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Abstract

In this paper, we propose a novel method to calculate the Hosoya index of a

tree by associating a vertex with a weight. Compared to the existing methods

that include calculating the sum of the absolute values of all coefficients of the

characteristic polynomial or computing the determinant of a tree’s matrix, the

complexity of computability of our method is lower. Based on the proposed

method and the data structure of labeled trees, we further provide a linear–

time algorithm to demonstrate the obtained results.

1 Introduction

The Hosoya index [1], proposed by Hosoya in 1971, is a typical example of graph invariants

used in computational chemistry for quantifying the behavior of molecular structure,

and it has been proved as a fundamental concept in correlations with boiling points [2],

entropies [3], heat of vaporization [4], as well as for coding of chemical structures [5]. Till

now, it has been used in a graph-based molecular descriptor [6]. A detailed survey for the

Hosoya index has been given in [7–12].

In particular, the Hosoya index of a tree has attracted considerable attention in the

past decades. For instance, Gutman et al. obtained a product formula in terms of
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the eigenvalues [13]; Hou used the permanent method to compute the Hosoya index

of a tree [14]; Gutman related caterpillar trees to the Kekulé structures in benzenoid

molecules [15], and recently Hosoya and Gutman determined the Hosoya index of these

trees [16]; Hudelson observed that each rooted tree corresponds to a unique tree expression

that is evaluated as a rational number (not necessarily in lowest terms), whose numerator

is equal to the Hosoya index of the entire tree [17].

Compared with the #P -completeness for Hosoya index of even planar graphs [18],

calculations of the Hosoya index of a tree of order n are denoted as the sum of the absolute

values of the coefficients of the characteristic polynomial [19–21], where the complexity

of computability is O(nlog2n) [22]. It is also expressed as a determinant [23–25] with the

complexity O(n2+ε) [26], where ε > 0. In addition, the Hosoya index of a graph is the

evaluation of the generating matching polynomial, and it can be calculated in linear time

for a graph of bounded tree-width(see Theorem 32 in [27]). Therefore, we propose a novel

method to calculate this index of a tree and provide an independent, elementary proof

that the Hosoya index of a tree can be computed in linear time. We further present a

linear–time algorithm based on this method and the data structure of labeled trees and

verify the obtained results by a numerical example.

2 A formula for calculating the Hosoya index

Let G be a simple graph of order n with the vertex set V (G) and the edge set E(G). The

Hosoya index Z(G) is defined as the total number of independent edge sets of G, where

two edges of G are independent if they have no vertex in common. In graph-theoretical

terminology, Z(G) is the number of all matchings of G, i.e. Z(G) =
∑

k≥0m(G, k), where

m(G, k) is the number of k independent edges of G. By convention, m(G, 0) is one.

In order to derive our formula, we begin with this relationship [23,24]

Z(G) = det (In + A(Go)) , (1)

where the graph G has no cycles of even length, In is the unit matrix of order n, Go is

an arbitrary orientation of G. A(Go) = (akl)n×n is the skew adjacency matrix defined by

akl = 1 if (vk, vl) ∈ E(Go), akl = −1 if (vl, vk) ∈ E(Go); otherwise akl = 0.

Let T be a tree with the vertex set V (T ) = {v1, . . . , vn}. If a vertex vi is a leaf (a
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vertex of degree one) and vivj is an edge, then (1) reads as

det



... ... ... ... ...

... wii ... aij ...

... ... ... ... ...

... −aij ... wjj ...

... ... ... ... ...


,

where wkk = 1, 1 ≤ k ≤ n, aij = 1 or −1, and aik = 0 with k ∈ {1, . . . , n} − {i, j}.
Calculating the above determinant gives

Z(T ) = det



... ... ... ... ...

... wii ... aij ...

... ... ... ... ...

... 0 ... wjj + 1/wii ...

... ... ... ... ...


= wiidet(C), (2)

where C is a matrix of order n − 1 obtained from the matrix in (2) by deleting the ith

row and the ith column. We further expand Z(T ) until the order of the corresponding

matrix is reduced to one.

It is noted that the expansion of the determinant in (2) has a graphical interpretation.

Define T as a rooted tree by associating every vertex v with a weight α(v), where the

initial weights are all set one. Firstly, find a leaf uk, k = 1, . . . , (n − 1) in T , then delete

uk from T and contribute 1/α(uk) to the weight of its parent vertex. Repeat this process

until the only root is left, see Fig. 1. In fact, the weights α(v) correspond to the diagonal

elements wii in (2). On the other hand, the weights α(v) are also obtained recursively as

follows: if v is a leaf of T , then α(v) = 1; if v is not a leaf of T , then α(v) = 1+
∑

u∈S
1

α(u)
,

where S is the set of children of v.

Based on the process of calculations of α(v), we obtain a formula on calculating the

Hosoya index of a tree.

Theorem 2.1. Given the weights α(v) for each vertex v of T as above, then Z(T ) =∏
v∈T α(v).

Remark 2.2. In Theorem 2.1, the tree could be rooted in an arbitrary way and

the starting leaf is not restricted. Compared to the existing methods [13, 14, 17, 21], this

method is intuitive and simple, and the computational complexity is lower.

Remark 2.3. Another proof of Theorem 2.1 is given below. A quantity β(v) = m(v)
m−(v)

for every vertex v of the rooted tree T is recursively defined as follows: let T ′ be a copy

of T .
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Figure 1: calculating the weights α(v). Z(T8) = 1× 1× 1× 1× 3× 7
3
× 17
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Figure 2: A labeled tree T8 with 8 vertices labeled from 0 to 7.

(I) If T ′ is a single-vertex tree with root r, then β(r) = m(r) = m−(r) = 1; otherwise,

β(r) = m(r)
m−(r)

, where m(r) counts all matchings of T ′, and m−(r) counts all matchings

which do not contain the root r.

(II) Replace T ′ with each non-empty subtree of T ′ and go back to (I).

As a result, for a leaf v of T , β(v) = 1; otherwise, for the non-leaf vertex v, β(v) reads

as

β(v) =
m(v)

m−(v)
=

∏
u∈Sm(u) +

∑
u∈Sm

−(u)
∏

w∈S−{u}m(w)∏
u∈Sm(u)

= 1 +
∑
u∈S

1

β(u)
,

where S is the set of children of v. Hence, β(v) = α(v). Finally,
∏

v∈T α(v) =
∏

v∈T β(v) =

m(r0), where r0 is the root of T . Obviously, m(r0) is the Hosoya index of T , and counts

all matchings of T .
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3 A linear–time algorithm for the Hosoya index

In this section, using the data structure of labeled trees, we provide a linear–time algorithm

to calculate Z(T ) and verify the obtained method in the preceding section.

Lemma 3.1. ( [28]) Given a list of (n − 1) edges of a labeled tree T whose vertices

are labeled from 0 to (n− 1), there exists a linear time algorithm (see Algorithm 1) on T

for Prüfer coding.

Algorithm 1 Generating the Prüfer code of a labeled tree T [28].

Input:
A list of (n− 1) edges of T whose vertices are labeled from 0 to (n− 1).

Output:
The Prüfer code (t1, t2, · · · , tn−2) of T .

1: Build the degree array d[·] and parent array f [·] from T by the depth-first search
method;

2: for v = 0 to n− 1 do
3: if d[v] = 1 then
4: break;
5: end if
6: end for
7: index← v;
8: for j = 0 to n− 3 do
9: u← f [v];
10: tj+1 ← u;
11: d[u]← d[u]− 1;
12: if u < index and d[u] = 1 then
13: v ← u;
14: else
15: for v = index+ 1 to n− 1 do
16: if d[v] = 1 then
17: break;
18: end if
19: end for
20: index← v;
21: end if
22: end for
23: return (t1, t2, · · · , tn−2).

Lemma 3.2. ( [29]) Any vertex v of T occurs d(v) − 1 times in the Prüfer code

(t1, t2, · · · , tn−2).

From Lemma 3.2, when the Prüfer code of a labeled tree with n vertices is input,

there exists a linear time algorithm (see Algorithm 2) to generate the degree array d[·]
and parent array f [·] (see Algorithm 3).
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Algorithm 2 Generating the degree array d[·] of a labeled tree T .

Input:
A Prüfer code (t1, t2, · · · , tn−2) of T .

Output:
The degree array d[·].

1: for v = 0 to n− 1 do
2: d[v]← 1;
3: end for
4: for j = 0 to (n− 3) do
5: v ← tj+1

6: d[v]← d[v] + 1;
7: end for
8: return d[·].

Algorithm 3 Producing the parent array f [·] of a labeled tree T .

Input:
A Prüfer code (t1, t2, · · · , tn−2) of T .

Output:
The parent array f [·].

1: f [n− 1]← −1;
2: tn−1 ← (n− 1);
3: for v = 0 to n− 1 do
4: if d[v] = 1 then
5: break;
6: end if
7: index← v;
8: end for
9: for j = 0 to n− 2 do
10: u← tj+1;
11: d[u]← d[u]− 1;
12: f [v]← u;
13: if u < index and d[u] = 1 then
14: v ← u;
15: else
16: for v = index+ 1 to n− 1 do
17: if d[v] = 1 then
18: break;
19: end if
20: end for
21: index← v
22: end if
23: end for
24: return f [·].

Theorem 3.3. Given a list of (n−1) edges of a labeled tree whose vertices are labeled

from 0 to (n − 1), there exists a linear time algorithm( see Algorithm 4) to compute the
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Algorithm 4 Calculating the Hosoya index of a labeled tree T .
Input:

A list of (n− 1) edges of a labeled tree T whose vertices are labeled from 0 to (n− 1).
Output:

The Hosoya index Z of T .
1: root← n− 1;
2: Recall Algorithm 1 to build the Prüfer code of T ;
3: Recall Algorithm 2 to generate the degree array d[·] from the Prüfer code of T ;
4: Recall Algorithm 3 to produce the parent array f [·] from the Prüfer code of T ;
5: index← x← min{−1 < k < root : d[k] = 1};
6: For each vertex v in T , set the weight α[v]← 1;
7: Z ← 1;
8: for j = 0 to n− 2 do
9: y ← f [x];
10: Z ← Z ∗ α[x];
11: α[y]← α[y] + 1

α[x]
;

12: d[y]← d[y]− 1;
13: if y < index and d[y] = 1 then
14: x← y;
15: else
16: index← x← min{index < k < root : d[k] = 1};
17: end if
18: end for
19: Z ← Z ∗ α[root];
20: return Z.

Hosoya index of the considered tree.

Proof. Algorithm 4 provides the Hosoya index Z of a labeled tree T as an output

and receives a list of its (n − 1) edges as an input. From Theorem 2.1, the root vertex

is the only left vertex after the successive operations of deleting a leaf. In Algorithm 4,

we select a vertex with the maximal label (n− 1) as the root, actually the root of T may

be an arbitrary vertex of T . This is a key point to enable the algorithm to be linear. In

general, we can find the vertex with the smallest label in O(n log n) time by using the

heap min{index < k < root : d[k] = 1}, where the variable index is a cursor of degree

array d[·]. From the existing results [28], we observe that some vertices are immediately

deleted from the heap before they are inserted into the heap. This type of vertices are

easily treated without the heap operation. As a result, the remained heap operation can

be performed by a linear scan of d[·]. From line 16, we see that the cursor index moves

from one leaf to the next leaf, and goes through d[·] from left to right only once. So the

time of line 16 is O(n) time. Furthermore, the parent array f [·] and degree array d[·] are

built with only O(n) preprocessing time by the depth-first search method [30]. Thus, the

time complexity of Algorithm 4 is O(n) time, i.e., a linear time.
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Corollary 3.4. Given the Prüfer code of a labeled tree with n vertices as an input,

there exists a linear–time algorithm to compute the Hosoya index of this tree.

4 A example

We choose a labeled tree T8 (see Fig. 2) to demonstrate Algorithm 4. The root is vertex

7. The algorithm accepts the edge list {0,3}, {2,3}, {3,4}, {2,6}, {1,2}, {4,7}, {4,5} of

T8 as an input. Table 1 shows f [·], d[·] and weight array α[·] with initial values. At the

initial state, the index is equal to the subscript 0. Firstly, the leaf 0 is deleted. Then,

the degree d[3] of vertex 3 decreases by 1 and the weight α[3] of vertex 3 increases by

1/1 = 1. Since d[3] > 1, the vertex 3 is not a leaf, the program moves index to the next

leaf by scanning d[·] and turns to the subscript 1. Now the status of T8 is provided in

Table 2. Next, the vertex 1 is deleted and the status of T8 with updating α[2] and d[2] is

in Table 3. Repeating the above mentioned process until the root is left, we obtain the

corresponding states of T8, see Tables 4, 5, 6. Finally, we obtain Z =
∏7

v=0 α[v] = 24.

Table 1: The arrays f [·], α[·], d[·] with initial values.

j 0 1 2 3 4 5 6 7

f [j] 3 2 3 4 7 4 2 −1

α[j] 1 1 1 1 1 1 1 1

d[j] 1 1 3 3 3 1 1 1

index ↑

Table 2: After leaf 0 is deleted

j [0] 1 2 3 4 5 6 7

f [j] 3 2 3 4 7 4 2 −1

α[j] 1 1 1 2 1 1 1 1

d[j] 1 1 3 2 3 1 1 1

index ↑
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Table 3: After leaf 1 is deleted

j [0] [1] 2 3 4 5 6 7

f [j] 3 2 3 4 7 4 2 −1

α[j] 1 1 2 2 1 1 1 1

d[j] 1 1 2 2 3 1 1 1

index ↑

Table 4: After leaf 5 is deleted

j [0] [1] 2 3 4 [5] 6 7

f [j] 3 2 3 4 7 4 2 −1

α[j] 1 1 2 2 2 1 1 1

d[j] 1 1 2 2 2 1 1 1

index ↑

Table 5: After leaf 6 is deleted

j [0] [1] 2 3 4 [5] [6] 7

f [j] 3 2 3 4 7 4 2 −1

α[j] 1 1 3 2 2 1 1 1

d[j] 1 1 1 2 2 1 1 1

index ↑

Table 6: After the leaves 2, 3, and 4 are deleted.

j [0] [1] [2] [3] [4] [5] [6] 7

f [j] 3 2 3 4 7 4 2 −1

α[j] 1 1 3 7
3

17
7

1 1 24
17

d[j] 1 1 1 1 1 1 1 1

index ↑

Remark 4.1. The troublesome aspect of Algorithm 4 is that the arithmetic produces

fractions, which can be overcome by using a vector trick. Denote α[v] = p[v]
q[v]

by the

vector (p[v], q[v]). Then, the value of α[y] + 1
α[x]

in line 11 is rewritten as the vector

(p[y]p[x] + q[y]q[x], q[y]p[x]). Here the improved algorithms are omitted.
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