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Abstract 

Crotonyllysine is a new type of post-translational modifications that is responsible for 

promoter and enhancer region of gene transcription. Due to little knowledge about its 

sophisticated mechanism, accurate identification of crotonyllysine still remains challenging. 

We presented a discrete hidden Markov model to address this problem. We reached a 

predictive sensitivity of 0.7941 by the leave-one-out cross validation, more than those 

predicted by the representation-based support vector machine and random forest. The large-

scale prediction confirmed most of computer-annotated crotonyllysine sites of five protein 

sequences in the Uniprot database. We demonstrated that disorder, physicochemical 

properties and position-specific distribution of amino acids around lysine appeared not to be 

strongly linked to crotonylation. These results and analysis indicated that it is effective for the 

presented method to detect crotonyllysine sites. The predicting tool is freely available for 

academic research at http://yun.baidu.com/share/link?shareid=442733655&uk=1460570570. 

 

1. Introduction 

Lysine Crotonylation (Kcr) is a newly identified histone post-translational modifications 

(PTMs) where crotonyl functional groups are added to the lysine residues of proteins. Tan et 

al. [1] reported that Kcr is presented in the eukaryotic cell from yeast to human and that Kcr 

is different from lysine acetylation in genomic distribution and regulation [2, 3]. These studies 

suggested also that histone Kcr is closely associated with active gene promoters and potential 
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enhancers in mammalian cell genomes as well as male germ cell differentiation [1]. Tan and 

co-authors firstly identify crotonyllysine as a new type of PTM by using a mass spectrometry-

based approach that combined analysis of histone peptides [1]. Bao et al. [4] used chemical 

proteomics approach to identify some ‘eraser’ enzymes for lysine crotonylated histone marks. 

However, the mechanism of catalyzing crotonylation by enzymes is unknown, greatly 

increasing difficulty in experimentally detecting crotonyllysine sites. This hinders a better 

understanding of the physiological roles and regulation of this PTM [3, 5]. In the past decade, 

many in silico techniques have been proposed to aid one to detect PTM sites, and achieved 

successes as expected. For example, Chuang et al. [6] achieved the accuracy of 0.687 on 

predicting the N-linked glycosylation sites, Chen et al. [7] about 0.975 on predicting 

Sumoylation Sites and Shi et al. [8] 0.8599 on predicting palmitoylation site, etc. Following 

these successful cases, we first presented a discrete hidden Markov model (DHMM) for in 

silico prediction of crotonyllysine sites. The method is based on the assumption that both 

crotonylated and non-crotonylated peptides are generated by two distinct DHMMs 

respectively. We trained two DHMMs by using crotonylaed and non-crotonylated samples 

respectively. For an unknown sample, we determined whether it is crotonylated according to 

probabilities of generating it. 

2. Method and materials 

2.1 Data 

Crotonylated Proteins were collected from the Uniprot database (Release 2015_09) [9-12] 

which is a comprehensive repository dedicated to protein sequences and functional 

annotations. The process of collecting data was described as follows. First, we searched the 

Uniprot database with the keyword “crotonyllysine” and retrieved 92 manually reviewed 

protein sequences. Then, removing non-experimentally verified crotonyllysine sites, we got 

57 unique protein sequences. Next, the sequence cluster program CD-HIT [13] was applied to 

reduce homology of 57 proteins sequences. The clustering parameter (cutoff) is set to 0.7. We 

obtained 6 unique protein sequences including 35 crotonylated sites. We slid an 11-mer 

window along each protein sequence and extracted peptides that center lysine, and have five 

residues in the upstream and downstream of it, respectively. 34 peptides undergoing the 
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lysine-crotonylated event were considered as positive samples and other 90 peptides as 

negative ones. All the samples constituted the training set. Table 1 listed all the positive and 

negative samples in the proteins sequences. 

Table 1. Modification and non-modification sites in the training set 
Protein Crototyllysine sites Non-crototyllysine sites 
P70696 7, 13, 14, 17, 18, 22, 25, 36 26, 30, 32, 45, 48, 59, 87, 110,  

118, 122 
Q6DN03 6, 12, 13,16, 17, 21, 24, 35 25, 28, 29, 31, 44, 47, 58, 86,  

152, 164 
Q96QV6 37, 119, 120 6, 10, 14, 16, 75, 76, 96 
P16403 34, 64, 85, 90, 97, 159, 168 17, 21, 22, 23, 26, 27, 46, 52, 63 

75, 81, 106, 109, 110, 117, 119, 
121, 122, 127, 129, 130, 136, 
137, 139, 140, 148, 149, 152, 
153, 156, 157, 160, 169, 172, 
175, 176, 178, 181, 183, 184, 
187, 191, 194, 196, 199, 201, 
204, 206, 207 

P68431 10, 19, 24, 28, 57 15, 37, 38, 65, 80, 116, 123 
P62805 6, 9, 13 21, 32, 45, 60, 78, 80, 92 

2.2 Method 

The hidden Markov model (HMM) was a statistical learning algorithm which has a theoretical 

mathematical foundation and was thus applicable to a wide range of problems of interest, 

particularly to speech recognition [14]. A HMM was universally expressed as a five-element 

array � = (�,�, �, �, 	), where � refers to the set of hidden states, � the set of observation 

symbols, � the initial states distribution, � the matrix of state transition probability, and 	 the 

observation symbol probabilities distribution per state . We designed the structure of the 

HMM as shown in Fig. 1, which have two hidden states � = ��, � where � and  stand for 

conservation and non-conservation respectively, and have 20 discrete observation symbols 

corresponding to twenty amino acids. The HMM was also expressed compactly as � =

(�, �, 	). Given observation symbol sequences (here peptides), by using E-M algorithm we 

may estimate the parameters, i.e. �, �, 	, which corresponds to the problem 3 in the standard 

HMM. Assume that the positive and negative samples were respectively generated from two 

HMMs that have the same structure but differ in aspect of parameters. We used the positive 

samples to learn the positive HMM ��, and the negative samples to learn the negative HMM 

��. Given a testing peptide �, we calculated the probabilities of generating it under the �� and 

��  respectively. This corresponds to the first problem in the standard HMM. The testing 
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sample was predicted to be positive if ��more likely generated � than ��. And it was 

predicted negative otherwise. 

 
Figure 1. The structure of the presented DHHM. There are two hidden states and there are 20 

observation symbols corresponding to 20 amino acids per state. 

2.3 Cross validation and evaluation  

We adopted leave-one-out cross-validation to examine the presented method. In the leave-

one-out cross validation, the training set are classified into n parts (n is the number of samples 

in the training set), each one of which in turn serves a testing role and the other n-1 of which 

serve a training role. The sensitivity (SN), specificity (SP), accuracy (ACC) and Matthews’s 

correlation coefficient (MCC) are used to assess the predictive performance, which are 

computed as follows: 

TP and TN correspond to the numbers of true positive and true negative samples, 

respectively. FP and FN are the numbers of false positive and false negative samples 

respectively.  

Table 2. The perfomances of different methods by leave-one-out cross validation 
Learning 
algorithm 

Representation SN SP ACC MCC 

SVM Disorder 0.1176  0.7222  0.5565  -
0.1688  

BES 0.1471  0.8778  0.6774  0.0331  
AAPP 0.7647  0.2667  0.4032  0.0320  
CKAAP 0.2647  0.8222  0.6694  0.0967  
BES+AAPP+Disorder 0.7647  0.2667  0.4032  0.0320  

random 
forest 

disorder 0.2647  0.8556  0.6935  0.1404  
BES 0.4412  0.8778  0.7581  0.3495  
AAPP 0.3235  0.9111  0.7500  0.2906  
CKAAP 0.5588  0.8889  0.7984  0.4718  
BES+AAPP+Disorder 0.2941  0.9333  0.7581  0.3027  

DHMM  0.7941 0.7778  0.7823  0.5259  
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3. Result and discussion 

The leave-one-out cross-validation performance of the DHMM on the training set was shown 

in Table 2. The predictive ACC was 0.7823, meaning that we predicted correctly 97 of 124 

samples. Assume that the probability of successfully guessing one positive or negative sample 

was 0.5. Continually repeating such guess for 124 times is equivalent to a binomial 

distribution. Therefore, the probability of identifying correctly more than 97 samples is 

9.2728×10-11, much lower than the ACC. The results indicate the promising performance of 

the presented method.  

3.1 Comparison with representation–based learning methods 

Recently, a large number of approaches have been presented to predict post-translational 

modification sites including S-nitrosylation sites [15], sulfotyrosine sites [16], ubiquitination 

sites [17] and N-acetylation sites[18]. Most predictive approaches followed such a framework 

that peptides are first represented by numerical vectors, then the machine learning algorithm 

such as support vector machine (SVM) which is widely applied in the area of bioinformatics 

[19] and random forest are applied to learn a classifier. We called these approaches the 

representation-based learning methods and used them as the baseline for comparison. 

Different types of representation for peptides were described as follows. 

3.1.1 Binary encoding scheme (BES)  

BES is an intuitive representation of protein sequences. In the BES, each amino acid is 

encoded into a 20-dimensional binary vector. For example, Alanine (A) is represented by

(1,0,0, ,0)… , Cysteine(C) by (0,1,0, ,0)… . Each sample corresponds to a 220-dimensional 

vector.  

3.1.2 Amino acid physicochemical properties (AAPP)  

AAindex [20-22] is a comprehensive repository compiling physicochemical and biochemical 

properties of single amino acid and amino acid pair. Atchley et al. [23] carried out 

multivariate statistical analyses on 494 amino acid attributes to produce five interpretable 

numeric patterns that correspond to polarity, second structure, molecular volume, codon 

diversity and electrostatic charge respectively. These five types of properties are widely 
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applied to predictions of palmitoylation sites [24], S-nitrosylation sites [15, 25] and 

carbamylation sites [26]. 

3.1.3 Disorder 

Intrinsically disordered region causes unstable or flexible 3D structures. Many studies 

reported that some functions of protein are specific to such dynamics of structures rather than 

stability[27]. Therefore, disorder states of protein are used as determining factors to 

differentiate between post-translational modification and non-post-translational modifications 

[15, 24, 28]. Here, we used the VSL2 program [29] to predict disorder of peptides. Each 

residue corresponds to a number and thus a peptide is an 11-dimensional vector. 

3.1.4 Composition of k-spaced amino acid pairs (CKAAP) 

The CKAAP of protein sequence was widely used for predicting mucin-type O-glycosylation 

sites [30], palmitoylation sites [31], methylation sites [32], ubiquitination sites [33], 

pupylation sites [34] and Phosphorylation Sites [35]. Given a peptide sequence, its CKAAP is 

represented as occurrence frequencies of k-spaced amino acid pairs such as1 kAX X A⋯ , 

1 kAX X C⋯ ,  and 1 kAX X C⋯  where 1, , kX X…  refers to one of 20 amino acids, respectively 

and k is set to 0, 1 and 2. Therefore, each peptide corresponds to a 1200-dimensional vector. 

SVM is a classical machine-learning algorithm that maximizes margins between two 

groups. Combining both least risks in structure and in experiences, the SVM is applicable to a 

widely range of problem of interests [36]. Random forest is an ensemble machine learning 

algorithm which comprises various decision trees [37]. The random forest has successfully 

been employed for predictions of phosphorylation site [38], γ-carboxylation sites [39], 

glycosylation sites [40] and SUMOylation sites [41]. We used the two popular algorithms 

across the above different representations as the baseline for comparison. The performances 

of the leave-one-out cross validations were listed in Table 2. Obviously, in terms of SN and 

MCC, the DHMM is best. Although the SVM with the BES and with CKAAP, and the 

Random Forest reached higher SPs than the DHMM, the former performed much worse than 

the latter in the identification of crotonylation sites. For example, the random forest with the 

CKAAP got a SP of 0.8889, but obtained a SN of less than 0.56. This is a seriously 

unbalanced performance. It is more important to identify crotonyllysine sites than to 
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recognize the non-crotonyllysine sites. These results indicate advantages of the HMM over 

the state of the art in the prediction of crotonyllysine sites. 

Table 3 The computer-annotated crotonyllysine sites in the Uniprot database and in the paper 
Protein Identifier Uniprot database the paper 
P02253 34, 64, 85, 90, 97,159, 168 34, 63, 64, 85, 90, 97, 137,139,  

140, 148, 149, 153, 168 
P0C169 37, 119, 120, 126 6, 10, 14, 16, 119, 120 
Q00729 7, 13, 14, 17, 18, 22, 25, 36 13, 14, 17, 18, 22, 25, 26, 45,59, 

122 
P68432 5,10, 19, 24, 28, 57 10, 15, 19, 24, 57 
P62803 6, 9, 13, 17 6, 9, 13, 45 

3.2 Large-scale identification of crotonyllysine sites 

As mentioned previously, 92 crotonylated proteins were downloaded from the Uniprot 

database, 35 of which however did not contain any experimentally validated crotonylated 

sites. We used the sequence cluster program CD-HIT[13] to reduce homology among 35 

sequences and obtained five unique protein sequences including 29 computer-annotated 

crotonyllysine sites (see the second column in Table 3). Using the positive and negative 

samples as the training set, the crotonyllysine sites predicted by the DHMM were listed in the 

third column of Table 3. Interestingly, we found that most of computed-annotated sites in the 

Uniprot database were confirmed by the presented method. Histone H1 (P02253) protein is 

known for binding chromatin DNA and poly (A) RNA because it is necessary for the 

condensation of nucleosome chains into higher-order structured fibers. H1 serves a negative 

regulation of transcription from RNA polymerase II promoter by ways of chromatin 

remodeling, nucleosome spacing and DNA methylation [10]. The manual assertion of Kcr in 

the histone H1 inferred by similarity include K34, K64, K85, K90, K97, K159 and K168. 

Except the K159, we confirmed all the lysine-crotonylated sites. Histone H2A type 1-C 

(P0C169) is annotated with the Kcr at the K37, K119, K120 and K126 by similar comparison 

to the Histone H2A type 1 (P0C0S8) where the same four positions are experimentally 

detected as Kcr by Tan et al.[1]. We omitted Kcr at K37 and K126, but successfully identified 

Kcr at K119 and K120. Kcr at K6, K10, K14 and K16 needs further experimental validation. 

We confirmed Kcr at the K13, K14, K17, K18, K22 and K25 of Histone H2B type 1-A 

(Q00729) and omitted only two Kcr sites (K7, K36). K10, K19, K24 and K57 of Histone 

H3.1 (P68432) were confirmed as crotonylated sites annotated by the DHMM. Three fourths 

of Kcr site of Histone H4 (P62803) by similarity inference were confirmed by the presented 
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method. These results suggested the presented is feasible to large-scale identification of 

crotonyllysine sites. 

 

Figure 2. The scatter diagram of first two components of disorder. The first principle component 

explains 94.42 % of all the disorder information, and the second 4.31%. 

3.3 Discussion 

Crotonyllysine is a newly discovered type of histone PTMs. Compared with other well-

studied PTMs such as phosphorylation and methylation, Kcr is foreign even to most 

researchers. Moreover, little is known about the modification mechanism of Kcr. The 

representation-based approaches which have been developed over the past decades provide a 

well-defined framework to theoretically identify and analyze PTMs, such as the nearest 

neighbor-based method for predicting and analyzing S-nitrosylation proposed by Li et al.[25] 

and PMeS by Shi et al. [42]. Following the route, we attempted to identify crotonyllysine sites 

and to reveal the dominant factors influencing crotonylation from disorder, physicochemical 

properties and position-specific distribution of amino acids. Unfortunately, the performance 

of these approaches is discouraged. As shown in Table 3, the disorder-based method 

performed worst, whether for SVM or for random forest. To demonstrate abilities of disorder 

to distinguish between positive and negative samples, we drawn the scatter diagram of first 

two principal components from the principal component analysis (PCA) shown in Figure 2. 

The first two principal components accounted for 0.9873 of valuable information of disorders. 
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Obviously, it is difficult to differentiate between positive and negative samples from the point 

of view of first two components, indicating that disorder appears not to be necessarily related 

to crotonylation. Kcr is similar with lysine acetylation in structure. Therefore, it is a natural 

idea to employ factors determining acetylation to identify Kcr. It however got the opposite of 

what one wants. Suo et al. [43] demonstrated a significant difference between binary 

encodings of acetylation and non-acetylation, Hou et al. [44] employed amino acid 

physicochemical property to identify acetylation sites, while physicochemical property and 

binary encode of amino acid seemed not to a dominant factor for identification of 

crotonyllysine sites. This is explained by the facts that lysine crotonylation substantially 

differs from lysine acetylation in genomic distribution and regulation [2,3]. CKAAP of amino 

acids characterized well palmitoylation [31], but is invalid for identification of crotonylated 

protein. The sophistication of Kcr and difference from most PTMs make the existing 

approaches more difficultly applicable to identification of it. Therefore, we adapted the 

DHMM instead of the representation-based leaning algorithms to identify crototyllysine sites. 

For a complicated system or process, the HMM is always one of best ways to represent it in 

practice. Our results also demonstrated this view. To investigate difference between the 

positive and negative DHMM, we used the web program [45] to draw a two-sample Logo of 

positive versus negative samples, as shown in Figure 3. Obviously, the produced observation 

sequences by the positive DHMM differed widely from those by the negative DHMM. At the 

first position in the downstream of the centered lysine, the positive DHMM is enriched with 

Glycine (G), while the negative DHMM depleted Arginine (R) and Proline (P). The negative 

DHMM depleted Lysine (K) at the second position in the downstream the centered lysine 

against the positive DHMM. Except the above two sites, no depleted mark was observed in 

the negative DHMM. On the contrary, the positive DHMM is enriched with R and Glutamine 

(Q) at the first position, with Leucine (L) at the third position, and with R at the fifth position 

in the upstream of the centered lysine and with Threonine (T) and Glutamic acid (E) at the 

second position, with Tyrosine (Y) and E at the third position, and with Histidine (H) at the 

fifth position in the downstream. These analyses support the previous hypothesis that the 

positive and negative samples are generated by the two widely distinct HMM and also explain 

the good performance of the presented method.  
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Figure 3. Two sample Logo of 34 positive versus 90 negative samples. Only amino acid residues are 

significantly enriched or depleted (P-value o 0.05; t-test) around lysine. 

3.4 CrotPred software 

The software CrotPred for predicting crotonyllysine sites is implemented by the matlab 

program language with the aid of the HMM toolbox for matlab which is available at 

http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html. As shown in Figure 4, the 

software may run at any computers on the Windows platform where Matlab is installed and is 

very easy to use. One may either enter protein sequences or open a sequence file in the fasta 

format on the staring interface of the CrotPred, and then select a path to save the predictive 

results. Clicking the button “Predict”, one obtained information about crotonylation sites. 

Time for which the software runs depends on the number of predicted protein sequences.  

 

Figure 4. The user graphical interface of the software CrotPred 

Conclusion 

Crotonyllysine is one type of histone PTMs. The regulating role and modification mechanism 
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about it is unclear. We explored potential dominant factors influencing crotonylation and 

found that the disorder state of proteins or regions and amino acid physicochemical properties 

seemed not to significantly be associated with it. Therefore, we used the well-studied DHMM 

instead of representation-based learning algorithms to characterize crotonyllysine sites. The 

performance demonstrated the efficiency of the presented method. In addition, we 

implemented a software named CrotPred which is available at 

http://yun.baidu.com/share/link?shareid=442733655&uk=1460570570. 
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