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Abstract 

Graph-theoretical approach represents simple and efficient means to quantitative structure- 
property relationship (QSPR) studies. Graph-theoretical topological indices are high 
potential descriptors for modeling and predicting physicochemical properties of chemical 
compounds. A QSPR study was performed for prediction of gas heat capacity (Cv) of 69 
benzene derivatives using Wiener (W), Szeged (Sz), first order molecular connectivity (1

χ), 
Balaban (J),  hyper-Wiener(WW), Wiener polarity (WP) and Harary (H) topological indices. 
The calculation was performed by the ab-initio method at HF/6-31G(d) level of theory. The 
relationship analysis between heat capacity (Cv) and topological indices was done by using 
multiple linear regression (MLR) method, with heat capacity (Cv) as dependent variable and 
seven independent variables to generate the equation that relates the structural features to the 
heat capacity (Cv) properties. The results show good models with three-seven parameters 
linear equations. The best model in this study is contains three descriptors (1χ, W, Sz) are 
included, with values of the correlation coefficient (r=0.943), the standard error 
(s=9.667Jmol-1K-1), the Fisher-ratio (F=172.475), the adjusted coefficient of determination

)883.0( 2 =adjr  and Durbin-Watson value (D=1.728), which indicate that these descriptors, 

play an important role in effect on heat capacity (Cv) of benzene derivatives. 

 
1 Introduction   

A topological representation of a molecule can be carried out through molecular graph. The 

descriptors are numerical values associated with chemical constitution for correlation of 

chemical structure with various physical properties, chemical reactivity or biological activity. 

A topological index is the graph invariant number calculated from a graph representing a
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molecule. To translate chemical structures into a single number, the graph theory visualizes 

chemical structures as mathematical object sets consisting of vertices or points, which 

symbolize atoms, and vertices or lines, linking a pair of edges, which represent covalent 

bonds or shared electron pairs. In this notation, adjacent vertices stand for pairs of covalently 

linked atoms situated at a topological distance equal to unit.  

In this study, the relationship analysis between heat capacity (Cv) and topological indices 

was done by MLR analysis.  

Heat capacity or thermal capacity is a measurable physical quantity and an extensive 

property of matter and it is defined as the derivative of the energy of the system with respect 

to the temperature under specified conditions. If the system is maintained at constant volume 

the heat capacity is shown with Cv and if the system is maintained at constant pressure, the 

heatcapacity is shown with Cp. The values of heat capacity reported in this paper are those at 

constant volume and correspond to one mole of a specified substance; the units are thus, J 

mol-1K-1.This property is involved in processes such as distillation, evaporation, extraction 

and heating, found in the petrochemical, pharmaceutical and food industry, among others [1]. 

There is abundant information in the literature on the heat capacity of organic and 

inorganic compounds; theoretical approaches, experimental data, generalized correlations, 

empirical equations, and group contribution methods. 

QSPR models based on molecular descriptors for the prediction of liquid heat capacity at 

25o C using a set of organic compounds have been developed [2,3]. 

Heat capacities and entropies of organic compounds in the condensed phase were 

examined and evaluated [4]. 

 Estimation of liquid heat capacity at constant pressure and 25o C by using additive rules 

has been proposed [5, 6]. 

Prediction of the heat capacity of ionic liquids by using the mass connectivity index and a 

group contribution method has been developed [7]. 

A new topological index for the studies on structure-properties of alkanes has been 

examined [8]. 

A model for evaluation the heat capacity of alkanes by using artificial neural network 

(ANN) has been developed [3,9]. 

A linear model for predicting the heat capacity of alcohols and aldehydes in liquid phase at 

298 K by using topologic, electronic, and geometric descriptors has been examined [10]. 

Group contribution methods for estimating the heat capacity of fluids at room temperature 

(20 or 25o C) have been proposed [11,12].  

Relationship between topological indices and thermodynamic properties such as heat 

capacity, thermal energy and entropy of the monocarboxylic acids has been searched [13]. 
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The main aim of this study is to illustrate the usefulness of topological indices in QSPR 

study of gas heat capacity (CV) of benzene derivatives. As far as we are aware, this is the first 

QSPR study for prediction of benzene derivatives heat capacities using topological indices. 

2  Materials, Mathematical Method and Graphs 
The heat capacity (CV) of 68 benzene derivatives (68 compound and benzene) is taken from 

the quantum mechanics methodology with Hartree-Fock (HF) level using the ab initio 6-31G 

basis sets. The benzene derivatives in this set have seven different substituents; each 

substituent being present in at least six compounds. These substituents are amino, bromo, 

chloro, hydroxyl, methyl, methoxyl and nitro groups. Studied benzene derivatives and their 

heat capacity are listed in Table 1.  

Table 1. Benzene derivatives and their heat capacity, used in present study. 
 

Compounds 
Comp. 

No. CV(J/molK) Compounds 
Comp. 

No CV(J/molK) 

Bromobenzene 1 79.299 4-Methylphenol 36 106.226 
phenol 

2 
81.815 4-Methyl-3,5-

dinitroaniline 
37 180.325 

1,2-Dichlorobenzene 3 93.887 1,3,5-Trichlorobenzene 38 110.665 
3-Chlorotoluene 4 102.677 Benzene 39 62.115 
1,3-Dihydroxybenzene 5 101.337 2-Nitrotoluene 40 119.539 
3-Hydroxyanisol 6 119.205 1,4-Dinitrobenzene 41 131.636 
4-Methyl-3-nitroaniline 

7 
145.961 2-Methyl-3,6-

dinitroaniline 
42 174.925 

2,4-Dimethylphenol 
8 

129.881 2-Methyl-4,6-
dinitrophenol 

43 170.594 

2,6-Dimethylphenol 9 129.471 2,5-Dinitrotoluene 44 154.731 
3-Nitrotoluene 10 121.107 1,2-Dinitrobenzene 45 115.648 
2,6-Dinitrotoluene 11 154.254 1,4-Dimethoxybenzene 46 138.876 
4-Methyl-2,6-
dinitroaniline 

12 
165.152 2-Methyl-3-nitroaniline 47 145.548 

5-Methyl-2,6-
dinitroaniline 

13 
172.107 2-Methyl-4-nitroaniline 48 144.03 

5-Methyl-2,4-
dinitroaniline 

14 
174.047 4-Hydroxy-3-nitroaniline 49 140.009 

2,4-Dinitrotoluene 15 154.568 4-Chloro-3-methylphenol 50 121.554 
4-Nitrophenol 16 115.757 2,4,6-Tribromophenol 51 131.172 
4-Chlorotoluene 17 102.598 2,4,6-Trinitrotoluene 52 124.969 
2,4,6-Trichlorophenol 

18 
129.082 1,2,4,5-

Tetrachlorobenzene 
53 125.68 

Toluene 
19 

86.367 3-Methyl-2,4-
dinitroaniline 

54 174.348 

3-Methyl-6-nitroaniline 
20 

141.589 2-Methyl-3,5-
dinitroaniline 

55 106.226 

4-Methyl-2-nitroaniline 21 141.911 3,5-Dinitrotoluene 56 180.325 
1,2,4-Trichlorobenzene 22 110.026 3,4-Dinitrotoluene 57 110.665 
3,4-Dichlorotoluene 23 118.306 1,2,4-Trimethylbenzene 58 62.115 
2,4-Dichlorotoluene 24 117.993 2,4-Dinitrophenol 59 119.539 
Chlorobenzene 25 78.275 3,4-Dimethylphenol 60 131.636 
1,3,5-Trinitrobenzene 26 166.94 2,4-Dichlorophenol 61 174.925 
1,2,3,4-
Tetrachlorobenzene 

27 
125.362 1,2,3-Trichlorobenzene 62 109.641 

2,3,4,5,6- 28 159.713 2-Methyl-6-nitroaniline 63 140.352 
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Pentachlorophenol 
1,3-Dichlorobenzene 29 94.459 2-Methyl-5-nitroaniline 64 146.17 
2-Chlorophenol 30 98.109 1,3-Dinitrobenzene 65 131.649 
3-Methylphenol 31 106.084 4-Nitrotoluene 66 121.003 
2,3-Dinitrotoluene 32 155.897 1,2-Dimethylbenzene 67 109.357 
1,4-Dimethylbenzene 33 102.339 2-Methylphenol 68 105.407 
2,3,4,5-Tetrachlorophenol 34 144.853 1,4-Dichlorobenzene 69 94.368 
2,3,6-Trinitrotoluene 35 190.487    

 

For obtaining appropriate QSPR model we have used multiple linear regression (MLR) 

techniques procedure of SPSS version 16, and backward stepwise regression was used to 

construct the QSPR models. 

For drawing the graphs of our results, we used the Microsoft Office Excel – 2003program. 

3  Topological Indices 

As known, each molecule may be represented by a topological graph G={V,E} where V(G) 

and E(G) are the vertex and edge sets, respectively. Vertices correspond to individual atoms 

in the graph and the edges correspond to chemical bonds between them. 

A large number of topological indices have been defined and used. The majority of the 

topological indices are derived from the various matrices corresponding to the molecular 

graphs. The adjacency matrix (A) and the distance matrix (Dm) of the molecular graph have 

been most widely used in the definition of topological indices. Various definitions of topological 

indices have been used in order to obtain molecular descriptors. The most used ones are the 

following: 

3.1 Wiener index, W [14], 

3.2 Hyper-Wiener index, WW[15-17], 

3.3 Wiener polarity index, WP [18,19], 

3.4 Randić index, 1χ [20,21], 

3.5 Balaban index, J [22,23], 

3.6 Harary number, H [24], 

3.7 Szeged index, Sz [25,26]. 

All the used topological indices were calculated using hydrogen suppressed graph by 

deleting all the carbon hydrogen as well as heteroatomic hydrogen bonds from the structure 

of the benzene derivatives. The calculations of topological indices used in this paper are well 

documented. 

The descriptors were calculated with chemicalize program [27]. Seven topological 

indices tested in the present study are recorded in Table 2. 
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Table 2. Benzene derivatives and their topological indices, used in present study. 
 

Comp. 
No. 

1χ J H W WW Wp Sz 
Comp. 

No. 

1χ 
 

J H W WW Wp Sz 

1 3.39 1.82 12.92 42 71 5 78 36 3.79 2.19 16.03 62 115 7 110 
2 3.39 1.82 12.92 42 71 5 78 37 6.43 2.70 39.02 282 669 21 420 
3 3.80 2.28 16.17 60 106 8 106 38 4.18 2.08 19.50 84 159 9 144 
4 3.79 2.23 16.08 61 110 7 108 39 3.00 2.00 10.00 27 42 3 54 
5 3.79 2.23 16.08 61 110 7 108 40 4.72 2.40 22.90 114 231 12 180 
6 4.33 1.98 19.15 88 176 9 146 41 5.61 2.30 29.74 206 521 15 314 
7 5.11 2.25 26.67 148 315 14 232 42 6.45 2.64 38.87 289 717 22 434 
8 4.20 2.09 19.53 84 160 10 144 43 6.43 2.66 3.85 286 691 21 428 
9 4.22 2.15 19.67 82 151 11 140 44 6.02 2.28 34.14 246 616 18 372 
10 4.70 2.32 22.73 117 245 11 186 45 5.63 2.54 30.43 188 416 16 278 
11 6.04 2.40 34.60 234 545 19 348 46 4.86 2.17 22.24 125 287 11 200 
12 6.43 2.70 39.02 282 669 21 420 47 5.13 2.28 26.80 146 306 15 228 
13 6.45 2.72 39.13 281 667 22 418 48 5.11 2.18 26.50 152 337 14 240 
14 6.43 2.65 38.83 287 698 21 430 49 5.11 2.25 26.67 148 315 14 232 
15 6.02 2.33 34.30 240 576 18 360 50 4.20 2.09 19.53 84 160 10 144 
16 4.70 2.26 22.60 120 262 11 192 51 4.61 2.49 23.28 110 215 13 184 
17 3.79 2.19 16.03 62 115 7 110 52 7.34 2.80 47.72 408 1044 25 594 
18 4.61 2.49 23.28 110 215 13 184 53 4.61 2.46 23.23 111 220 13 186 
19 3.39 1.82 12.92 42 71 5 78 54 6.45 2.72 39.13 281 667 22 418 
20 5.11 2.22 26.60 150 327 14 236 55 6.43 2.66 38.85 286 691 21 428 
21 5.11 2.25 26.67 148 315 14 232 56 6.00 2.33 34.23 240 573 17 360 
22 4.20 2.09 19.53 84 160 10 144 57 6.02 2.40 34.53 234 542 18 348 
23 4.20 2.09 19.53 84 160 10 144 58 4.20 2.09 19.53 84 160 10 144 
24 4.20 2.09 19.53 84 160 10 144 59 6.02 2.33 34.3 240 576 18 360 
25 3.39 1.82 12.92 42 71 5 78 60 4.20 2.09 19.53 84 160 10 144 
26 6.91 2.46 42.60 354 906 21 516 61 4.20 2.09 19.53 84 160 10 144 
27 4.63 2.52 23.37 109 211 14 182 62 4.22 2.15 19.67 82 151 11 140 
28 5.46 2.76 31.60 174 357 21 282 63 5.13 2.28 26.8 146 306 15 228 
29 3.79 2.23 16.08 61 110 7 108 64 5.11 2.18 26.5 152 337 14 240 
30 3.80 2.28 16.17 60 106 8 106 65 5.61 2.40 30.02 197 464 15 296 
31 3.79 2.23 16.08 61 110 7 108 66 4.70 2.26 22.6 120 262 11 192 
32 6.04 2.47 34.83 228 511 19 336 67 3.80 2.28 16.17 60 106 8 106 
33 3.79 2.19 16.03 62 115 7 110 68 3.80 2.28 16.17 60 106 8 106 
34 5.04 2.39 27.32 140 281 17 230 69 3.79 2.19 16.03 62 115 7 110 
35 7.36 2.83 47.97 405 1036 26 588         

 

4  Regression Analysis 

In the present work, linear regression analyses were performed using SPSS/PC software 

package (version 16.0). 

The gas heat capacity (Cv J/molK) is used as the dependent variable and 1χ, J, H, W, WP, 

WW and Sz indices as the independent variables. 

Criteria for selection of the best multiple linear regression model were the statistics: 

squared multiple correlation coefficient (r2), adjusted correlation coefficient (����
� ), Fisher-

ratio (F), standard error of estimate (s), Durbin-Watson value (D) and significance (Sig). 
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5  Result and Discussion 

Several linear QSPR models involving three-seven descriptors are established and strongest 

multivariable correlations are identified by the Back ward step wise regression routine 

implemented in SPSS is used to develop the linear model for the prediction of gas heat 

capacity using calculated topological descriptors. In the first of this study we drown 

scattering plots of heat capacity versus the seven topological indices. Some of these plots are 

given in Figures (1-3), respectively.  

Distribution of the dependent variable against the independent variable for 69 chemicals 

employed in developing quantitative structure-property relationship. 

 
Figure 1. Plot of the Szeged index (Sz) versus heat capacityof 69 benzene derivatives. 

 

 

Figure 2. Plot of the Randić index (1χ) versus heat capacity of 69 benzene derivatives. 
 

 

 
Figure 3. Plot of the hyper- Wiener (WW) versus heat capacity of 69 benzene derivatives. 
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5.1. QSPR models for heat capacity 

In Table 3 are given the regression parameters and quality of correlation of the proposed 

models for the gas heat capacity of 69 benzene derivative compounds. 

 

Table 3. Statistical parameters of models calculated with SPSS software 
 

Model independent variables r r2 
2

adjr  s F Sig 

1 Sz, J, H, Wp, 1χ, HW, W 0.946 0.895 0.883 9.688 74.121 0.000 

2 Sz, J, H, 1χ, WW, W 0.946 0.895 0.885 9.610 87.892 0.000 

3 Sz, J, 1χ, WW,W 0.946 0.895 0.886 9.541 106.966 0.000 

4 Sz, 1χ, WW , W 0.944 0.891 0.884 9.638 130.484 0.000 

5 Sz, 1χ, W 0.943 0.888 0.883 9.667 172.475 0.000 
 

The best linear model contains three topological descriptors, namely, Randić (1χ), Wiener 

(W) and Szeged (Sz) indices.  

The regression parameters of the best three descriptors correlation models are gathered in 

equation (1). 

 
Model 5Cv=-84.569+43.970 1

χ-2.298W+1.463Sz(9) 

n=69    r=0.943r2=0.888 883.02 =adjr s=9.667Jmol-1 K-1F=172.475    Sig=0.000    D=1.728 (1) 

 

This model produced a standard error of 9.667 Jmol-1 K-1, a correlation coefficient of 

0.943, and the adjusted correlation coefficient (adjusted r-squared) was calculated as 0.883. 

The result is therefore very satisfactory. Figure 4 shows the linear correlation between 

the observed and the predicted heat capacity values obtained using equation (1).   

 

 

 

Figure 4. Comparison between the predicted and observed of heat capacity by MLR method. 
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5.2 The Durbin-Watson statistics 

In this section for verification and validity of the regression models, we will focus on the 

Durbin-Watson (D) statistics, non-standardized predicted and residual values. 

The Durbin-Watson statistics ranges in value from 0 to 4. A value near 2 indicates non-

autocorrelation; a value toward 0 indicates positive autocorrelation; a value toward 4 

indicates negative autocorrelation. Therefore, the value of Durbin-Watson statistics is close to 

2 if the errors are uncorrelated. In our model, the value of Durbin-Watson statistics for model 

5 is close to 2 (see Eq. (1)) hence the errors are uncorrelated.  

 
5.3 The residuals values 

The residuals values of heat capacity expressed by equation (1) show in Table 4. The residual 

values show a fairly random pattern (see Figure 5). This random pattern indicates that a linear 

model provides a decent fit to the data.  

Table 4. Comparison between predicted and observed values of heat capacity (Cv) of respect benzene 
derivatives. 

Comp. 
No. 

Observed  
Cv(J/molK) 

Predicted 
Cv(J/molK) 

Residual Comp.  
No. 

Observed  
Cv(J/molK) 

Predicted 
Cv(J/molK) 

Residual 

1 79.299 82.107 -2.808 36 106.226 100.560 5.666 
2 81.815 82.107 -0.292 37 180.325 164.704 15.621 
3 93.887 99.742 -5.855 38 110.665 116.903 -6.238 
4 102.677 99.931 2.746 39 62.115 64.310 -2.195 
5 101.337 99.931 1.406 40 119.539 124.388 -4.849 
6 119.205 117.234 1.971 41 131.636 148.186 -16.550 
7 145.961 139.495 6.466 42 174.925 169.982 4.943 
8 129.881 117.783 12.098 43 170.594 167.218 3.376 
9 129.471 117.405 12.066 44 154.731 159.165 -4.434 

10 121.107 125.394 -4.287 45 115.648 137.754 -22.106 
11 154.254 152.503 1.751 46 138.876 134.530 4.346 
12 165.152 164.704 0.448 47 145.548 139.117 6.431 
13 172.107 164.955 7.152 48 144.03 142.008 2.022 
14 174.047 167.846 6.201 49 140.009 139.495 0.514 
15 154.568 155.394 -0.826 50 121.554 117.783 3.771 
16 115.757 127.279 -11.522 51 131.172 134.594 -3.422 
17 102.598 100.560 2.038 52 124.969 169.784 -44.815 
18 129.082 134.594 -5.512 53 125.68 135.222 -9.542 
19 86.367 82.107 4.260 54 174.348 164.955 9.393 
20 141.589 140.752 0.837 55 106.226 100.560 5.666 
21 141.911 139.495 2.416 56 180.325 164.704 15.621 
22 110.026 117.783 -7.757 57 110.665 116.903 -6.238 
23 118.306 117.783 0.523 58 62.115 64.310 -2.195 
24 117.993 117.783 0.210 59 119.539 124.388 -4.849 
25 78.275 82.107 -3.832 60 131.636 148.186 -16.550 
26 166.94 160.832 6.108 61 174.925 169.982 4.943 
27 125.362 134.845 -9.483 62 109.641 117.405 -7.764 
28 159.713 168.298 -8.585 63 140.352 139.117 1.235 
29 94.459 99.931 -5.472 64 146.17 142.008 4.162 
30 98.109 99.742 -1.633 65 131.649 142.530 -10.881 
31 106.084 99.931 6.153 66 121.003 127.279 -6.276 
32 155.897 148.732 7.165 67 109.357 99.742 9.615 
33 102.339 100.560 1.779 68 105.407 99.742 5.665 
34 144.853 151.872 -7.019 69 94.368 100.560 -6.192 
35 190.487 168.778 21.709     
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Figure 5. Plot of residuals against observed value 

Analysis of the obtained results indicates that the MLR model can well represent the 

structure-property relationships of these compounds, and that we can use only three 

topological indices for predicting the gas heat capacities of studied compounds. 

 

6  Conclusion 

QSPR models for the prediction of gas heat capacity for a training set of benzene derivatives 

using MLR based on topological descriptors calculated from molecular structure alone have 

been developed. MLR model is proved to be a useful tool in the prediction of gas heat 

capacity. This model contains fewer parameters having to be optimized: the Wiener (W), 

Szeged (Sz), and Randić (1χ) indices. 
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