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Abstract

Crotonyllysine is a new type of post-translatiomabdifications that is responsible for
promoter and enhancer region of gene transcriptibme to little knowledge about its
sophisticated mechanism, accurate identificatiomrofonyllysine still remains challenging.
We presented a discrete hidden Markov model to esddthis problem. We reached a
predictive sensitivity of 0.7941 by the leave-ong-@ross validation, more than those
predicted by the representation-based support veaéehine and random forest. The large-
scale prediction confirmed most of computer-anmatatrotonyllysine sites of five protein
sequences in the Uniprot database. We demonstrdiad disorder, physicochemical
properties and position-specific distribution ofiamacids around lysine appeared not to be
strongly linked to crotonylation. These results andlysis indicated that it is effective for the
presented method to detect crotonyllysine siteg predicting tool is freely available for
academic research at http://yun.baidu.com/shak@Bimareid=442733655&uk=1460570570.

1. Introduction

Lysine Crotonylation (Kcr) is a newly identified shdone post-translational modifications
(PTMs) where crotonyl functional groups are addethe lysine residues of proteins. Tein
al. [1] reported that Kcr is presented in the eukaryotll from yeast to human and that Kcr
is different from lysine acetylation in genomictdisution and regulation [2, 3]. These studies

suggested also that histone Kcr is closely asstiatth active gene promoters and potential
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enhancers in mammalian cell genomes as well as geaie cell differentiation [1]. Tan and
co-authors firstly identify crotonyllysine as a nggpe of PTM by using a mass spectrometry-
based approach that combined analysis of histoptides [1]. Baoet al. [4] used chemical
proteomics approach to identify some ‘eraser’ ereyior lysine crotonylated histone marks.
However, the mechanism of catalyzing crotonylation enzymes is unknown, greatly
increasing difficulty in experimentally detectingotonyllysine sites. This hinders a better
understanding of the physiological roles and retgpieof this PTM [3, 5]. In the past decade,
manyin silico techniques have been proposed to aid one to defédtsites, and achieved
successes as expected. For example, Chelanl [6] achieved the accuracy of 0.687 on
predicting the N-linked glycosylation sites, Chen al. [7] about 0.975 on predicting
Sumoylation Sites and Ski al. [8] 0.8599 on predicting palmitoylation sitetc. Following
these successful cases, we first presented a wdidtidden Markov model (DHMM) foim
silico prediction of crotonyllysine sites. The methodb&sed on the assumption that both
crotonylated and non-crotonylated peptides are mrg¢e@ by two distinct DHMMs
respectively. We trained two DHMMs by using crott®d and non-crotonylated samples
respectively. For an unknown sample, we determiniether it is crotonylated according to

probabilities of generating it.

2. Method and materials

2.1 Data

Crotonylated Proteins were collected from the Usiiptatabase (Release 2015_09) [9-12]
which is a comprehensive repository dedicated totegm sequences and functional
annotations. The process of collecting data wasritesi as follows. First, we searched the
Uniprot database with the keyword “crotonyllysinaid retrieved 92 manually reviewed
protein sequences. Then, removing non-experimgntaltified crotonyllysine sites, we got

57 unique protein sequences. Next, the sequenstecirogram CD-HIT [13] was applied to

reduce homology of 57 proteins sequences. Theetlogtparameter (cutoff) is set to 0.7. We
obtained 6 unique protein sequences including $fooylated sites. We slid an 11-mer
window along each protein sequence and extractptides that center lysine, and have five

residues in the upstream and downstream of it,ectiyely. 34 peptides undergoing the



-719-

lysine-crotonylated event were considered as pesiiamples and other 90 peptides as
negative ones. All the samples constituted theitrgiset. Table 1 listed all the positive and

negative samples in the proteins sequences.

Table 1. Modification and non-modification sites in theitriag set

Protein Crototyllysine sites Non-crototyllysine sitg

P70696 7,13, 14, 17, 18, 22, 25, 36 26, 30, 32, 45, 8883, 110,
118, 122

Q6DNO03 6,12, 13,16, 17, 21, 24, 35 25, 28, 29, 31, 4458786,
152, 164

Q96QV6 37,119, 120 6, 10, 14, 16, 75, 76, 96

P16403 34, 64, 85, 90, 97, 159, 168 17, 21, 22, 23, 2648752, 63

75, 81, 106, 109, 110, 117, 119,
121, 122, 127, 129, 130, 136,
137, 139, 140, 148, 149, 152,
153, 156, 157, 160, 169, 172,
175, 176, 178, 181, 183, 184,
187, 191, 194, 196, 199, 201,

204, 206, 207
P68431 10, 19, 24, 28, 57 15, 37, 38, 65, 80, 116, 123
P62805 6,9 13 21, 32, 45, 60, 78, 80, 92

2.2 Method

The hidden Markov model (HMM) was a statisticakieag algorithm which has a theoretical
mathematical foundation and was thus applicable teide range of problems of interest,
particularly to speech recognition [14]. A HMM wasiversally expressed as a five-element
array 1 = (N,M,n, A, B), wheren refers to the set of hidden statesthe set of observation
symbols,z the initial states distribution, the matrix of state transition probability, amdhe
observation symbol probabilities distribution péats . We designed the structure of the
HMM as shown in Fig. 1, which have two hidden state- {c, F} wherec andF stand for
conservation and non-conservation respectively, lzae 20 discrete observation symbols
corresponding to twenty amino acids. The HMM wasoaéxpressed compactly as-
(n,A,B). Given observation symbol sequences (here peptibgsusing E-M algorithm we
may estimate the parameters, g4, B, which corresponds to the problem 3 in the stahdar
HMM. Assume that the positive and negative samplese respectively generated from two
HMMs that have the same structure but differ ineaspf parameters. We used the positive
samples to learn the positive HMM, and the negative samples to learn the negativé/HM
A,. Given a testing peptide we calculated the probabilities of generatingnitler thel, and

A, respectively. This corresponds to the first peablin the standard HMM. The testing



-720-

sample was predicted to be positivedifmore likely generated® than A,. And it was

predicted negative otherwise.

Hidden states F

Observation
symbols ACDEFGHIKLMNPQRSTVW Y

Figure 1. The structure of the presented DHHNhere are two hidden states and there are 20
observation symbols corresponding to 20 amino guidstate.

2.3 Cross validation and evaluation

We adopted leave-one-out cross-validation to exartie presented method. In the leave-

one-out cross validation, the training set aresifiesl inton parts @ is the number of samples

in the training set), each one of which in turnvesra testing role and the othtrett of which

serve a training role. The sensitivitgN), specificity &), accuracy ACC) and Matthews’s

correlation coefficient ICC) are used to assess the predictive performanceghwdre

computed as follows:

TP and TN correspond to the numbers of true pesitand true negative samples,

respectively. FP and FN are the numbers of falsgitipe and false negative samples

respectively.

Table 2. The perfomances of different methods bydeone-out cross validation
Learning  Representation SN SP ACC MCC
algorithm
SVM Disorder 0.1176 0.7222 0.5565 -

0.1688

BES 0.1471 0.8778 0.6774 0.0331

AAPP 0.7647 0.2667 0.4032 0.0320

CKAAP 0.2647 0.8222 0.6694 0.0967
BES+AAPP-+Disorder 0.7647 0.2667 0.4032 0.0320

random  disorder 0.2647 0.8556 0.6935 0.1404
forest BES 0.4412 0.8778 0.7581 0.3495
AAPP 0.3235 0.9111 0.7500 0.2906

CKAAP 0.5588 0.8889 0.7984 0.4718

BES+AAPP+Disorder 0.2941 0.9333 0.7581 0.3027
DHMM 0.7941 0.7778 0.7823 0.5259
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3. Result and discussion

The leave-one-out cross-validation performancénef@HMM on the training set was shown
in Table 2. The predictivCC was 0.7823, meaning that we predicted correctlp®¥24
samples. Assume that the probability of succegs@ulessing one positive or negative sample
was 0.5. Continually repeating such guess for ligded is equivalent to a binomial
distribution. Therefore, the probability of idewiiig correctly more than 97 samples is
9.272&10™, much lower than th&CC. The results indicate the promising performance of

the presented method.

3.1 Comparison with representation—based learning sthods

Recently, a large number of approaches have beesemied to predict post-translational
modification sites including S-nitrosylation sitd$], sulfotyrosine sites [16], ubiquitination

sites [17] and N-acetylation sites[18]. Most prégiee approaches followed such a framework
that peptides are first represented by numericetove, then the machine learning algorithm
such as support vector machine (SVM) which is widgdplied in the area of bioinformatics

[19] and random forest are applied to learn a dlassWe called these approaches the
representation-based learning methods and used #wrthe baseline for comparison.

Different types of representation for peptides wagscribed as follows.

3.1.1 Binary encoding scheme (BES)
BES is an intuitive representation of protein semas. In the BES, each amino acid is

encoded into a 20-dimensional binary vector. Fangple, Alanine (A) is represented by
,0,0,..,0, Cysteine(C) by(0,1,0,..,0.. Each sample corresponds to a 220-dimensional

vector.

3.1.2 Amino acid physicochemical properties (AAPP)

AAindex [20-22] is a comprehensive repository caingi physicochemical and biochemical
properties of single amino acid and amino acid .paichley et al. [23] carried out
multivariate statistical analyses on 494 amino atitibutes to produce five interpretable
numeric patterns that correspond to polarity, sdcemmucture, molecular volume, codon

diversity and electrostatic charge respectivelyesknh five types of properties are widely



-722-

applied to predictions of palmitoylation sites [24$-nitrosylation sites [15, 25] and
carbamylation sites [26].

3.1.3 Disorder

Intrinsically disordered region causes unstableflexible 3D structures. Many studies
reported that some functions of protein are spetifisuch dynamics of structures rather than
stability[27]. Therefore, disorder states of proteare used as determining factors to
differentiate between post-translational modifisatand non-post-translational modifications
[15, 24, 28]. Here, we used the VSL2 program [29]ptedict disorder of peptides. Each
residue corresponds to a number and thus a peptidel1-dimensional vector.

3.1.4 Composition of k-spaced amino acid pairs (CKAP)

The CKAAP of protein sequence was widely used fedjting mucin-type O-glycosylation
sites [30], palmitoylation sites [31], methylatiogites [32], ubiquitination sites [33],
pupylation sites [34] and Phosphorylation Siteq.[8ven a peptide sequence, its CKAAP is
represented as occurrence frequenciek-spaced amino acid pairs suchAag--- X, A,

AX;---X,C, and AX;--- X,C where X,,..., X, refers to one of 20 amino acids, respectively

andkis set to 0, 1 and 2. Therefore, each peptideesponds to a 1200-dimensional vector.
SVM is a classical machine-learning algorithm th@ximizes margins between two
groups. Combining both least risks in structure ianelkperiences, the SVM is applicable to a
widely range of problem of interests [36]. Randawnebt is an ensemble machine learning
algorithm which comprises various decision tre€g.[Fhe random forest has successfully
been employed for predictions of phosphorylatiote §B8], y-carboxylation sites [39],
glycosylation sites [40] and SUMOylation sites [4¥}e used the two popular algorithms
across the above different representations asabkelihe for comparison. The performances
of the leave-one-out cross validations were listedable 2. Obviously, in terms @\ and
MCC, the DHMM is best. Although the SVM with the BE®&dawith CKAAP, and the
Random Forest reached higl8s than the DHMM, the former performed much worsanth
the latter in the identification of crotonylatioites. For example, the random forest with the
CKAAP got a SP of 0.8889, but obtained 8N of less than 0.56. This is a seriously

unbalanced performance. It is more important tontifie crotonyllysine sites than to
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recognize the non-crotonyllysine sites. These tesntlicate advantages of the HMM over
the state of the art in the prediction of crotoysithe sites.
Table 3 The computer-annotated crotonyllysine sitébe Uniprot database and in the paper

Protein Identifier Uniprot database the paper

P02253 34, 64, 85, 90, 97,159, 168 34, 63, 64, 85, 90, 97, 137,139,
140, 148, 149, 153, 168

P0OC169 37,119, 120, 126 6, 10, 14, 16, 119, 120

Q00729 7,13, 14, 17, 18, 22, 25, 36 13, 14, 17, 18, 22, 25, 26, 45,59,
122

P68432 5,10, 19, 24, 28, 57 10, 15, 19, 24, 57

P62803 6,9, 13,17 6,9, 13,45

3.2 Large-scale identification of crotonyllysine ses
As mentioned previously, 92 crotonylated proteinsrevdownloaded from the Uniprot

database, 35 of which however did not contain axgeementally validated crotonylated
sites. We used the sequence cluster program CD1H]Tp reduce homology among 35
sequences and obtained five unique protein seqsemmtuding 29 computer-annotated
crotonyllysine sites (see the second column in &)l Using the positive and negative
samples as the training set, the crotonyllysiresgitredicted by the DHMM were listed in the
third column of Table 3. Interestingly, we founaitimost of computed-annotated sites in the
Uniprot database were confirmed by the presentetthode Histone H1 (P02253) protein is
known for binding chromatin DNA and poly (A) RNA ¢muse it is necessary for the
condensation of nucleosome chains into higher-ostteictured fibers. H1 serves a negative

regulation of transcription from RNA polymerase promoter by ways of chromatin
remodeling, nucleosome spacing and DNA methylati@). The manual assertion of Kcr in

the histone H1 inferred by similarity include K3464, K85, K90, K97, K159 and K168.
Except the K159, we confirmed all the lysine-crgtated sites. Histone H2A type 1-C
(P0OC169) is annotated with the Kcr at the K37, KI4920 and K126 by similar comparison
to the Histone H2A type 1 (POCO0S8) where the saow positions are experimentally
detected as Kcr by Tast al.[1]. We omitted Kcr at K37 and K126, but succedgfidentified
Kcr at K119 and K120. Kcr at K6, K10, K14 and Kléeds further experimental validation.
We confirmed Kcr at the K13, K14, K17, K18, K22 aK@5 of Histone H2B type 1-A
(Q00729) and omitted only two Kcr sites (K7, K36810, K19, K24 and K57 of Histone
H3.1 (P68432) were confirmed as crotonylated sitesotated by the DHMM. Three fourths

of Kcr site of Histone H4 (P62803) by similarityfénence were confirmed by the presented
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method. These results suggested the presentedassblfe to large-scale identification of

crotonyllysine sites.

A positive samples

. 61 A * * negative samples
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Figure 2. The scatter diagram of first two components obudisr. The first principle component
explains 94.42 % of all the disorder informationdahe second 4.31%.

3.3 Discussion

Crotonyllysine is a newly discovered type of hioRTMs. Compared with other well-
studied PTMs such as phosphorylation and methylatkcr is foreign even to most
researchers. Moreover, little is known about thedifimation mechanism of Kcr. The
representation-based approaches which have beetoged over the past decades provide a
well-defined framework to theoretically identify daranalyze PTMs, such as the nearest
neighbor-based method for predicting and analy&ngtrosylation proposed by k& al.[25]

and PMeS by Stet al. [42]. Following the route, we attempted to identifyptonyllysine sites
and to reveal the dominant factors influencing amgtation from disorder, physicochemical
properties and position-specific distribution ofiamacids. Unfortunately, the performance
of these approaches is discouraged. As shown ifeTap the disorder-based method
performed worst, whether for SVM or for random &ireTo demonstrate abilities of disorder
to distinguish between positive and negative sasyple drawn the scatter diagram of first
two principal components from the principal compananalysis (PCA) shown in Figure 2.

The first two principal components accounted f@803 of valuable information of disorders.
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Obviously, it is difficult to differentiate betweegositive and negative samples from the point
of view of first two components, indicating thasdider appears not to be necessarily related
to crotonylation. Kcr is similar with lysine acedgion in structure. Therefore, it is a natural
idea to employ factors determining acetylationdentify Kcr. It however got the opposite of

what one wants. Suet al. [43] demonstrated a significant difference betwd®nary
encodings of acetylation and non-acetylation, Haual. [44] employed amino acid

physicochemical property to identify acetylatiotesj while physicochemical property and
binary encode of amino acid seemed not to a dorhifiactor for identification of
crotonyllysine sites. This is explained by the athat lysine crotonylation substantially

differs from lysine acetylation in genomic distritmn and regulation [2,3]. CKAAP of amino

acids characterized well palmitoylation [31], bstimvalid for identification of crotonylated
protein. The sophistication of Kcr and differenaenfi most PTMs make the existing
approaches more difficultly applicable to identifiion of it. Therefore, we adapted the
DHMM instead of the representation-based leaniggrithms to identify crototyllysine sites.

For a complicated system or process, the HMM isagdrone of best ways to represent it in

practice. Our results also demonstrated this vi€w.investigate difference between the
positive and negative DHMM, we used the web progf4b} to draw a two-sample Logo of
positive versus negative samples, as shown in &iguObviously, the produced observation
sequences by the positive DHMM differed widely frtémose by the negative DHMM. At the
first position in the downstream of the centereslrlg, the positive DHMM is enriched with
Glycine (G), while the negative DHMM depleted Argie (R) and Proline (P). The negative
DHMM depleted Lysine (K) at the second positiontfie downstream the centered lysine
against the positive DHMM. Except the above twessitno depleted mark was observed in
the negative DHMM. On the contrary, the positive M is enriched with R and Glutamine
(Q) at the first position, with Leucine (L) at tiard position, and with R at the fifth position
in the upstream of the centered lysine and withe®@hine (T) and Glutamic acid (E) at the

second position, with Tyrosine (Y) and E at thedtposition, and with Histidine (H) at the
fifth position in the downstream. These analysegspsut the previous hypothesis that the

positive and negative samples are generated hiyvthevidely distinct HMM and also explain

the good performance of the presented method.
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Figure 3. Two sample Logo of 34 positive versus 90 negasammples. Only amino acid residues are
significantly enriched or depleted (P-value o 0tst) around lysine.

3.4 CrotPred software
The software CrotPred for predicting crotonyllysisites is implemented by the matlab

program language with the aid of the HMM toolbox fmatlab which is available at

http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.htmAs shown in Figure 4, the

software may run at any computers on the Windoatgim where Matlab is installed and is
very easy to use. One may either enter proteinesems or open a sequence file in the fasta
format on the staring interface of the CrotPred] Hren select a path to save the predictive
results. Clicking the button “Predict”, one obtainmformation about crotonylation sites.

Time for which the software runs depends on thebmrmof predicted protein sequences.

Bl crotred e

Enter protein sequences in the fasta format

>Po1234
AAARARARARARAARAARRA

select the fasta file

saving path

=
-

Open

Figure 4. The user graphical interface of the software CelP
Conclusion

Crotonyllysine is one type of histone PTMs. Theutaging role and modification mechanism
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about it is unclear. We explored potential dominfadtors influencing crotonylation and
found that the disorder state of proteins or regi@nd amino acid physicochemical properties
seemed not to significantly be associated witfilierefore, we used the well-studied DHMM
instead of representation-based learning algorittonsharacterize crotonyllysine sites. The
performance demonstrated the efficiency of the el method. In addition, we
implemented a software named CrotPred which is lablai at

http://yun.baidu.com/share/link?shareid=442733636&1460570570
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