the different columns, the correlation analysis is missing. Hence,
we define PSSM based on cross correlation transformation, the equation combined with

autocorrelation descriptor can be defined as

L—lag
a. 1 . .
le'lfle = m g Pij1 X Piyiagjo, (71,72 =1,2,--- ,20;lag < L,lag # 0) (2.3)
< i=1

while j1 = 52, CJl‘{gﬂ represents autocorrelation factor of amino acid type j1, j1 # 52, C]l‘fgﬂ
represents cross correlation factor of two different amino acid types j1 and j2. In this
way, a protein sequence is represented by a vector of lg * 400, lg is the maximum lag

(lag = 1,2,---,lg). The parameter [g must be smaller than the length of the shortest
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sequence in the all datasets. Here, the length of the shortest sequence for our datasets
is 10, which belongs to 1189 dataset, hence lg = 9, the value of lag can be 1,2,3,--- ,9.
Ultimately, each protein sequence is converted into a 3600-dimensional vector by fusing

PSSM and auto-cross correlation analysis.

2.3 Nonnegative matrix factorization
A 3600-dimensional feature vector is too large to input into classifier. The large dimen-
sion can lead to three problems: over-fitting, information noise and a handicap for the
computation. Hence, dimensionality reduction or feature selection plays an important
role in classification task.

NMF is a matrix factorization algorithm originally proposed by Lee et al. [31] to
analysis of facial images. This technique can be applied to the analysis of multidimensional
features data in order to reduce the dimensionality.

A formal description of nonnegative matrix factorization can be described as follows
(31):

Va~WH, (2.4)
where V' = R™*" is a positive data matrix with m variables and n objects, W = R™*" is
the reduced r basis vectors for factors, and H = R"" contains the coefficients of the linear
combinations of the basis vectors, which are also known as encoding vectors. (m +n)r <
mn, all matrices V, W, H are nonnegative, and the columns of W are normalized (sum up to
1). As we have known, the main difference between NMF and other classical factorization
methods relies in the non-negativity constraints imposed on both the basis vectors W and
the encoding vectors H.

The objective function, based on the square of the Euclidean distance between V' and
W H, can be defined using the following function, which we need to minimize [32]:

D(V|WH) = [V = WH|* =Y (Vi = (WH)y)? (2.5)
ij
with the constraints W, H > 0.

The derived algorithm is as follows:

1. Initialize W and H with positive random numbers.

2. Compute the new basis matrix W by the update rules:
(VHT);,

W = Walivmm),,

(2.6)
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3. The columns of W are normalized.

4. Compute the new coefficient matrix H by the update rules:

WV )ay

2.7)

5. Determine whether meeting the terminating condition, if yes, it will stop computing,
output the base matrix W and the coefficient matrix H, or return to the step 2. Repeat

this process until termination condition is satisfied.

2.4 Support vector machine

Support vector machine (SVM) [41] is not only a kind of machine learning algorithm
based on statistical learning theory for binary classification problems but is also superior
in practical applications. As a supervised machine learning technology, it has been suc-
cessfully used in bioinformatics [5,23,25,42,43,53] by transforming the input vector into a
high-dimension Hilbert space to find a separating hyperplane in this space. In this paper,
we adopt one against all strategy for solving a multi-class problem by converting it into a
series of two problems. For example, for a K-class problem, there are K two-class subclas-
sifiers needed to be constructed by one against all method. The ith subclassifier is trained
by considering all the proteins in the ith class as positive samples and all other classes as
negative. Generally, four basic kernel functions used by SVM, i.e. linear function, poly-
nomial function, sigmoid function and radial basis function (RBF). Here, we choose the
RBF as SVM’s kernel due to its superiority for solving nonlinear problem [42, 43,50, 54],
which is defined as K(z, 2 )=exp(—vy|lz — 2'||?). The kernel parameter v and the reg-
ularization parameter C' are optimized based on the 1189 dataset by fifteen-fold cross
validation using a grid search strategy in the LIBSVM package [44], which is written by
Lin’s lab and can be freely downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm,
where C' is allowed to take a value only between 27° to 2! and 7 only between 271 to
2%,

2.5 Performance evaluation

Generally speaking, the following three cross-validation methods in statistical prediction
are often used to examine the quality of a predictor and its effectiveness in practical
application: independent dataset test, sub-sampling test or K-fold crossover and jackknife

test. Among these three methods, the jackknife test can exclude the “memory” effect.
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Also, it does not have the arbitrariness problem at all due to its ability of yielding a unique
result for a given dataset [45]. Hence, we adopt jackknife test to evaluate the accuracy
in this paper. During the process of the jackknife test, all the samples in the benchmark
dataset is singled out one by one and tested by the predictor, trained with the remaining
samples.

To evaluate the performance of our method comprehensively, we report six stan-
dard performance measures, including Sensitivity (Sens), Specificity (Spec), F-measure,
Matthew’s correlation coefficient (MCC), Area Under ROC Curve (AUC) and Overall
accuracy (OA). F-measure is a more robust metric avoid to overestimate the performance
of some metrics, which is the harmonic mean of recall and precision. MCC represents
the correlation coefficients between the observed and the predicted class. Its value ranges
from +1 (indicating best prediction model) to -1 (indicating worst prediction model).
AUC is the area calculated under receiver operating characteristic (ROC) curve plotted

by FP rate vs TP rate. Its value ranges from 0 to 1. These measures are defined as

follows
Recall or Sens = TPZiPFN (2.8)
Spec = F}eriNTN (2.9)
Precision = TPiLiPFP (2.10)

Precision x Recall
Fo=2x Precision + Recall (2.11)

TP xTN—-FPxFN

MCC = (2.12)
V(TP + FP)(TP+FN)(TN + FP)(TN + FN)
1 TP TN
AUC =35 (TP TFN TN+ FP) (213)
TP+ TN
A = 2.14
© TP+ FN+FP+TN (2.14)

where T'P represents the number of true positives, F'P represents the number of false
positives, T'N represents the number of true negatives and F'N represents the number of

false negatives, n represents the number of classes, respectively.
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3 Results and discussion

3.1 Selection of the factorization rank r

An important consideration in the application of the classical NMF model, is the selection
of the number of factors used to better represent the data. Generally, as a rule of thumb,
this value is generally chosen so that (m 4+ n)r < mn. Nevertheless, this estimation is not
informative enough to make a proper decision. Finding an appropriate value of  depends

on the concrete problem and it is mostly influenced by the nature of the dataset itself.
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Overall accuracy(%)
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Figure 1: The choice of factorization rank r.

In this paper, we chose the factor for 50, 100, 150, 200, 250, 300, and obtain the overall
accuracy for 1189 and 25PDB, respectively. As shown in Fig. 1, the optimal r is 200 due
to the accuracies of the two datasets. So a 3600D feature vector is reduced to 200D by

NMF. The general framework of the proposed method is shown in Fig. 2.

3.2 Prediction performance of our method

According to the NMF algorithm, we obtain a 200D feature vector, then the 200 features
are input into SVM using one against all strategy. The RBF kernel function, the grid-
search approach and fifteen-fold cross-validation for 1189 dataset are used to find the
best parameters of C' = 362.0387 and v = 32 for SVM. To verify the performance of
our method, rigorous jackknife cross-validation tests are performed on two widely used
low-similarity datasets(1189, 25PDB). The experiment results are shown in Table 2.

As listed in Table 2, we report the Sens, Spec, F-measure, MCC and AUC for each

structural class, as well as the OA. Relying solely on PSSM for feature extraction, we
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Figure 2: The general framework of the proposed method.

Table 2 The prediction quality of our model on the 1189 and 25PDB datasets
Dataset  Structural class Sens(%) Spec(%) F-measure MCC AUC

1189 All-ov 7.1 94.1 0.77 0.71 0.86
All-5 86.7 93.5 0.85 0.79 0.90
alp 79.9 90.1 0.79 0.70 0.85
a+f 53.9 89.4 0.56 045 0.72
OA 75.5
25PDB All-ov 86.5 94.2 0.85 0.80  0.90
All-p 80.8 92.4 0.80 0.73 0.87
a/p 77.2 93.5 0.76 0.70 0.85
a+p 60.1 88.0 0.62 049 0.74
OA 76.1

achieve up to 75.5% and 76.1% overall accuracies for 1189 and 25PDB datasets, respec-
tively. For 1189 and 25PDB datasets, comparing the four structural classes to each other,
the values of Sens, Spec, F-measure, MCC and AUC in the all-a class, all-§ class and
a/f class are obviously and separately superior to those of o+ 3 class. The fact indicates
that there are still many challenges in the future study to improve the prediction accuracy

of a+ 3 class.
3.3 Performance comparison between NMF and PCA

PCA is a statistical technique that is widely used in face recognition and image compres-

sion. It is useful when the number of variables is large and there is some redundancy in
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the data. The main advantage of the PCA is that it reduces the dimensionality but often
does not lose much information. To investigate the superiority of NMF for our exacted
features, we compare the accuracy obtained by NMF with that obtained by PCA using
the same dimension of 200 for 1189 and 25PDB datasets, the results are shown in Fig.
3 and fully demonstrate that the NMF is more suitable and successful for our proposed
method.

77

~ N ~ ~
) N o >

Overall accuracy(%)

N
N

Al

70

1189 25PDB

Figure 3: Performance comparison of NMF and PCA.
3.4 Performance comparison with other methods

We compare our results with previous results on the same datasets of 1189 and 25PDB.
We select the accuracy of each class and overall accuracy as evaluation indexes that
are listed in Table 3. The compared methods include the famous methods SCPRED
[46] and MODAS [47], SCPRED mainly based on the information extracted from the
predicted protein secondary structure sequence, MODAS combines evolutionary profiles
and predicted secondary structure. Hence, SCPRED and MODAS are listed in Table 3
only as two reference methods. AAD-CGR [48] is other famous method and proposed
to analyze amino acids sequence by recurrence quantification analysis based on chaos
game representation. SCEC [49]incorporates evolutionary information encoded using PSI-
BLAST profile-based collocation of AA pairs. The compared methods also include other
competitive PSSM-based methods such as RPSSM [50], AADP-PSSM [51], AAC-PSSM-
AC [14], AATP [52], PsePSSM [53], and MEDP [54], which are recently reported protein
structural classes prediction methods based on the evolutionary information represented

in the form of PSSM. RPSSM and PsePSSM are submodels from PSSS-PSSM [50]and
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PSSS-PsePSSM [53], respectively.

Table 3 Performance comparison of different methods on three datasets.

Dataset Method Prediction  accuracy(%)

All-a All-p a/B a+ B OA%)

1189 SCPRED [46] 89.1 86.7 89.6  53.8 80.6
MODAS [47] 92.3 87.1 879 654 83.5

AAD-CGR [48] 62.3 67.7 66.5  63.1 65.2

RPSSM [50] 67.7 75.2 746 174 60.2
AADP-PSSM |[51] 69.1 83.7 85.6  35.7 70.7

AATP [52] 72.7 85.4 82.9 42.7 72.6

MEDP [54] 85.2 84.0 84.3 452 75.8

PsePSSM [53] 82.0 82.3 84.1 440 74.4
AAC-PSSM-AC [14] 80.7 86.4 81.4 452 74.6

This paper 77.1 86.7 79.9 53.9 75.5

25PDB SCPRED [46] 92.6 80.1 74.0 710 79.7
MODAS [47] 92.3 83.7 81.2 683 81.4

AAD-CGR [48] 64.3 65.0 65.0 61.7 64.0

SCEC [49] 75.8 75.2 82.6 318 67.6

RPSSM [50] 75.6 70.2 52.0 433 60.8
AADP-PSSM [51] 83.3 78.1 76.3 544 72.9

AATP [52] 81.9 4.7 75.1 558 71.7

MEDP [54] 87.8 78.3 76.0 574 74.8
AAC-PSSM-AC [14] 85.3 81.7 73.7 553 74.1
PsePSSM [53] 86.2 78.8 5.7  57.6 75.5

This paper 86.5 80.8 77.2  60.1 76.1

From Table 3, among the six PSSM-based methods, our method achieves the high-
est overall prediction accuracies with improvement of 0.9-15.3% for 1189 dataset except
MEDP method, and the accuracy of our method is only lower 0.3% than that of MEDP.
Referring to all-5 class and a+ 3 class, our method achieves the highest results. Although
the accuracies of all-a and «/f classes are not the highest, our method still obtains the
satisfactory results. For 25PDB dataset, our method achieves the highest overall predic-
tion accuracies of the six PSSM-based methods with improvement of 0.6-15.3%. For all-«,
a/f and « + B class, our method achieves the highest results, although the accuracy of
all-3 class is lower 0.9% than that of AAC-PSSM-AC. The results sufficiently show that
our proposed method successfully extracts the information hidden in the PSSM. In this
paper, the most contribution of our proposed method is the improvement of the accuracy

using correlation analysis and nonnegative matrix factorization.
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4 Conclusions

In this work, we construct a 3600D feature vector by defining auto-cross correlation
transformation on the PSSM. Then we reduce dimension of inputting vector, improve
calculating efficiency and extract significant classify information by nonnegative matrix
factorization(NMF). NMF is also firstly applied in protein structural classes prediction
successfully. The SVM classifier and the jackknife test are employed to predict and eval-
uate the method on two benchmark datasets: 1189 and 25PDB datasets, with sequence
similarity lower than 40% and 25%, respectively. The experiments indicate that our ap-
proach is convenient, effective and excellent in improving the overall predicting accuracy
of protein structural classes prediction. We shall make efforts in our future study to pro-
vide a public accessible web-server for our proposed method. Researchers can request for

the codes of this task from the corresponding author.
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