MATCH

MATCH Commun. Math. Comput. Chem. 75 (2016) 583-592

Communications in Mathematical and in Computer Chemistry

ISSN 0340 - 6253

Quantitative Structure Property Relationship Models for the Prediction of Gas Heat Capacity of Benzene Derivatives Using Topological Indices

H. Hosseini, F. Shafiei¹

Department of Chemistry, Science Faculty, Arak Branch, Islamic Azad University, Arak, Iran

(Received October 10, 2015)

Abstract

Graph-theoretical approach represents simple and efficient means to quantitative structureproperty relationship (OSPR) studies. Graph-theoretical topological indices are high potential descriptors for modeling and predicting physicochemical properties of chemical compounds. A QSPR study was performed for prediction of gas heat capacity (C_v) of 69 benzene derivatives using Wiener (W), Szeged (Sz), first order molecular connectivity $\binom{1}{\chi}$, Balaban (J), hyper-Wiener(WW), Wiener polarity (W_p) and Harary (H) topological indices. The calculation was performed by the ab-initio method at HF/6-31G(d) level of theory. The relationship analysis between heat capacity (C_v) and topological indices was done by using multiple linear regression (MLR) method, with heat capacity (C_v) as dependent variable and seven independent variables to generate the equation that relates the structural features to the heat capacity (C_v) properties. The results show good models with three-seven parameters linear equations. The best model in this study is contains three descriptors ($^{1}\chi$, W, Sz) are included, with values of the correlation coefficient (r=0.943), the standard error (s=9.667Jmol⁻¹K⁻¹), the Fisher-ratio (F=172.475), the adjusted coefficient of determination $(r_{adi}^2 = 0.883)$ and Durbin-Watson value (D=1.728), which indicate that these descriptors, play an important role in effect on heat capacity (C_v) of benzene derivatives.

1 Introduction

A topological representation of a molecule can be carried out through molecular graph. The descriptors are numerical values associated with chemical constitution for correlation of chemical structure with various physical properties, chemical reactivity or biological activity. A topological index is the graph invariant number calculated from a graph representing a

¹ Corresponding author, e-mail: f-shafiei@iau-arak.ac.ir

molecule. To translate chemical structures into a single number, the graph theory visualizes chemical structures as mathematical object sets consisting of vertices or points, which symbolize atoms, and vertices or lines, linking a pair of edges, which represent covalent bonds or shared electron pairs. In this notation, adjacent vertices stand for pairs of covalently linked atoms situated at a topological distance equal to unit.

In this study, the relationship analysis between heat capacity (C_v) and topological indices was done by MLR analysis.

Heat capacity or thermal capacity is a measurable physical quantity and an extensive property of matter and it is defined as the derivative of the energy of the system with respect to the temperature under specified conditions. If the system is maintained at constant volume the heat capacity is shown with C_p . The values of heat capacity reported in this paper are those at constant volume and correspond to one mole of a specified substance; the units are thus, J mol⁻¹K⁻¹. This property is involved in processes such as distillation, evaporation, extraction and heating, found in the petrochemical, pharmaceutical and food industry, among others [1].

There is abundant information in the literature on the heat capacity of organic and inorganic compounds; theoretical approaches, experimental data, generalized correlations, empirical equations, and group contribution methods.

QSPR models based on molecular descriptors for the prediction of liquid heat capacity at 25° C using a set of organic compounds have been developed [2,3].

Heat capacities and entropies of organic compounds in the condensed phase were examined and evaluated [4].

Estimation of liquid heat capacity at constant pressure and 25° C by using additive rules has been proposed [5, 6].

Prediction of the heat capacity of ionic liquids by using the mass connectivity index and a group contribution method has been developed [7].

A new topological index for the studies on structure-properties of alkanes has been examined [8].

A model for evaluation the heat capacity of alkanes by using artificial neural network (ANN) has been developed [3,9].

A linear model for predicting the heat capacity of alcohols and aldehydes in liquid phase at 298 K by using topologic, electronic, and geometric descriptors has been examined [10].

Group contribution methods for estimating the heat capacity of fluids at room temperature (20 or 25° C) have been proposed [11,12].

Relationship between topological indices and thermodynamic properties such as heat capacity, thermal energy and entropy of the monocarboxylic acids has been searched [13].

The main aim of this study is to illustrate the usefulness of topological indices in QSPR study of gas heat capacity (C_V) of benzene derivatives. As far as we are aware, this is the first QSPR study for prediction of benzene derivatives heat capacities using topological indices.

2 Materials, Mathematical Method and Graphs

The heat capacity (C_V) of 68 benzene derivatives (68 compound and benzene) is taken from the quantum mechanics methodology with Hartree-Fock (HF) level using the ab initio 6-31G basis sets. The benzene derivatives in this set have seven different substituents; each substituent being present in at least six compounds. These substituents are amino, bromo, chloro, hydroxyl, methyl, methoxyl and nitro groups. Studied benzene derivatives and their heat capacity are listed in Table 1.

Compounds	Comp. No.	$C_V(J/molK)$	Compounds	Comp. No	$C_V(J/molK)$
Bromobenzene	1	79.299	4-Methylphenol	36	106.226
phenol	2	81.815	4-Methyl-3,5-	37	180.325
	2		dinitroaniline		
1,2-Dichlorobenzene	3	93.887	1,3,5-Trichlorobenzene	38	110.665
3-Chlorotoluene	4	102.677	Benzene	39	62.115
1,3-Dihydroxybenzene	5	101.337	2-Nitrotoluene	40	119.539
3-Hydroxyanisol	6	119.205	1,4-Dinitrobenzene	41	131.636
4-Methyl-3-nitroaniline	7	145.961	2-Methyl-3,6-	42	174.925
	/		dinitroaniline		
2,4-Dimethylphenol	0	129.881	2-Methyl-4,6-	43	170.594
	0		dinitrophenol		
2,6-Dimethylphenol	9	129.471	2,5-Dinitrotoluene	44	154.731
3-Nitrotoluene	10	121.107	1,2-Dinitrobenzene	45	115.648
2,6-Dinitrotoluene	11	154.254	1,4-Dimethoxybenzene	46	138.876
4-Methyl-2,6-	12	165.152	2-Methyl-3-nitroaniline	47	145.548
dinitroaniline	12				
5-Methyl-2,6-	12	172.107	2-Methyl-4-nitroaniline	48	144.03
dinitroaniline	15				
5-Methyl-2,4-	14	174.047	4-Hydroxy-3-nitroaniline	49	140.009
dinitroaniline	14				
2,4-Dinitrotoluene	15	154.568	4-Chloro-3-methylphenol	50	121.554
4-Nitrophenol	16	115.757	2,4,6-Tribromophenol	51	131.172
4-Chlorotoluene	17	102.598	2,4,6-Trinitrotoluene	52	124.969
2,4,6-Trichlorophenol	19	129.082	1,2,4,5-	53	125.68
	10		Tetrachlorobenzene		
Toluene	10	86.367	3-Methyl-2,4-	54	174.348
	19		dinitroaniline		
3-Methyl-6-nitroaniline	20	141.589	2-Methyl-3,5-	55	106.226
	20		dinitroaniline		
4-Methyl-2-nitroaniline	21	141.911	3,5-Dinitrotoluene	56	180.325
1,2,4-Trichlorobenzene	22	110.026	3,4-Dinitrotoluene	57	110.665
3,4-Dichlorotoluene	23	118.306	1,2,4-Trimethylbenzene	58	62.115
2,4-Dichlorotoluene	24	117.993	2,4-Dinitrophenol	59	119.539
Chlorobenzene	25	78.275	3,4-Dimethylphenol	60	131.636
1,3,5-Trinitrobenzene	26	166.94	2,4-Dichlorophenol	61	174.925
1,2,3,4-	27	125.362	1,2,3-Trichlorobenzene	62	109.641
Tetrachlorobenzene	21				
2,3,4,5,6-	28	159.713	2-Methyl-6-nitroaniline	63	140.352

Table 1. Benzene derivatives and their heat capacity, used in present study.

Pentachlorophenol					
1,3-Dichlorobenzene	29	94.459	2-Methyl-5-nitroaniline	64	146.17
2-Chlorophenol	30	98.109	1,3-Dinitrobenzene	65	131.649
3-Methylphenol	31	106.084	4-Nitrotoluene	66	121.003
2,3-Dinitrotoluene	32	155.897	1,2-Dimethylbenzene	67	109.357
1,4-Dimethylbenzene	33	102.339	2-Methylphenol	68	105.407
2,3,4,5-Tetrachlorophenol	34	144.853	1,4-Dichlorobenzene	69	94.368
2,3,6-Trinitrotoluene	35	190.487			

For obtaining appropriate QSPR model we have used multiple linear regression (MLR) techniques procedure of SPSS version 16, and backward stepwise regression was used to construct the QSPR models.

For drawing the graphs of our results, we used the Microsoft Office Excel – 2003program.

3 Topological Indices

As known, each molecule may be represented by a topological graph $G=\{V,E\}$ where V(G) and E(G) are the vertex and edge sets, respectively. Vertices correspond to individual atoms in the graph and the edges correspond to chemical bonds between them.

A large number of topological indices have been defined and used. The majority of the topological indices are derived from the various matrices corresponding to the molecular graphs. The adjacency matrix (A) and the distance matrix (D_m) of the molecular graph have been most widely used in the definition of topological indices. Various definitions of topological indices have been used in order to obtain molecular descriptors. The most used ones are the following:

- 3.1 Wiener index, W [14],
- 3.2 Hyper-Wiener index, WW[15-17],
- 3.3 Wiener polarity index, W_P [18,19],
- **3.4 Randić index**, ¹χ [20,21],
- 3.5 Balaban index, J [22,23],
- 3.6 Harary number, H [24],
- 3.7 Szeged index, Sz [25,26].

All the used topological indices were calculated using hydrogen suppressed graph by deleting all the carbon hydrogen as well as heteroatomic hydrogen bonds from the structure of the benzene derivatives. The calculations of topological indices used in this paper are well documented.

The descriptors were calculated with chemicalize program [27]. Seven topological indices tested in the present study are recorded in Table 2.

Comp. No.	$^{1}\chi$	J	Н	W	WW	\mathbf{W}_{p}	Sz	Comp. No.	¹ χ	J	Н	W	WW	W_p	Sz
1	3.39	1.82	12.92	42	71	5	78	36	3.79	2.19	16.03	62	115	7	110
2	3.39	1.82	12.92	42	71	5	78	37	6.43	2.70	39.02	282	669	21	420
3	3.80	2.28	16.17	60	106	8	106	38	4.18	2.08	19.50	84	159	9	144
4	3.79	2.23	16.08	61	110	7	108	39	3.00	2.00	10.00	27	42	3	54
5	3.79	2.23	16.08	61	110	7	108	40	4.72	2.40	22.90	114	231	12	180
6	4.33	1.98	19.15	88	176	9	146	41	5.61	2.30	29.74	206	521	15	314
7	5.11	2.25	26.67	148	315	14	232	42	6.45	2.64	38.87	289	717	22	434
8	4.20	2.09	19.53	84	160	10	144	43	6.43	2.66	3.85	286	691	21	428
9	4.22	2.15	19.67	82	151	11	140	44	6.02	2.28	34.14	246	616	18	372
10	4.70	2.32	22.73	117	245	11	186	45	5.63	2.54	30.43	188	416	16	278
11	6.04	2.40	34.60	234	545	19	348	46	4.86	2.17	22.24	125	287	11	200
12	6.43	2.70	39.02	282	669	21	420	47	5.13	2.28	26.80	146	306	15	228
13	6.45	2.72	39.13	281	667	22	418	48	5.11	2.18	26.50	152	337	14	240
14	6.43	2.65	38.83	287	698	21	430	49	5.11	2.25	26.67	148	315	14	232
15	6.02	2.33	34.30	240	576	18	360	50	4.20	2.09	19.53	84	160	10	144
16	4.70	2.26	22.60	120	262	11	192	51	4.61	2.49	23.28	110	215	13	184
17	3.79	2.19	16.03	62	115	7	110	52	7.34	2.80	47.72	408	1044	25	594
18	4.61	2.49	23.28	110	215	13	184	53	4.61	2.46	23.23	111	220	13	186
19	3.39	1.82	12.92	42	71	5	78	54	6.45	2.72	39.13	281	667	22	418
20	5.11	2.22	26.60	150	327	14	236	55	6.43	2.66	38.85	286	691	21	428
21	5.11	2.25	26.67	148	315	14	232	56	6.00	2.33	34.23	240	573	17	360
22	4.20	2.09	19.53	84	160	10	144	57	6.02	2.40	34.53	234	542	18	348
23	4.20	2.09	19.53	84	160	10	144	58	4.20	2.09	19.53	84	160	10	144
24	4.20	2.09	19.53	84	160	10	144	59	6.02	2.33	34.3	240	576	18	360
25	3.39	1.82	12.92	42	71	5	78	60	4.20	2.09	19.53	84	160	10	144
26	6.91	2.46	42.60	354	906	21	516	61	4.20	2.09	19.53	84	160	10	144
27	4.63	2.52	23.37	109	211	14	182	62	4.22	2.15	19.67	82	151	11	140
28	5.46	2.76	31.60	174	357	21	282	63	5.13	2.28	26.8	146	306	15	228
29	3.79	2.23	16.08	61	110	7	108	64	5.11	2.18	26.5	152	337	14	240
30	3.80	2.28	16.17	60	106	8	106	65	5.61	2.40	30.02	197	464	15	296
31	3.79	2.23	16.08	61	110	7	108	66	4.70	2.26	22.6	120	262	11	192
32	6.04	2.47	34.83	228	511	19	336	67	3.80	2.28	16.17	60	106	8	106
33	3.79	2.19	16.03	62	115	7	110	68	3.80	2.28	16.17	60	106	8	106
34	5.04	2.39	27.32	140	281	17	230	69	3.79	2.19	16.03	62	115	7	110
35	7.36	2.83	47.97	405	1036	26	588								

Table 2. Benzene derivatives and their topological indices, used in present study.

4 Regression Analysis

In the present work, linear regression analyses were performed using SPSS/PC software package (version 16.0).

The gas heat capacity (C_v J/molK) is used as the dependent variable and $^1\chi$, J, H, W, W_P, WW and Sz indices as the independent variables.

Criteria for selection of the best multiple linear regression model were the statistics: squared multiple correlation coefficient (r^2), adjusted correlation coefficient (r^2_{adj}), Fisherratio (F), standard error of estimate (s), Durbin-Watson value (D) and significance (Sig).

5 Result and Discussion

Several linear QSPR models involving three-seven descriptors are established and strongest multivariable correlations are identified by the Back ward step wise regression routine implemented in SPSS is used to develop the linear model for the prediction of gas heat capacity using calculated topological descriptors. In the first of this study we drown scattering plots of heat capacity versus the seven topological indices. Some of these plots are given in Figures (1-3), respectively.

Distribution of the dependent variable against the independent variable for 69 chemicals employed in developing quantitative structure-property relationship.

Figure 1. Plot of the Szeged index (Sz) versus heat capacity of 69 benzene derivatives.

Figure 2. Plot of the Randić index $(^{1}\chi)$ versus heat capacity of 69 benzene derivatives.

Figure 3. Plot of the hyper- Wiener (WW) versus heat capacity of 69 benzene derivatives.

5.1. QSPR models for heat capacity

In Table 3 are given the regression parameters and quality of correlation of the proposed models for the gas heat capacity of 69 benzene derivative compounds.

	F										
Model	independent variables	r	r^2	r_{adj}^2	s	F	Sig				
1	Sz, J, H, W _p , 1χ, HW, W	0.946	0.895	0.883	9.688	74.121	0.000				
2	Sz, J, Η, 1χ, WW, W	0.946	0.895	0.885	9.610	87.892	0.000				
3	Sz, J, 1χ, WW,W	0.946	0.895	0.886	9.541	106.966	0.000				
4	Sz, 1χ, WW , W	0.944	0.891	0.884	9.638	130.484	0.000				
5	Sz, 1χ, W	0.943	0.888	0.883	9.667	172.475	0.000				

Table 3. Statistical parameters of models calculated with SPSS software

The best linear model contains three topological descriptors, namely, Randić $(^{1}\chi)$, Wiener (W) and Szeged (Sz) indices.

The regression parameters of the best three descriptors correlation models are gathered in equation (1).

Model 5C_v=-84.569+43.970 ¹
$$\chi$$
-2.298W+1.463Sz(9)
n=69 r=0.943r²=0.888 r_{adj}^2 = 0.883 s=9.667Jmol⁻¹ K⁻¹F=172.475 Sig=0.000 D=1.728 (1)

This model produced a standard error of 9.667 Jmol^{-1} K⁻¹, a correlation coefficient of 0.943, and the adjusted correlation coefficient (adjusted r-squared) was calculated as 0.883.

The result is therefore very satisfactory. Figure 4 shows the linear correlation between the observed and the predicted heat capacity values obtained using equation (1).

Figure 4. Comparison between the predicted and observed of heat capacity by MLR method.

5.2 The Durbin-Watson statistics

In this section for verification and validity of the regression models, we will focus on the Durbin-Watson (D) statistics, non-standardized predicted and residual values.

The Durbin-Watson statistics ranges in value from 0 to 4. A value near 2 indicates nonautocorrelation; a value toward 0 indicates positive autocorrelation; a value toward 4 indicates negative autocorrelation. Therefore, the value of Durbin-Watson statistics is close to 2 if the errors are uncorrelated. In our model, the value of Durbin-Watson statistics for model 5 is close to 2 (see Eq. (1)) hence the errors are uncorrelated.

5.3 The residuals values

The residuals values of heat capacity expressed by equation (1) show in Table 4. The residual values show a fairly random pattern (see Figure 5). This random pattern indicates that a linear model provides a decent fit to the data.

Table 4.	Comparison	between	predicted	and	observed	values	of heat	capacity	(C_v)	of respect	benzene
					derivative	es.					

Comp.	Observed	Predicted	Residual	Comp.	Observed	Predicted	Residual
No.	C _v (J/molK)	C _v (J/molK)		No.	C _v (J/molK)	C _v (J/molK)	
1	79.299	82.107	-2.808	36	106.226	100.560	5.666
2	81.815	82.107	-0.292	37	180.325	164.704	15.621
3	93.887	99.742	-5.855	38	110.665	116.903	-6.238
4	102.677	99.931	2.746	39	62.115	64.310	-2.195
5	101.337	99.931	1.406	40	119.539	124.388	-4.849
6	119.205	117.234	1.971	41	131.636	148.186	-16.550
7	145.961	139.495	6.466	42	174.925	169.982	4.943
8	129.881	117.783	12.098	43	170.594	167.218	3.376
9	129.471	117.405	12.066	44	154.731	159.165	-4.434
10	121.107	125.394	-4.287	45	115.648	137.754	-22.106
11	154.254	152.503	1.751	46	138.876	134.530	4.346
12	165.152	164.704	0.448	47	145.548	139.117	6.431
13	172.107	164.955	7.152	48	144.03	142.008	2.022
14	174.047	167.846	6.201	49	140.009	139.495	0.514
15	154.568	155.394	-0.826	50	121.554	117.783	3.771
16	115.757	127.279	-11.522	51	131.172	134.594	-3.422
17	102.598	100.560	2.038	52	124.969	169.784	-44.815
18	129.082	134.594	-5.512	53	125.68	135.222	-9.542
19	86.367	82.107	4.260	54	174.348	164.955	9.393
20	141.589	140.752	0.837	55	106.226	100.560	5.666
21	141.911	139.495	2.416	56	180.325	164.704	15.621
22	110.026	117.783	-7.757	57	110.665	116.903	-6.238
23	118.306	117.783	0.523	58	62.115	64.310	-2.195
24	117.993	117.783	0.210	59	119.539	124.388	-4.849
25	78.275	82.107	-3.832	60	131.636	148.186	-16.550
26	166.94	160.832	6.108	61	174.925	169.982	4.943
27	125.362	134.845	-9.483	62	109.641	117.405	-7.764
28	159.713	168.298	-8.585	63	140.352	139.117	1.235
29	94.459	99.931	-5.472	64	146.17	142.008	4.162
30	98.109	99.742	-1.633	65	131.649	142.530	-10.881
31	106.084	99.931	6.153	66	121.003	127.279	-6.276
32	155.897	148.732	7.165	67	109.357	99.742	9.615
33	102.339	100.560	1.779	68	105.407	99.742	5.665
34	144.853	151.872	-7.019	69	94.368	100.560	-6.192
35	190.487	168.778	21.709				

Figure 5. Plot of residuals against observed value

Analysis of the obtained results indicates that the MLR model can well represent the structure-property relationships of these compounds, and that we can use only three topological indices for predicting the gas heat capacities of studied compounds.

6 Conclusion

QSPR models for the prediction of gas heat capacity for a training set of benzene derivatives using MLR based on topological descriptors calculated from molecular structure alone have been developed. MLR model is proved to be a useful tool in the prediction of gas heat capacity. This model contains fewer parameters having to be optimized: the Wiener (W), Szeged (Sz), and Randić ($^{1}\chi$) indices.

References

- R. Ceriani, R. Gani, A. J.A. Meirelles, Prediction of heat capacities and heats of vaporization of the organic liquids, *Fluid Phase Equilibria* 283 (2009) 49-55.
- [2] X. Yao, B. Fan, J. P. Doucet, A. Panaye, Quantitative structure-property relationship models for the prediction of liquid heat capacity, *QSAR Comb. Sci.* 22 (2003) 29-48.
- [3] A. Ivanova, V. A. Palyulin, A. N. Zefirov, N. S. Zefirov. Fragment descriptors in QSPR: Application to heat capacity calculation, *Russ. J. Org. Chem.* 40 (2004) 644– 649.
- [4] E. S. Dolmaski, W. H. Evans, E. D. Hearing, Heat capacities and entropies of organic compounds in the condensed phase, J. Phys. Chem. Ref. Data 19 (1990) 881–1047.
- [5] V. Ružička, E. S. Domalski, Estimation of the heat capacities of organic liquids as a function of temperature using group additivity. I. Hydrocarbon compounds, J. Phys. Chem. Ref. Data 22 (1993) 597–619.
- [6] M. Luria, S. W. Benson, Heat capacities of liquid hydrocarbons. Estimation of heat capacities at constant pressure as a temperature function, using additivity rules, J. *Chem. Eng. Data* 22 (1977) 90–100.
- [7] J. O. Valderrama, A. Toro, R. E. Rojas, Prediction of the heat capacity of ionic liquids using the mass connectivity index and a group contribution method, *J. Chem. Thermodyn.* 43 (2011) 1068–1073.

- [8] C. H. Ni, L. C. Li, Z. Y. Feng, A novel topological index for the studies on structureproperties alkanes, *Wuhan Univ. J. Nat. Sci.* 5 (2000) 464–468.
- [9] A. A. Gakh, E. G. Gakh, B. G. Sumpter, D.W. Noid, Neural network graph theory approach to the prediction of the physical properties of organic compounds, *J. Chem. Inf. Comput. Sci.* 34 (1994) 832–839.
- [10] F. Ashrafi, R. Saadati, A. Behboodi-Amlashi, Modeling and theoretical calculation of liquid heat capacity of alcohols and aldehydes using QSPR *African J. Pure. Appl. Chem.* 2 (2008) 116–120.
- [11] T. A. Albahri, R. S. George, Artificial neural network investigation of the structural group contribution method for predicting pure components auto ignition temperature, *Ind. Eng. Chem. Res.* 42 (2003) 5708–5714.
- [12] T. P. Thinh, J. L. Duran, R. S. Ramalho, Estimation of ideal gas heat capacities of hydrocarbons from group contribution techniques. New and accurate approach, *Indian Eng. Chem. Process Des. Dev.* 10 (1971) 576–582.
- [13] F. Shafiei, Relationship between topological indices and thermodynamic properties of the monocarboxylic acids – Applications in QSPR, *Iran. J. Math. Chem.* 6 (2015) 15– 28.
- [14] M. Randić, On generalization of Wiener index for acyclic structures, Acta. Chim. Slov. 49 (2002) 483–496.
- [15] B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, *Chem. Phys. Lett.* **394** (2004) 93–95.
- [16] D. J. Klein, W. Yan, Y.N. Yeh, Hyper-Wiener vector, Wiener matrix sequence, and Wiener polynomial sequence of a graph, *Int. J. Quantum Chem.* **106** (2006) 1756– 1761.
- [17] D. J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35 (1995) 50–52.
- [18] M. Liu, B. Liu, On the Wiener polarity index, MATCH Commun. Math. Comput. Chem. 66 (2011) 293–304.
- [19] H. Deng, H. Xiao, F. Tang, On the extremal Wiener polarity index of trees with a given diameter, *MATCH Commun. Math. Comput. Chem.* 63 (2010) 257–264.
- [20] M. Randić, Generalized molecular descriptors, J. Math. Chem. 7 (1991) 155-168.
- [21] M. Randić, Charactrization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
- [22] A. T. Balaban, Highly discriminating distance based topological indices, *Chem. Phys. Lett.* 89 (1982) 399–404.
- [23] L. Blaha, J. Damborsky, M. Nemec, QSAR for acute toxicity of saturated and unsaturated halogenated compounds, *Chemosphere* 36 (1998) 1345–1365.
- [24] K. C. Das, B. Zhou, N. Trinajstić, Bounds on Harary index, J. Math. Chem. 46 (2009) 1369–1376.
- [25] I. Gutman, S. Klavžar, An algorithm for the calculation of the Szeged index of benzenoid hydrocarbons, J. Chem. Inf. Comput. Sci. 35 (1995) 1011–1014.
- [26] P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrynin, I. Gutman, G. Dömötör, The Szeged index and an analogy with the Wiener index, *J. Chem. Inf. Compt. Sci.* 35 (1995) 547–550.
- [27] Web search engine developed by ChemAxon; software available at http:// WWW. Chemicalize. Org.