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Abstract

This paper is concerned with introducing four wavelets collocation algorithms
combined with decoupling and quasi-linearization technique for solving a small-
scale reverse osmosis desalination problem represented by a system of four strongly
nonlinear coupled differential equations. The basic idea for obtaining numerical
solutions for such system is to combine every one of the four kinds Chebyshev
wavelets with the decoupling and quasi-linearization technique to transform each
differential equation to a linear algebraic system which can be efficiently solved. The
model is verified using the experimental data existing in the literature. In addition,
an illustrative example is presented to demonstrate the convergence, efficiency and
accuracy of the proposed method.

1 Introduction

Wavelet theory is a recent mathematical topic that has a great variety of possible ap-

plications. Wavelets, as a concept, is related to several disciplines (engineering, physics

and pure mathematics). The present success of the wavelets is mainly due to the growing

interest of mathematics and other sciences in their applications. The wavelets have many

applications in different domain. In fact, they have led to stimulate applications in signal

analysis [15, 20, 21]. Other applications in numerical analysis can be found in [11, 28].

Moreover, the operational matrices of integration for the Haar, Chebyshev and Legendre
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wavelets have been developed in [17,28,38]. In the literature, there is a great concentration

on the first and the second kinds of Chebyshev wavelets and their various uses in numer-

ous applications. For instance, the authors in [7] found numerical solutions of differential

equations and multi-order fractional differential equations by using the first kind of Cheby-

shev wavelets. Then, in [12, 18], the authors employed a Chebyshev wavelets approach

for nonlinear systems of Volterra integral equations as well as for singular boundary value

problems. For more details on solving partial and fractional differential equations using

the second kind of Chebyshev wavelet method, we refer the reader to [24,35]. In a recent

contribution [5], W.M. Abd-Elhameed used a spectral second kind Chebyshev wavelets

algorithm to solve second-order differential equations of Bratu type. More recently, [39],

L. Zhu and Y. Wang developed a second kind of Chebyshev wavelet operational matrix

of integration with some applications in the calculus of variations.

In order to use the Chebyshev wavelets for solving nonlinear differential systems, the

decoupling and quasi-linearization technique (DQLT) is introduced in this paper. The

DQLT has been presented in the first time by Bellman and Kalaba as a generalization

of the Newton–Raphson method [10]. The main advantage of Bellmann-Kalaba method,

in addition to quadratic convergence, is that it allows to decouple and linearize strongly

nonlinear differential equations. We refer the reader to [9, 33] for some applications on

ordinary differential equations and [26, 34] for other applications on reaction diffusion

problems.

Let us now introduce the seawater desalination process which is the focus of our

work. This process has been considered as one of the most promising techniques for

supplying fresh water in the regions suffering from water scarcity. Two technologies are

used around the world for desalination: thermal or membrane. This later is implemented

through two main processes: reverse osmosis (RO) and electrodialysis (ED). The reverse

osmosis desalination system (RODS) has appeared to be a powerful process; it is based

on overcoming the natural phenomena of osmotic pressure, which occurs when a semi-

permeable membrane separates two solutions with different concentrations of ions. Many

mathematical models have been developed to describe the behaviour of the RODS. For

more details, we cite [1, 2, 22, 25].

The main purpose of this work is to present a new approach based on the four kinds

of Chebychev polynomials. We give more importance to the third and fourth kinds,
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since, the first and the second kinds were sufficiently studied. As an application to show

the efficiency of the proposed approach, we are interested by the model developed for

the hollow-fiber membrane modules with co-corrent flow, described in [3]. The reverse

osmosis desalination system (RODS) is represented by a set of strongly nonlinear coupled

differential equations which are solved. The obtained results are reliable and very close

to the reality [32,36]. The numerical resolution of the mathematical model is carried out

using a new approach which consists, firstly, applies the iterative DQLT to separate and

linearize the system. Then, at each iteration, we use the Chebyshev wavelets methods to

solve the resulting equations.

The remainder of the paper is organized as follows : In Section 2, we introduce the RO

desalination system. Section 3 presents the main steps that we need in the Chebyshev

wavelets methods. To clarify the approach, Section 4 is devoted to simulate the reverse

osmosis problem. At the end, a conclusion follows.

2 Modeling of Reverse Osmosis Desalination System

Seawater desalination is a feasible option for potable water production, since available

water sources are gradually depleting due to water scarcity as well as quality deterioration

[37] [6]. Among all the available desalination approaches, reverse osmosis is the most

promising and widely applied technology for water desalination due to its low capital

cost, high energy efficiency, and its simplicity in operation [8, 13, 14, 16, 27]. Reverse

osmosis (RO) is a water purification technology that uses a semipermeable membrane

to remove larger particles from drinking water. The osmotic pressure created by the

concentration gradient drives the flow of water from the dilute solution to the concentrated

solution, until chemical equilibrium is established. The flow of water can be reversed with

the application of an external hydraulic force (pressure) if this force is greater than the

osmotic pressure. RO membranes are designed to retain salts and low-molecular weight

solutes while allowing water to pass through. Membranes are implemented in several

types of modules. There are two main types, called the tubular membrane system and

plate & frame membrane system. Tubular modules are constituted of two concentric

tubes designed to separate a given feed into a higher pressure stream (retentate) and

alow pressure stream (permeate) see figure 2. According to the flow circulation inside the

membrane, two types of flow can be distinguished: the co-current and counter-current
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Figure 1: Hollow fiber membrane.

flow patterns

A mathematical model is used to control better the performance of hollow fiber reverse

osmosis membrane with co-corrent flow. The model is based on the solution-diffusion mass

transfer model and takes into account the effect of the flow pattern of the permeate in

the membrane.

In this paper, the model chosen to describe the salt and water fluxes across the mem-

brane is that developed by the author [3]. It consists of a set of four strongly nonlinear

differential equations. This system is found according to material balance principle and

Fick’s law which is:

dQsw

dx
= −πAw

σw
Dm

(
∆P − κ

(
Q̇ss

Qsw

− Q̇fs

Qfw

))
dQfw

dx
= π

Aw
σw

Dm

(
∆P − κ

(
Q̇ss

Qsw

− Q̇fs

Qfw

))
dQ̇ss

dx
= −πBsDm

(
Q̇ss

Qsw

− Q̇fs

Qfw

)
dQ̇fs

dx
= πBsDm

(
Q̇ss

Qsw

− Q̇fs

Qfw

)
,

(1)

where

Qsw is the water volumetric flow rate in the shell side,

Qfw is the water volumetric flow rate in the fiber side,
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Q̇ss represents the solute mass flow rate in the shell side,

Q̇fs the solute mass flow rate in the fiber side,

κ is a proportionality coefficient,

Aw is the water permeability coefficient (a function of the salt diffusivity through the

membrane),

∆P is the applied pressure driving force (a function of the feed, concentrate and

permeate concentrations),

σw is the water density,

Bs is the solute permeability coefficient,

The osmotic pressure is approximately represented by a linear function of solute con-

centrations

π = κC.

3 Some Preliminaries

3.1 Chebyshev polynomials and their properties

In this subsection, we are interested in the main properties of the four kinds of Chebyshev

polynomials, which are particular cases of the Jacobi ones. Jacobi polynomials, denoted

by J
(α,β)
m (x), are generated by the three-term following recursive formula, they are defined

over [−1, 1], for each α, β > −1
J
(α,β)
0 (x) = 1,

J
(α,β)
1 (x) = (α + 1) + (α + β + 2)

(
x−1
2

)
,

am,0J
(α,β)
m (x) = (am,1x− am,2) J (α,β)

m−1 (x)− am,3J (α,β)
m−2 (x) ,

where, 
am,0 = 2m (α + β +m) (α + β + 2m− 2) ,
am,1 = (α + β + 2m− 1) (α + β + 2m− 2) (α + β + 2m) ,
am,2 = (α2 + β2) (α + β + 2m− 1) ,
am,3 = 2 (α +m− 1) (β +m− 1) (α + β + 2m) .

The family
{
J
(α,β)
n (x)

}
n∈N

forms a basis for the space L2
ω(α,β) (−1, 1) with the weighted

function ω(α,β)(x) = (1− x)α(1 + x)β [19].

The table gives the four kinds of Chebyshev polynomials (see [23], [29])

An important property of the Chebyshev polynomials is the orthogonality with respect

to the weighted function ω(k)(x) with its kth kind, k = 1, .., 4 i.e.:〈
T (k)
n , T (k)

m

〉
ω(k) =

∫ 1

−1
T (k)
n (x)T (k)

m (x)ω(k) (x) dx = λ(k)n δn,m,
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Table 1: The four kinds of Chebyshev polynomials.
Types of Chebyshev 

polynomials 
The recursive formula The weight function 

The first kind 
𝑇1

 1 
(x) = 1, 𝑇1

 1 
  x = x, 

𝑇𝑚
 1 

(x) = 2𝑥𝑇𝑚−1
 1 

−𝑇𝑚−2
 1 

, 
𝜔 1  𝑥 = (1 − x)−1/2(1 + x)−1/2  

The second kind 
𝑇1

 2 
 (x) = 1,𝑇1

 2 
  x = 2x, 

𝑇𝑚
 2 

 (x) = 2𝑥𝑇𝑚−1
 2 

−𝑇𝑚−2
 2 

, 
𝜔 2  𝑥 = (1 − x)1/2(1 + x)1/2 

The third kind 
𝑇1

 3 
 (x) = 1,𝑇1

 3 
  x = 2x − 1, 

𝑇𝑚
 3 

 (x) = 2𝑥𝑇𝑚−1
 3 

−𝑇𝑚−2
 3 

, 
𝜔 3  𝑥 = (1 − x)−1/2(1 + x)1/2 

The fourth kind 
𝑇1

 4 
 (x) = 1,𝑇1

 4 
  x = 2x + 1, 

𝑇𝑚
 4 

 (x) = 2𝑥𝑇𝑚−1
 4 

−𝑇𝑚−2
 4 

, 
𝜔 4  𝑥 =  1 − x 1/2(1 + x)−1/2 

 

where 〈., .〉ω(k) denotes the inner product in the weighted space L2
ω(k) (−1, 1), δn,m is the

Kronecker function and λ
(k)
n =

∥∥∥T (k)
n

∥∥∥2
ω(k)

is defined as:

λ(1)n =

{
π, if n = 0
π

2
, if n 6= 0

and

λ(k)n =

{ π

2
, if k = 2

π, if k = 3, 4.

3.2 Chebyshev Wavelets

We define the four kinds of Chebyshev wavelets on the interval [0, 1] as follows:

ψ(k)
n,m(x) =

{
1√
λ(k)

2
j
2 T̃m

(k)
(2jx− 2n+ 1) , n−1

2j−1 6 x < n
2j−1

0, otherwise
(2)

where,

1√
λ(1)

T̃m
(1)

(x) =

{ 1√
π
,m = 0√
2
π
T

(1)
m (x),m > 0,

and

1√
λ(k)

T̃m
(k)

(x) =


√

2
π
T

(2)
m (x),if k = 2

1√
π
T

(3)
m (x), if k = 3

1√
π
T

(4)
m (x), if k = 4.

The integer m = 0, 1, ...,M − 1 denotes the order of Chebyshev polynomials, (M ∈ N∗

represents the number of collocation points on each level) and n = 1, 2, ..., 2j−1 denotes

the number of decomposition levels (with j ∈ N∗), T (k)
m (x) is the kth kind of chebyshev

polynomial.
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Remark 1 For a fixed n ∈ {1, 2, . . . , 2j−1}, the family{
λ
(k)
j T

(k)

m (x)
}
m∈N

, for each k = 1, 4

forms an orthonormal basis of the weighted space

L2

ω
(k)
n

([
n− 1

2j−1 ,
n

2j−1

])
,

where ω
(k)
n (x) = ω(k) (2jx− 2n+ 1), T

(k)

m (x) = T
(k)
m (2jx− 2n+ 1) and

λ
(k)
j = 2j/2

{ √
2
π
, if k = 1, 2

1√
π
, if k = 3, 4

represents the normalization coefficient.

For example, the family of the third kind Chebyshev wavelet can be expressed on the

nth level by

ψ
(3)
n,0(x) =

2
j
2

√
π
,

ψ
(3)
n,1(x) =

2
j
2

√
π

(2j+1x− 4n+ 1) ,

ψ
(3)
n,2(x) =

2
j
2

√
π

(
22(j+1)x2 − 2j+1 (8n− 3)x+ (16n2 − 12n+ 1)

)
,

...

ψ
(3)
n,M−1(x) =

2
j
2

√
π
T

(3)
M−1 (2jx− 2n+ 1) .

For j = 2 and M = 3, we have
ψ

(3)
1,0(x) = 2√

π

ψ
(3)
1,1(x) = 2√

π
(8x− 3)

ψ
(3)
1,2(x) = 2√

π
(64x2 − 40x+ 5)

0 6 x <
1

2


ψ

(3)
2,0(x) = 2√

π

ψ
(3)
2,1(x) = 2√

π
(8x− 7)

ψ
(3)
2,2(x) = 2√

π
(64x2 − 104x+ 41)

1

2
6 x < 1.

3.3 Approximation Functions

We assume that

fn ∈ L2

ω
(k)
n

([
n− 1

2j−1
,
n

2j−1

[)
,
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where fn represents the restriction of f on the interval
[
n−1
2j−1 ,

n
2j−1

[
. It can be expanded as

fn (x) =
+∞∑
m=0

cn,mT
(k)

m (x) , (3)

where

cn,m =
〈
fn, λ

(k)
j T

(k)

m

〉
ω
(k)
n

and

T
(k)

m (x) = T (k)
m

(
2jx− 2n+ 1

)
.

We have

f (x) =
2j−1∑
n=1

fn (x) =
2j−1∑
n=1

+∞∑
m=0

cn,mψ
(k)
n,m(x). (4)

On the other hand, the series (3) is truncated as

fn (x) ≈
M−1∑
m=0

cn,mT
(k)

m (x) ,

and then, for all x into [0, 1], we can write

f (x) =
2j−1∑
n=1

fn (x) ≈
2j−1∑
n=1

M−1∑
m=0

cn,mψ
(k)
n,m(x) = CTΨ(k) (x) , (5)

where C and Ψ(k) (x) are 2j−1M vectors given by:

C =
[
c1,0 , . . . , c1,M−1

, c2,0 , . . . , c2,M−1
, . . . . . . , c

2j−1,0
, . . . , c

2j−1,M−1

]T
, (6)

Ψ(k) (x) =
[
ψ(k)

1,0
(x) , . . . , ψ(k)

1,M−1
(x) , ..., ψ(k)

2j−1,0
(x) , . . . , ψ(k)

2j−1,M−1
(x)
]T
.

3.4 Convergence results

Theorem 2 Let f be a second-order derivative square-integrable function defined on [0, 1]

whose second-order derivative is bounded by a positive constant K.

We have

1. For m > 1 and 1 6 n 6 2j−1, the following inequalities are valid:

∣∣c(k)nm∣∣ 6
 2−

j
2

4
K

m(m−1) , if k = 1

2−
5j
2

4
K

m(m−1) , if k = 2, 3, 4.

2. The infinite series given in (4) converges uniformly on [0, 1] .

Proof.
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1. Substituting the expression of ψ
(3)
nm(x) in c

(3)
n,m, we have

c(3)n,m =
2
j
2

√
π

∫ n

2
j−1

n−1

2
j−1

u (x)T (3)
m

(
2jx− 2n+ 1

)
ω(3)
n (x) dx.

Let t = 2jx− 2n+ 1, it yields then that

c(3)n,m =
2
−j
2

√
π

∫ 1

−1
u

(
t+ 2n− 1

2j

)
T (3)
m (t)

√
(1 + t)

(1− t)
dt.

By taking t = cos θ and using the trigonometric forms of the third kind Chebyshev

polynomials (see [23]), it follows

cn,m =
2
−j
2

√
π

∫ π

0

fn

(
cos (θ) + 2n− 1

2j

)
cos
((
m+ 1

2

)
θ
)

cos
(
θ
2

) (1 + cos θ) dθ

=
2
−j
2

√
π

∫ π

0

fn

(
cos (θ) + 2n− 1

2j

)
[cos ((m+ 1) θ) + cos (mθ)] dθ.

Using an integration by parts twice, we have

cn,m =
1

4

2
−5j
2

√
π

∫ π

0

f ′′n

(
cos (θ) + 2n− 1

2j

)(
(cos((m− 1) θ)− cos((m+ 1) θ))

m (m+ 1)

−(cos((m+ 1) θ)− cos((m+ 3) θ))

(m+ 1) (m+ 2)
+

(cos((m− 2) θ)− cos(mθ))

m (m− 1)

−(cos(mθ)− cos((m+ 2) θ))

m (m+ 1)

)
dθ

Using the fact that |f ′′n (x)| 6 K and thanks to Cauchy-Schwarz inequality, it follows

|cn,m|2 6
2−5j

16π
K2

(∫ π

0

∣∣∣∣(cos((m− 1) θ)− cos((m+ 1) θ))

m (m+ 1)

∣∣∣∣2 dθ
+

∫ π

0

∣∣∣∣(cos((m+ 1) θ)− cos((m+ 3) θ))

(m+ 1) (m+ 2)

∣∣∣∣2 dθ
+

∫ π

0

∣∣∣∣(cos((m− 2) θ)− cos(mθ))

m (m− 1)

∣∣∣∣2 dθ
+

∫ π

0

∣∣∣∣(cos(mθ)− cos((m+ 2) θ))

m (m+ 1)

∣∣∣∣2 dθ
)

6
2−5j

16π
K2

(
π

m2 (m+ 1)2
+

π

(m+ 1)2 (m+ 2)2

+
π

m2 (m− 1)2
+

π

m2 (m+ 1)2

)
6

2−5j

16

K2

m2 (m− 1)2

2. Since, (see [30]) ∣∣ψ(3)
nm (x)

∣∣ 6 2
j
2

√
m

π
,

-637-



then, we have ∣∣cn,mψ(3)
nm (x)

∣∣ 6 2−2jK

4
√
π

1√
m (m− 1)

and

E
(k)
j,M (x) =

2j−1∑
n=1

∞∑
m=0

cn,mψ
(k)
n,m (x)−

2j−1∑
n=1

M−1∑
m=0

cn,mψ
(k)
n,m (x) =

2j−1∑
n=1

(
∞∑

m=M

cn,mψ
(k)
n,m (x)

)

∣∣∣E(3)
j,M (x)

∣∣∣ 6 2j−1∑
n=1

∞∑
m=M

∣∣cn,mψ(3)
n,m (x)

∣∣ 6 2−2jK

4
√
π

2j−1∑
n=1

∞∑
m=M

1√
m (m− 1)

.

We conclude that this last series is convergent.

In the same manner, we obtain∣∣∣E(1)
j,M (x)

∣∣∣ 6 2−2jK

4

√
2

π

2j−1∑
n=1

∞∑
m=M

1

m (m− 1)
,

∣∣∣E(2)
j,M (x)

∣∣∣ 6 2−2jK

4

√
2

π

2j−1∑
n=1

∞∑
m=M

1√
m (m− 1)

and ∣∣∣E(4)
j,M (x)

∣∣∣ 6 2−2jK

4
√
π

2j−1∑
n=1

∞∑
m=M

1√
m (m− 1)

.

3.5 Operational Matrix of Integration and Wavelets Product

In this subsection, we introduce the operational matrices of integration for each wavelet

described above.

Theorem 3 The integration of the kth kind Chebyshev wavelets Ψ(k) (t) , defined in (2),

can be approximated as follows:∫ t

0

Ψ(k) (τ) dτ ≈ P (k)Ψ(k) (t) , (7)

where P (k) denotes the 2j−1M × 2j−1M operational matrix of integration given by

P (k) =


L(k) F (k) · · · F (k)

0 L(k) . . .
...

...
. . . . . . F (k)

0 · · · 0 L(k)

 ,
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For k = 1,

L(1)
p,q = 2−j ×



1 for p = 1 and q = 1

−
√

2

4
for p = 2 and q = 1

√
2

2
for p = 1 and q = 2

1

2p
for p = 2, ...,M − 1 and q = p+ 1

−1

(2(p− 2) + 2)
for p = 3, ...,M and q = p− 1

(−1)p
√

2

p(p− 2)
for p = 3, ...,M and q = 1

0 otherwise

F (1)
p,q = 2−j ×


2 q = p = 1
0 p = 2, q = 1
−2mod(p, 2)

p (p− 2)
for q = 1 and p = 3, ...,M

0 otherwise

For k = 2,

L(2)
p,q = 2−j ×



1 for p = 1 and q = 1
−3

4
for p = 2 and q = 1

1

2p
for p = 2, ...,M − 1 and q = p+ 1

−1

2(p+ 1)
for p = 3, ...,M and q = p− 1

(−1)p+1

p
for p = 3, ...,M and q = 1

0 otherwise

F (2)
p,q = 2−j ×


2mod(p+ 2, 2)

p
for q = 1 and p = 1, ...,M

0 otherwise

For k = 3,

L(3)
p,q = 2−j ×



3

2
for p = 1 and q = 1

−2 for p = 2 and q = 1
−1

(2p(p− 1))
..for p = q = 2, ...,M

−1

2p
for p = 2, ...,M − 1 and q = p+ 1

−1

2(p− 1)
for p = 3, ...,M and q = p− 1

(−1)p+1(2p− 1)

p(p− 1)
for p = 3, ...,M and q = 1

0 otherwise

F (3)
p,q = 2−j ×


(−1)(p+1)2

(p−mod (p+ 1, 2))
if q = 1 and p > 2

0 otherwise
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For k = 4,

L(4)
p,q = 2−j ×



1
2

for p = 1 and q = 1
0 for p = 2 and q = 1

1

(2p(p− 1))
..for p = q = 2, ...,M

1

2p
for p = 2, ...,M − 1 and q = p+ 1

−1

2p
for p = 3, ...,M − 1 and q = p− 1

(−1)p

p(p− 1)
for p = 3, ...,M and q = 1

0 otherwise

F (4)
p,q = 2−j ×


2

p−mod(p+ 1, 2)
if q = 1 and for all p

0 otherwise

where, mod(., .) represents the division remainder between two given numbers.

Lemma 4 For t ∈ [−1, 1] , we have

T
(3)
m′ (t) =

1

2m′ (m′ + 1) 2j

[
m′T̂

(3)′
m′+1 (s)− T̂ (3)′

m′ (s)− (m′ + 1) T̂
(3)′
m′−1 (s)

]
, (8)

where

T
(3)′
m′ (t) =

1

2j
T̂

(3)′
m′ (s)

and t = 2js− 2n′ + 1.

For more details, see [4].

Proof. (Theorem 3) It is well known that, for n′ = 1, ..., 2j−1and m′ = 0, ...,M − 1, we

have ∫ x

0

ψ
(3)
n′,m′(s)ds (9)

=


∫ x
n′−1

2j−1

2
j
2√
π
T

(3)
m′ (2js− 2n′ + 1) ds if n′−1

2j−1 ≤ x ≤ n′

2j−1∫ n′
2j−1

n′−1

2j−1

2
j
2√
π
T

(3)
m′ (2js− 2n′ + 1) ds if x > n′

2j−1

0 if x < n′−1
2j−1

=
2j−1∑
n=1

M−1∑
m=0

cn,mψ
(3)
n,m(x)

We discuss the integral (9) according to the value of n′.

• If n = n′, then n−1
2j−1 6 x 6 n

2j−1 . In this case, we define

g (x) :=

∫ x

0

ψ
(3)
n′,m′(s)ds.
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It is clear that

g (x) =

x∫
0

2
j
2

√
π
T

(3)
m′

(
2js− 2n′ + 1

)
ds =

2j−1∑
n=1

M−1∑
m=0

cn,mψ
(3)
n,m(x),

where,

cn,m =

∫ 1

0

ψn,m (x) g (x)ω(3)
n (x)dx.

By lemma 4, we obtain

cn,m =

∫ n

2j−1

n−1

2j−1

ψn,m (x)

(∫ x

n′−1

2j−1

2
j
2

√
π
T

(3)
m′ (s) ds

)
ω(3)
n (x)dx

=
1

2m′ (m′ + 1) 2j
((m′δm,m′+1 − δm,m′ − (m′ + 1) δm,m′−1)

−
(
T

(3)
m′+1 (−1)m′δm,0 + T

(3)
m′ (−1) δm,0 − (m′ + 1)T

(3)
m′−1 (−1) δm,0

))
• If n > n′, then n′

2j−1 6 x. With the same arguments as before, we get

cn,m =

∫ n

2j−1

n−1

2j−1

2
j
2

√
π
T (3)
m

(
2jx− 2n+ 1

)(∫ n′
2j−1

n′−1

2j−1

2
j
2

√
π
T
(3)
m′
(
2js− 2n′ + 1

)
ds

)
ω(3)
n (x)dx

=
1

2m′ (m′ + 1) 2j

(
m′T

(3)
m′+1 (1) δ0,m − T (3)

m′ (1) δ0,m −
(
m′ + 1

)
T
(3)
m′−1 (1) δ0,m

−m′T (3)
m′+1 (−1) δ0,m + T

(3)
m′ (−1) δ0,m +

(
m′ + 1

)
T
(3)
m′−1 (−1) δ0,m

)
.

• If n < n′, then x 6 n′−1
2j−1 . In this case, we have

cn,m = 0.

Taking into account the above cases, we can write

cn,m

=
2−j−1

m′ (m′ + 1)



(m′δm,m′+1 − δm,m′ − (m′ + 1) δm,m′−1)−
(
T

(3)
m′+1 (−1)m′δm,0

+T
(3)
m′ (−1)δm,0 − (m′ + 1)T

(3)
m′−1 (−1) δm,0

)
, if n = n′

m′T
(3)
m′+1 (1) δ0,m − T (3)

m′ (1) δ0,m − (m′ + 1)T
(3)
m′−1 (1) δ0,m

−m′T (3)
m′+1 (−1) δ0,m + T

(3)
m′ (−1) δ0,m + (m′ + 1)T

(3)
m′−1 (−1) δ0,m, if n > n′

0, if n < n′

=

2j−1∑
n=1

M−1∑
m=0

cn,mψ
(3)
n,m(x)

=

S1︷ ︸︸ ︷
M−1∑
m=0

cn′,mψ
(3)
n′,m (x) +

S2︷ ︸︸ ︷
2j−1∑

n=n′+1

M−1∑
m=0

cn,mψ
(3)
n,m (x),
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where Γ is the Euler Gamma function and

T
(3)
m′ (−1) =

Γ(1
2
)Γ(m′ + 3

2
)(−1)m

′

Γ(m′ + 1
2
)Γ(3

2
)

T
(3)
m′ (1) =

Γ(1
2
)Γ(m′ + 3

2
)

Γ(m′ + 1
2
)Γ(3

2
)(2m′ + 1)

.

As an example, if m
′
= 1, we have∫ x

0
ψ
(3)
n′,1(s)ds

=



∫ n

2j−1
n−1

2j−1

ψn,m (x)

(∫ x
n′−1

2j−1

2
j
2√
π
T
(3)
1

(
2js− 2n′ + 1

)
ds

)
ω
(3)
n (x)dx if n′−1

2j−1 ≤ x ≤ n′

2j−1

∫ n

2j−1
n−1

2j−1

ψn,m (x)

(∫ n′
2j−1

n′−1

2j−1

2
j
2√
π
T
(3)
1

(
2js− 2n′ + 1

)
ds

)
ω
(3)
n (x)dx if x > n′

2j−1

0 if x < n′−1
2j−1

=
2j−1∑
n=1

M−1∑
m=0

cn,mψ
(3)
n,m(x)

= S1 + S2

S1 =
1

2j
(−2)ψ

(3)
n′,0 (x) +

(
−1

4

)
ψ

(3)
n′,1 (x) +

(
1

4

)
ψ

(3)
n′,2 (x)

=
1

2j
(L

(3)
1,0ψ

(3)
n′,0(x) + L

(3)
1,1ψ

(3)
n′,1(x) + L

(3)
1,2ψ

(3)
n′,2 (x)

S2 =
1

2j
1

4

(
m′T

(3)
m′+1 (1) δ0,m − T (3)

m′ (1) δ0,m − (m′ + 1)T
(3)
m′−1 (1) δ0,m

−m′T (3)
m′+1 (−1) δ0,m + T

(3)
m′ (−1) δ0,m + (m′ + 1)T

(3)
m′−1 (−1) δ0,m

)
ψ

(3)
n,0 (x) .

= −2
1

2j

2j−1∑
n=n′+1

ψ
(3)
n,0 (x)

= F
(3)
1,0

2j−1∑
n=n′+1

ψ
(3)
n,0 (x)

For n′ = 1, . . . , 2j−1, we obtain

∫ t
0
ψ

(3)
n′,0 (τ) dτ = 1

2j

(
L
(3)
0,0ψ

(3)
n′,0 + L

(3)
0,1ψ

(3)
n′,1 + F

(3)
0,0

∑2j−1
n=n′+1 ψ

(3)
n,0

)
(x) ,∫ t

0
ψ

(3)
n′,1 (τ) dτ = 1

2j

(
L
(3)
1,0ψ

(3)
n′,0 + L

(3)
1,1ψ

(3)
n′,1 + L

(3)
1,2ψ

(3)
n′,2 + F

(3)
1,0

∑2j−1

n=n′+1 ψ
(3)
n,0

)
(x) ,∫ t

0
ψ

(3)
n′,m′ (τ) dτ = 1

2j

(
L
(3)
m′,0ψ

(3)
n′,0 + L

(3)
m′,m′−1ψ

(3)
n′,m′−1 + L

(3)
m′,m′ψ

(3)
n′,m′

+L
(3)
m′,m′+1ψ

(3)
n′,m′+1 + F

(3)
m′,0

∑2j−1
n=n′+1 ψ

(3)
n,0

)
(x) , for m′ = 2, . . . ,M − 2∫ t

0
ψ

(3)
n′,M−1 (τ) dτ ≈ 1

2j

(
L
(3)
M−1,0ψ

(3)
n′,0 + L

(3)
M−1,M−2ψ

(3)
n′,M−2 + L

(3)
M−1,M−1ψ

(3)
n′,M−1

+F
(3)
M−1,0

∑2j−1
n=n′+1 ψ

(3)
n,0

)
(x) ,
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In the same manner, the other matrices can be obtained.

The following property of the product of two Chebyshev wavelet functions will be used

later:

ATΨ(k)(x)
(
Ψ(k)

)T
(x) =

(
Ψ(k)

)T
(x)Ã, ∀k = 1, 4, (10)

where, A is a given vector and Ã is a (2j−1M) × (2j−1M) matrix that depends on

A [28].

4 Description of the Numerical Methods

In this section, we present the steps that contribute to the solution of the problem (1). We

begin by describing an iterative technique to transform our problem to a set of decoupled

and linearized differential equations. Then, we use Chebyshev wavelet methods to solve

each equation.

The decoupling and quasi-linearization technique consists in giving an initial profile

u
(0)
1 (x) , u

(0)
2 (x) , u

(0)
3 (x) , u

(0)
4 (x) for each solution. The technique can be summarized as

du
(k+1)
1

dx
+ b1u

(k+1)
1 = f1

(
x, u

(k)
1 , u

(k)
2 , u

(k)
3 , u

(k)
4

)
du

(k+1)
2

dx
+ b2u

(k+1)
2 = f2

(
x, u

(k+1)
1 , u

(k)
2 , u

(k)
3 , u

(k)
4

)
du

(k+1)
3

dx
+ b3u

(k+1)
3 = f3

(
x, u

(k+1)
1 , u

(k+1)
2 , u

(k)
3 , u

(k)
4

)
du

(k+1)
4

dx
+ b4u

(k+1)
4 = f4

(
x, u

(k+1)
1 , u

(k+1)
2 , u

(k+1)
3 , u

(k)
4

)
,

where, u
(k+1)
i and u

(k)
i are the approximations of the ui solution at the current and the

precedent iteration, respectively.

At each iteration, the Chebyshev wavelet methods are applied to every linear differ-

ential equation. Thereafter, we can calculate the decoupling error by using the following

formula

EDQLT = max(Ei),∀i = 1, 4

where,

Ei =
∥∥∥u(k)i − u(k+1)

i

∥∥∥
2
.

We shall obtain the solution when the error of decoupling is lower than a chosen epsilon.

Now, we consider the following equation

a(x)u′(x) + b(x)u(x) = f(x), for x ∈ ]0, 1]] , (11)
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associated with the condition

u(0) = u0, (12)

where a, b and f are continuous functions.

Remark 5 By using the DQLT method, each equation of the reverse osmosis desalination

system model presented in (1) can be written as equation (11)

To solve the problem (11-12), we use the decomposition as (5), indeed,

u′(x) = UTΨ(x), (13)

and 
a(x) = ATΨ(x)

b(x) = BTΨ(x)

f(x) = F TΨ(x).

(14)

Integrating both sides of (13) over (0, x) and using the theorem 3, we find

u(x) =
(
UTP + u0d

T
)

Ψ(x), (15)

where, we have used the fact that 1 = dTΨ(x) as (5).

Substituting (12-13-14) into (11), we get

ATΨ(x)ΨT (x)U +BTΨ(x)ΨT (x)(UTP + u0d
T )T = F TΨ(x).

Thanks to (10), we have

ΨT (x)ÃU + ΨT (x)B̃(P TU + u0d) = ΨT (x)F.

Therefore, we obtain the linear algebraic system

(Ã+ B̃P T )U = (F − u0B̃d). (16)

The solution of the problem (11-12) is given by substituting the solution of (16) into

(15).

4.1 Test of the methods

In order to demonstrate the efficiency of our approach, we consider the following nonlinear

system in ]0, 1] {
u
′
(x)− u(x) = v(x) + ex − ex+1

v
′
(x)− v(x) = u(x)

v(x)
− xe−1, (17)
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associated to the boundary conditions{
u(0) = 0
v(0) = e.

(18)

The analytical solution of the problem (17,18) is given as{
ue(x) = xex

ve(x) = ex+1.
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Figure 2: Logarithmic Error induced by DQLT.

The curve in figure 4.1 shows strict decrease of the DQLT error, which explains the

convergence about 9 iterations and the stability of the solution produced by four kinds

Chebyshev wavelet methods.

Table 2: The Absolute Errors E(u) = ‖ue − u‖2 for j = 3.

  k=1 k=2 k=3 k=4 

nc=3 
E(u) 1.4680e-003 1.7034e-003 1.5026e-003 2.9970e-003 

E(v) 1.0633e-003 1.2485e-003 1.1965e-003 2.0953e-003 

nc=10 
E(u) 2.2157e-014 4.1452e-015 1.5877e-014 1.4153e-014 

E(v) 3.5988e-014 1.1469e-014 7.6948e-014 1.0943e-013 
 

In Tables 3-4-5-6, the computational point wise errors are listed. The effect of collo-

cation points on the solution profiles is shown. The analysis of the table 2 shows that

the absolute error is less than 10−13 for 20 collocation points. We consider that the high
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Table 3: The point wise errors |ue(ti)− ui| with j = 2.

 

 nc=3 nc=10 

x k=1 k=2 k=3 k=4 k=2 k=1 k=3 k=4 

0 2.3356e-3 4.6588e-3 8.6564e-3 1.1013e-3 1.7764e-15 1.1102e-14 8.8818e-16 4.4409e-16 

0.2 1.5941e-3 6.5117e-4 1.4062e-3 2.4150e-5 1.7764e-15 4.4409e-16 9.7700e-15 2.2204e-15 

0.4 2.0083e-3 1.1089e-3 1.8921e-3 4.1400e-4 0 8.8818e-16 8.8818e-16 1.7764e-15 

0.6 3.7594e-3 7.3048e-4 1.0565e-3 2.3343e-3 8.8818e-15 1.7764e-15 2.6645e-15 2.6645e-15 

0.8 1.3783e-3 1.8603e-3 1.2357e-3 2.4510e-3 1.7764e-15 0 5.3291e-15 7.1054e-15 

1 4.2002e-3 6.9171e-3 9.6671e-5 1.3257e-2 5.3291e-15 1.8652e-14 6.2172e-15 7.0166e-14 

Table 4: The point wise errors |ve(ti)− vi| with j = 2.

 

 nc=3 nc=10 

x k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4 

0 2.5464e-4 5.0892e-4 9.1768e-4 1.2360e-4 8.8818e-15 2.2204e-15 1.7319e-14 2.2204e-15 

0.2 7.2977e-5 2.0899e-4 5.2565e-4 9.0743e-5 1.7764e-15 1.7764e-15 7.9936e-15 3.5527e-15 

0.4 2.8931e-4 1.1659e-4 2.5374e-4 1.3021e-5 1.7764e-15 8.8818e-16 8.8818e-16 3.5527e-15 

0.6 9.0681e-5 1.1315e-4 1.7749e-5 2.3843e-4 1.7764e-15 0 2.6645e-15 3.5527e-15 

0.8 5.4796e-4 2.3388e-4 1.5554e-4 3.0718e-4 5.3291e-15 8.8818e-16 7.1054e-15 2.1316e-14 

1 5.4428e-4 1.0107e-3 6.2874e-5 1.9127e-3 1.5099e-14 3.5527e-15 6.2172e-15 7.1942e-14 

Table 5: The point wise errors |ue(ti)− ui| with j = 3.

 

 nc=3 nc=10 

x k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4 

0 2.8324e-3 5.6254e-3 1.0645e-2 1.3064e-3 6.9987e-15 3.7335e-14 7.1958e-14 3.3194e-15 

0.2 2.0712e-3 7.3801e-4 1.5933e-3 9.7293e-6 3.8858e-16 1.2212e-15 6.3283e-15 2.7200e-15 

0.4 2.3301e-3 1.4537e-3 2.4930e-3 5.5467e-4 2.4425e-15 2.5535e-15 2.2204e-16 6.1062e-15 

0.6 5.3887e-3 9.1124e-4 1.9713e-3 3.4280e-3 6.4393e-15 5.1070e-15 6.6613e-15 2.2204e-15 

0.8 1.41e-3 2.7284e-3 2.3388e-3 3.0385e-3 4.8850e-15 1.5543e-15 1.3323e-14 4.4409e-16 

1 6.2324e-3 9.3088e-3 1.1483e-3 1.8385e-2 7.1054e-15 6.2617e-14 1.5099e-14 1.2479e-13 

precision of the solutions for a smaller collocation points is an excellent indicator about

the applicability of the proposed methods.
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Table 6: The point wise errors |ve(ti)− vi| with j = 3.

 

 nc=3 nc=10 

x k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4 

0 2.9490e-4 5.8866e-4 1.0715e-3 1.4165e-4 2.0546e-17 3.0358e-17 1.3227e-16 6.5052e-18 

0.2 8.4297e-5 2.7289e-4 6.8488e-4 1.0976e-4 1.4433e-15 1.6653e-16 1.9984e-15 3.3307e-16 

0.4 3.6442e-4 1.6336e-4 3.4842e-4 8.7304e-6 1.8874e-15 6.6613e-16 1.7764e-15 6.6613e-16 

0.6 1.1105e-4 1.7016e-4 1.5771e-4 3.0344e-4 2.4425e-15 2.2204e-16 2.6645e-15 6.6613e-16 

0.8 8.1423e-4 3.3248e-4 2.2034e-6 4.9681e-4 5.7732e-15 1.7764e-15 2.8866e-15 1.3323e-15 

1 8.0765e-4 1.4315e-3 2.2034e-6 2.7684e-3 5.7732e-15 8.8818e-16 4.4409e-15 7.1054e-15 

5 Simulation of Reverse Osmosis Desalination Sys-

tem

In this section, we propose a new numerical solution for the mathematical model described

in Section 2.

The proposed approach seems to be very efficient for nonlinear differential systems.

Numerical test shows that one important feature of our approach is that it gives a high-

quality of solution as well as a stability and a computational speed for a small number of

collocation points.

We consider a small-scale reverse osmosis desalination model (1), where the co-current

flow pattern is treated as shown in figure 2, The boundary conditions are

Qsw(0) = 226.8,

Q̇ss(0) = 2Qsw(0)
Qfw(0) = 0

Q̇fs(0) = 0.

The membrane specifications and the operating parameters are given in the table 7

obtained from [31,32].

Table 7: The operating parameters
Parameters Value 

The membrane diameter (Dm) 0.0576 m 

Water density (w)  10
3
 kg/m

3
 

Solute permeability coefficient (Bs) 1.12×10
-4 

m/h 

Water permeability constant (Aw) 4.2×10
-13

h/m 

Proportionality coefficient () 1.02×10
+12  

m
2
/h

2
 

Transmembrane pressure (P) 4.02×10
+13 

kg/m h
2 

 

The flow is carried out continuously tangentially in the membrane. A part of the

solution to be treated divides at the level of the membrane in two parts of different
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concentrations: A part gets through the membrane (permeate) as shown in figure 5-5,

a part which does not get through the membrane (retentate) figure 5-5. As it can be

seen, the behaviour of curves predicted by the model is very close to these obtained in

the literature.

 

Figure 3: The flow rate of the solute in tube-side.

 

Figure 4: The flow rate of the water in tube-side.

According to the mass conservations laws, the quantity of matter in feed side is the

same one which left in permeate and retentate, we get

V1 = Qwater − (Qpermeate water +Qretentate water) = 0

V2 = Qsolute − (Qpermeate solute +Qretentate solute) = 0

The examination of the mass conservations laws is pertinante factor for the validation

of our simulation. The table 8 shows the quality of the proposed methods for j = 2 and
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Figure 5: The flow rate of the solute in shell-side.

 

Figure 6: The flow rate of the water in shell-side.

Table 8: Material balance verification.
CWM kth kind V1 V2 

k=1 2.0042e-007 7.3896e-013 

k=2 6.7535e-009 4.2633e-013 

k=3 2.9792e-009 5.6843e-014 

k=4 6.5422e-009 2.2737e-013 
 

nc = 3, by looking V1 for the water parameter is of the order of 10−9 and V2 for the solute

parameter is less than 10−12.

The obtained result with a few number of collocation points (about 6 points V1 =

6.7535e− 09 and V2 = 4.2633e− 013 for k = 2) was much better than the result obtained

with 235 points V1 = 3.2909e− 008 and V2 = 1.1901e− 009 using orthogonal collocation

on the finite element method presented in [2].
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6 Conclusion

In this paper, four algorithms for obtaining numerical solutions for small-scale reverse os-

mosis desalination problem have been analyzed and discussed. The four kinds of Cheby-

shev wavelets associated with the decoupling and quasi-linearization technique have been

employed. This investigation has allowed as to make the following conclusions:

1. As a measure of the high quality and accuracy of approximate solutions, the obtained

numerical results are comparing favorably with the analytical solution using a few

number of terms of the approximate expansion.

2. The developed algorithms are very effective on natural phenomena.

3. The simulation results of small-scale reverse osmosis desalination model are very

close to the experimental data of the literature.

4. The calculation of the difference between the quantity of matter in the feed-side

and the permeate-retentate sides shows the quality of the solutions obtained by the

proposed methods.
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