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Abstract

In order to perform the screening of new potergllution points and to estimate their impact oa th
environment, a quantitative structure-activity sesd (QSAR) modeling procedure was used to
estimate possible toxicological effects of substanthat were introduced into the environment. We
have focused our study initially to known persistéoxic compounds with defined toxicological
mechanisms. Such groups of studied chemicals algchjorinated aromatic compounds. Three
multiple linear regression (MLR) models were depeld for the calculation of aryl hydrocarbon
receptor (AhR) binding affinity of polychlorinatelsiphenyls (PCBs), dibenzofurans (PCDFs) and
dibenzodioxins (PCDDs). In all cases models werke @ explain more than 70% of the total
variance. Additionally, the correlating capabiliof the newly developed variable distance-based
topological index was tested. It showed reasonahteleling abilities and superior interpretation
abilities compared to classical MLR QSAR models.
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Abbreviations

AhR aryl hydrocarbon receptor
CODESSA  comprehensive descriptors for structurdlsatistical analysis

DDT 1,1-(4,4'-dichlorodiphenyl)-2,2,2-
trichloroethane

EC50 half maximal effective concentration (1/log
ECso = induction activity)

ESP electrostatic potential
EU European Union
LOO leave one out
MLR multiple linear regression
MOPAC molecular orbital package

PCB polychloro-biphenyl
PCDD polychloro-dibenzodioxin
PCDF polychloro-dibenzofuran
PNSA partial negative surface area
PPSA partial positive surface area
r? squared correlation coefficient
o’ cross-validated squared correlation coefficient
QSAR guantitative structure-activity relationship
QSPR guantitative structure-property relationship
REACH registration, evaluation and authorizatiorcloémicals

RMS root mean square
S standard error
TFP traditional food products
TMSA totalmolecularsurface area

1 Introduction

A quantitative risk assessment becomes increasingdprtant in the modern society
and is slowly incorporated into legislation of @ifént countries. For instance, the European
Union (EU) has introduced the Registration, Evatratand Authorization of CHemicals
(REACH) program for assessment of human and enwiemttal risk of all chemicals that are
produced or imported in the amount greater thaonlper year. It is clear that if such a risk
assessment is performed purely experimentallyoitld/require a huge amount of resources
as well as time. Therefore, the introduced progesmoouraged the use of QSAR modeling
and other alternatives especially for the risk sssent of chemicals that are produced or
imported in smaller quantities.

In order to perform screening of new potential piddin points and to estimate their
impact on environment, a QSAR modeling procedures waed to estimate possible
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toxicological effects of substances that were phiced into the environment due to
modification of traditional food products (TFP) diztion. Since we are dealing with
structurally very diverse sets of compounds possgsihifferent toxicological mechanisms, it
is impossible to create just one prediction modeldil possible compounds. Therefore, we
have focused our study initially to known persistéoxins with defined toxicological
mechanisms. Such groups of studied chemicals angdlychlorinated aromatic compounds.

Among polychlorinated aromatic compounds, the nastironmentally dangerous
chemicals are derivatives of polychloro-dibenzofu@CDF, 1), polychloro-dibenzo-1,4-
dioxin (PCDD,2), and polychloro-biphenyl (PCB), as shown in Fig. 1. Like the persistent
chlorofluorocarbons that were extensively usedluhé discovery of their deleterious effect
on the ozone layer, these polychloroaromatic comg@suare harmful to the environment.
Similarly to other polychlorinated compounds (uses efficient pesticides such as DDT,
Aldrin and Dieldrin, which led to theSilent Sprin§ due to bioaccumulation in fatty tissues
of insects, birds and other higher organisms)titltecompounds exert a powerful toxic effect
on humans (endocrine disruptors, neurotoxic, cagens), and one of the polychlorodibenzo-
1,4-dioxin isomers is among the most toxic orgachiemicals.[1] Due to their chemical
stability, these compounds make their way up tloe fchain, therefore they bioaccumulate in
fatty tissues. Their emissions have been decreakirigg last decades. This can be observed
in the trend of their environmental concentratiefi[2as well as exposure measurements.[8-
11] However, even as impurities of other presentqusticides and other small sources, these
polychlorinated compounds constitute a threat.L2pmprehensive review of their different
toxicological effects was published.[13]

The toxic equivalency factors (TEFs) or toxic e@lént concentrations (TEQS)
released by the World Health Organization[14] iatkcrelative toxicities with respect to the
most harmful compound, 2,3,7,8-TCDD by half-ordefsmagnitude. Such imprecise data
discussed in literature[12] may be due to multipkechanisms of action. In the present study,
we examined more accurate data dealing with theraotion with a single receptor. An
important stereochemical feature of PCBs is thelar@pity dictated by the absence of
substituents in positions 2, 2',6, and 6'. It iggested that the toxic effects are not the result
of direct action of these compounds but are medi#teough a specific protein complex

known as the aryl hydrocarbon receptor. The strachf this complex is unknown. The
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analysis of these effects is further complicated ttuthe chemical diversity of PCDFs, PCBs
and PCDDs.
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Figure 1. Numbering of carbon atoms for polychloro derivesi studied in this communication:
1- PCDF2-PCDD,3-PCB

The Aryl hydrocarbon Receptor (AhR) protein is #osplic transcription factor that is
normally inactive, being attached to several copehanes. Upon binding to some natural
ligands (e. g. bilirubin, prostaglandin G) or sytth chemicals (such as polychloro
compounds or aromatic hydrocarbons), the chaperdisssciate allowing the translocation
of AhR into the nucleus leading to changes in g&aescription, and resulting in the
induction of metabolizing enzymes that cause thelpetion of metabolites which should be
more easily excreted but in this case are moretoxi

Among QSAR studies about the toxicity of polyhalogied aromatics (expressed
either by the affinity for aryl hydrocarbon receptw by the toxic equivalency factors, TEF),
several papers will be mentioned with a brief cbtmézation. TEF values assume a value of
8.444 for 2,3,7,8-TetraCDBF are larger than thegioél published plg data by a factor of
1.143 (one may check if this factor is involveddata sets by looking at the values for 4-
monochloroCDF: 3.00 for original AhR affinity and43 for TEF).

Whereas the trend of increasing cancer incidendmiisg counteracted by measures
for restricting smoking and chlorinated insectisidand also for reducing organics in exhaust
gases, polyhalogenated aromatics are still présdhie environment and are responsible for
both cancer and endocrine disruption. Municipaldselaste combustion produces PCDDs
and PCDFs[15-16] whereas PCBs employed in indlispracesses (heat-transfer and
insulating fluids in cooling systems and electriegjuipment, as well as sealants, rubber,
paints, plastics, printing ink, and insecticides still around and are accidentally released.

Previous QSAR analyses have suggested that steleéctrostatic, hydrophobic,

hydrogen bonding and dispersion properties mayballimportant for receptor binding



-563-

affinity.[17-20] In order to take into considerati@ll these structural descriptor electronic
eigenvalues,[21] topological charge indices,[22Janfum chemical descriptors[23] were
suggested as suitable structural descriptors. filtkes were not limited just to prediction of
toxicological effects but were trying to model soervironmental behavior as well, that is,
partitioning properties,[24] sub-cooled liquid vapopressure,[25] bioconcentration
factors,[26] and even microbial degradation prapeff27]

Toxic potency differences have been discovered gnspecies such as humans and
fish.[28] Correspondences among bromo- and chlamabstituted aromatics could be
accounted for.[29] Elaborated approaches using Goolving alignment of ligands,[30]
3D-QSAR,[31] or molecular descriptors based on othentum-chemical data[32-33] have
been employed. The binding mechanism for AhR[34]) (8 a multidimensional approach
involving two other receptors offered new insigfas]

A thorough QSAR study by Katritzky, Karelson aneithcoworkers[36] used their
CODESSA program for modelingioconcentration factorsf polychlorinated biphenyls. We
report results obtained by using the CODESSA pmoga modeling AhR binding affinities.

Several authors analyzed the published data for Bim@ing affinities for the three
classes of polyhalogenated aromatics. Benfenati cavebrkers[37] mentioned that in the
absence of the AhR molecular structure, one haseovirtual screening, and we agree that
the information provided by Song et al.[38] on eaay crystallographic data because it
covers only the bHLH domain of AhR.[39] The piQlata used[37] were normalized to a
value of 8.444 for 2,3,7,8-TetraCDBF are largentttee original published data by a factor of
1.143; three PCDF structures are duplicated, naB#B6 and60-62 in reference.[37] The
same normalization factor was applied in ref. 18 Vsed 0B values from the same
reference[37] in order to examine how the Balabahex or the related variable indices
behave in biparametric correlations having as #eoisd parameter either the number of
halogen atoms or the |Bgralue of the polyhalogenated aromatics.

Table 1. Experimental and cross-validated AhR affinityues for polychlorobiphenyls3)

Cross- Code
No. | Structure Experimental® | validated”
1]|2,4,2'4-TetraCBP 3.89 3.93 47
2| 2,3,4,4-TetraCBP 4.55 4.87 60
3| 2,3,4,5-TetraCBP 3.85 4.27 61
41 3,3,4,4-TetraCBP 6.15 6.37 77
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512,3,3',4,4'-PentaCBP 5.37 5.18 106
6| 2,3,4,4'5-PentaCBP 5.39 5.14 144
7| 2,3,4,4'5-PentaCBP 5.04 5.19 118
81 3,3,4,4' 5-PentaCBP 6.89 5.90 127
912,34'.4,5-PentaCBP 4.85 4.77 123
10| 2,2',4,4',5,5-HexaCBP 4.10 4.09 158
111 2,3,3',4,4' 5-HexaCBP 5.15 5.54 156
121 2,3,3',4,4' 5-HexaCBP 5.33 5.27 157
13| 2,3'4,4'5,5-HexaCBP 4.80 5.31 16y
14| 2,3'4,4'5',6-HexaCBP 4.00 4.36 168
15| 4'-Me-2,3,4,5-TetraCBP 451 5.21
16 | 4-OH-2,3,4,5-TetraCBP 4.05 4.49
17| 4'-1-2,3,4,5-TetraCBP 5.82 5.68
18| 4'-F-2,3,4,5-TetraCBP 4.60 4.57
19| 4'-Br-2,3,4,5-TetraCBP 5.60 5.43
20| 4'-Et-2,3,4,5-TetraCBP 5.46 5.04
21| 4-i-Pr-2,3,4,5-TetraCBP 5.89 5.21
22| 4'-n-Bu-2,3,4,5-TetraCBP 5.13 5.12
23| 4'-t-Bu-2,3,4,5-TetraCBP 5.17 5.42
24| 4'-Ph-2,3,4,5-TetraCBP 5.18 5.27
25| 4'-RC-2,3,4,5-TetraCBP 6.43 6.59
26 | 4'-CN-2,3,4,5-TetraCBP 5.27 3.99
27| 4-Me0-2,3,4,5-TetraCBP 4.80 4.33
28| 4'-Ac-2,3,4,5-TetraCBP 5.17 5.52
29| 4'-NO,-2,3,4,5-TetraCBP 4.85 5.31
30| 4'-AcNH-2,3,4,5-TetraCBP 5.09 4.94

2From refs. [42, 46]
b |eave-one-out cross-validation results.

Within our study, we have tested the creation oftivariate models using different
structural descriptors to model aryl hydrocarboneptor binding affinity of chlorinated
biphenyls, dibenzofurans and dioxins. A special leasjs was given to the development of
some simple mathematical structural representationsorder to obtain structural
interpretations of the prediction modelsshould be stressed that the QSAR methodology
applied in this study can be applied also to othhesses of chemicals and it is not limited to
chlorinated organic compounds (in a few casesptksent study deals also with brominated

derivatives).
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2 Experimental

Data sets

Aryl hydrocarbon receptor (AhR) binding affinitie§log(1/EGs)] for 30
polychlorobiphenyls (PCBs), 20 polychlorodibenzd-tljoxins (PCDDs), and 32
polychlorodibenzofurans (PCDFs) have been takem fthe literature and are shown in
Tables 1 to 3.[40-49] For the 209 possible PCBsnitraenclature proposed by Ballschmiter
and Zell[50] (50) was completed by Schulte and Bi[51] then by Guitast al. (52),[52]
and reviewed by Mills llet al;[53] this corresponding code is presented in &s¢ ¢column of
Table 1. For PCBs derived from 2,3,4,5-TetraCBDt theave a 4-substituent different from
chlorine and are shown in the lower part of Tahladlnumber is provided in the last column.
Since the chlorine atom in abbreviations is indiddby C instead of Cl, we replace only P for
‘poly’ in abbreviations by Mono, Di, etc. but whbromine is present, we use Br. One should
mention that halogens in mixed halogenated poltatane occasionally designated by X in
the literature.[54-55] The names used in our Talilés 3 are easy to understand, using the

IUPAC numbering presented in Fig, 1.

Calculation of molecular descriptors and the creation of models using CODESSA

In order to obtain molecular descriptors[56-59]-&8 required for the creation of the
models, the optimized structural co-ordinates agdatomic charges were calculated by the
MOPAC software package.[60] More than 500 differetdpological, geometric,
informational, electrostatic, electrotopological darguantum-chemical descriptors were
calculated from the MOPAC output files using the MEBSA software.[36, 61] The
descriptors applied in the study contain informatabout the connections between atoms,
symmetry, shape, branching, distribution of chaegel quantum-chemical properties of the

molecule.

Table 2. Experimental and cross-validated AhR valuegfiyhalodibenzo-1,4-dioxin2)

Cross-
No. | Structure Experimental® | validated”
1 1-MonoCD 4.00 4.52
2 2-MonoBrD 6.53 6.75
3 2,7-DiBrD 7.81 7.08
4 2,8-DiCD 5.50 5.52
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5 1,2,4-TriCD 4.89 5.01
6 1,7,8-TriCD 6.66 6.33
7 2,3,7-TriCD 7.15 6.60
8 2,3,7-TriBrD 8.93 5.75
9 1,2,3,4-TetraCD 5.89 8.49
10 1,2,7,8-TetraCD 6.80 6.79
11 | 1,3,7,8-TetraCD 6.10 6.52
12 | 1,3,7,8-TetraBrD 8.70 8.22
13 | 2,3,7,8-TetraCD 8.00 7.23
14 1,3,7,9-TetraBrD 7.03 7.61
15 2,3,7,8-TetraBrD 8.82 9.48
16 | 2,3-DiBr-7,8-DiCD 8.83 9.13
17 1,2,3,7,8-PentaCD 7.10 6.61
18 1,2,4,7,8-PentaBrD 7.77 8.57
19 |1,2,3,4,6,7,8-HeptaCD 6.55 6.88
20 | OctaCD 5.00 5.57

2From ref. [21]
Leave-one-out cross-validation results.

The CODESSA software was also used for the setgttia best subset of structural
descriptors by minimizing errors in prediction pithe MLR modeling procedure. The
program is able to search for the best MLR mod¢h whe in-advance-selected number of
parameters by using the following selection procedulnitially all information-less
descriptors were omitted from the study, that issadiptors with no variation between
structures, descriptors which did not cover the leimoodeling space, and descriptors with the
squared correlation coefficient? smaller than 0.01. Afterwards, all squared pasew
correlation coefficients were calculated and onethaf two descriptors was removedrff
exceeded 0.95. By using this described elimingtimtedure 367 descriptors were left for the
stepwise selection of the best subset of structodites.

In the next step, the remaining descriptors werteddn the decreasing order of the
squared correlation coefficient of the simple linesgression model. The best ten descriptors
were selected. Afterwards, two-parameter MLR moudedee created by adding to each of ten
pre-selected descriptors a new descriptor froms#teof remaining structural indices. At the
same time the descriptors within individual MLR rebdvere pair-wise correlated and the
models in which the correlation coefficient exce@B were rejected. Finally, ten best two-
parameter models showing the highest F-value wadeeted. The addition of new descriptors
was repeated until the MLR model with the presatibamber of parameters was obtained. A
new descriptor was added to the existing MLR madfdi¢lwas not highly correlated with the
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descriptors already included (i.e. the pair-wiserelation coefficient above 0.8) and if the
resulting correlation gave F-value abowg ¥ n/(n + 1) (0 = number of descriptors in the new
working set). During each step the dimension of\thhidR model was increased by one. As the
final result of the described stepwise additioncprure, ten correlations with the pre-selected
number of descriptors were obtained showing thadsgsquared correlation coefficient.

Application of variable topological indicesin the prediction of biological toxicity

It should be mentioned that a molecular descrigtweracterizing the ‘topological
shape’ of molecules, namely the distance-basedgedrmolecular connectivity, is known as
the Balaban index].[62] The averaged distance-based connectivityxindés a molecular
descriptor devised so as to encode informationhen“topological shape” of the molecular
hydrogen-depleted graph: unlike the molecular cotiviey index introduced by Rané{63]
which is based on the vertex degree and depends dotthe shape and the size of the
molecule, index] compensates the size (represented by the numbEgraph vertices) by
multiplication with the numbeq of graph edges and division by one plus the cyatam
number=q—n +1:

n i=1

3=-93"%'d, @) @

- u+1E=

Table 3. Experimental and calculated AhR values for polgobdiibenzofuransl)

No. [ Structure Exper.’ J J'e cVv® | cv® logP®
1| DF 3.00 2.3207 0.05447% 2.86 2.54 3.71
2 | 2-MonoCDF 3.55 2.2977 0.05434 3.06 3.78 4.48
3| 3-MonoCDF 4.38 2.2742 0.0542| 4.02 4.31 4.48
4 | 4-MonoCDF 3.00 2.3251 0.05440 3.34 3.29 4.48
51 2,3-DICDF 5.33 2.2884 0.05417 4.98 5.17 5.04
6| 2,6-DICDF 3.61 2.3054 0.05427 4.22 4.35 5.12
7 | 2,8-DICDF 3.59 2.2832 0.05421 3.89 4.92 5.12
81 1,3,6-TriCDF 5.36 2.3367 0.05428 5.57 4.59 5.82
9| 1,3,8-TriCDF 4.07 2.3158 0.0541) 4.90 5.26 582
10| 2,3,4-TriCDF 4.72 2.3406 0.05414 5.78 5.49 5.69
11| 2,3,8-TriCDF 6.00 2.2763 0.05404 6.29 6.23 567
12| 2,6,7-TriCDF 6.35 2.2959 0.05410 5.7% 5.7 567
13| 1,2,3,6-TetraCDF 6.46 2.3658 0.05414 5.82 531 6.23
141 1,2,3,7-TetraCDF 6.96 2.3237 0.05401 6.73 6.43 6.23
151 1,2,4,8-TetraCDF 5.00 2.3767 0.05420 5.05 4.89 6.42
16| 1,3,6,8-TetraCDF 6.66 2.3432 0.05412 6.24 543 6.53
17| 2,3,4,6-TetraCDF 6.46 2.3464 0.05408 6.31 5.87 6.23
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18] 2,3,4,7-TetraCDF 7.60 2.3049 0.05395 7.38 6.0 g.23
19| 2,3,4,8-TetraCDF 6.70 2.3266 0.05402 6.24 6.41 6.23
201 2,3,6,8-TetraCDF 6.66 2.3049 0.05400 6.7 6.p5 6.53
21| 2,3,7,8-TetraCDF 7.39 2.2703 0.05388 7.45 7.61 G.23
2211,2,3,4,8-PentaCDF 6.92 2.4000 0.054p7 5.68 596 83 6.
2311,2,3,6,7-PentaCDF 7.17 2.3540 0.053P8 7.85 6(71 98 6.
2411,2,3,7,8-PentaCDF 7.13 2.3379 0.053p2 7.82 712379 6.
2511,2,3,7,9-PentaCDF 6.40 2.3751 0.05405 5.65 6/18 93 6.
26| 1,2,4,6,8-PentaCDF 5.51 2.4014 0.054{16 541 5(17 13 7.
2711,2,4,7,8-PentaCDF 5.89 2.3660 0.054p4 6.57 6(28 98 6.
281 1,3,4,7,8-PentaCDF 6.70 2.3479 0.053p7 6.83 6(80 93 6.
291 1,3,4,7,9-PentaCDF 4.70 2.4041 0.054(16 4.81 5(34 13 7.
30| 1,3,6,7,8-PentaCDF 6.70 2.3544 0.053p8 6.Y4 6(73 98 6.
31| 2,3,4,7,8-PentaCDF 7.82 2.3179 0.05386 7.69 717579 6.
32| 2,3,4,7,9-PentaCDF 6.70 2.3544 0.053P8 6.98 6/73 93 6.
33| 1,2,3,4,7,8-HexaCDF 6.64 2.3884 0.053p1 7.16 751.397
34| 1,2,3,6,7,8-HexaCDF 6.57 2.3810 0.05300 7.23 7149.34 7
35]1,2,3,6,7,9-HexaCDF 5.08 2.4117 0.05402 5.90 6/59.53 7
36 2,3,4,6,7,9-HexaCDF 7.33 2.3917 0.05396 6.79 6/89.34 7

&From ref. [21, 32]

P Cross-validation results of the model with pararepresented in Table 5.
°Cross-validated results using the modified varidaéaban index

4 From ref?’

As a consequence, when the data set indicatestenstic variation with molecular size,
indexJ should be used in multiparametric (at least bipaitaia) correlations.

As a side remark, in a paper by H. X. Zhang andackers[64] on a QSAR study of
PCDD, PCDF, and PCB using a heuristic method apgat vector machine, the heuristic
method for selecting CODESSA-parameters found ttmatBalaban index was the first and
most powerful descriptor.

Variable topological indices have been introducedearly nineties[65-67] as an
alternative way to account for characterizatiometeroatoms in the molecule. The individual
contributions of different atoms were introduced replacing zero diagonal entries in the
adjacency matrix with the variable weights whoséues are optimized during modeling
procedure. Despite initial promising results angbréed high quality regressions (68-70),[68-
70] it was soon obvious that only adjacency-matetated indices cannot be used in all cases
because they somehow postulate intramolecular aictien/influences only for adjacency
between atoms in the molecules. To account fordongnge interactions, several classes of
distance related indices were introduced from thigarsal distance connectivity indices .[71-
72] Then variable distance connectivity index taepuariable distance indices based solely
on distance matrix. However, especially for thedattwo classes, very limited numbers of
applications were reported.[73-74]
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The aim of this report is to apply the variabletali€e connectivity index and the
newly-developed distance-weighted variable conmiégtindex for modeling the toxicity of
polychlorobenzofurans, where presumably long-raimggamolecular interactions play very
important role. However, an even more importantl gafathis study was the structural
interpretation of the obtained models.

The distance-weighted variable connectivity indeaswecently introduced for the
modeling of pK values of organic and halogenated organic acilslffwas defined as a

topological distance-weighted variable connectitfiigex of the complete graph (equation 1):
[ [ n 3 2
' =szi,j_/‘ iTj :Z Zdi,jﬂn(dif);os 2
i=1 j=i+l i=1 j=i+l 1=
whered;; represents the topological distance between esri@ndj, n is the number of

vertices in the molecul@, is the distance weighting exponem{j is the partial contribution

of the vertex paii,j, and &,"is the row sum of théth vertex in the augmented adjacency

matrix. The index is calculated for the completepdr representing the hydrogen-depleted
compound.

On the other hand, the variable distance-based ifmtevariable Balaban index) is a
topological-distance-related index and is calculd®m the modified distance matrix,[74]
where individual atom contributions are introdudetb the diagonal of the distance matrix.
Afterwards the variable index is calculated in #sme way as with the modified Balaban
index,[62] by using equation 2:

izl

J'= Z (d, mj )% ©))

n
i=1 j=1
whered, and d; are row sums of the modified distance matrix, arftene diagonal zero
elements were substituted by the weights for tdévidual types of heteroatoms. In equation
3, we leave out the normalizing factor containihg humber of edges and the cyclomatic
number, in order to allow the size of the grapmftuence the value of the descriptor. Earlier,
it was shown that the advantage of distance-bagmldgical indices consisted in the fact that
local vertex invariants such as distance sums ceasily allow including information on the
nature of heteroatoms and bond multiplicity.[76-F8} the Balaban index, one could choose
between parameters characterizing the relativetrelgegativity or covalent radius of the
heteroatom with respect to those of the carbon atom
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Testing of the prediction capabilities of the MLR models

The leave-one-out (LOO) cross-validation procedues used for the evaluation of
the prediction capabilities of MLR models duringetistepwise selection of structural
descriptors. The MLR model with the best crossedatlon results was chosen for further
evaluation. Since the number of data points in edatia set was relatively low, the same
cross-validation procedure was used also for the Bvaluation of the created models.

3 Results and Discussion

Most data points were found for AhR binding affiest and this is why the most
detailed studies were performed on this data Separate QSPR models were developed for
the prediction of binding affinities for the thrsets of polychlorinated compounti®2, and3.

A chemical structure was encoded by 367 differafibrimational, topological, geometric,
electrostatic, electrotopological and gquantum-cloamindices calculated by the CODESSA
software. Afterwards an optimah-parameter MLR model with up to 10 descriptors was
selected based on the best cross-validation cébibbtained by the leave-one-out cross-
validation procedure. The influence of the numbfesedected parameters of the MLR model
on its cross-validation capabilities was evaluafiéite squared correlation coefficiemfsand

¢ as well as standard error(s) were calculated &oh erdimensional MLR model. As an
example, the dependence of the values of thesenpéees on the numben of descriptors for
modeling the toxicity of polychloro-biphenyls isastn in Fig. 2.
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Figure 2. Dependence af, ¢? ands on the number of descriptors in MLR model (PCBs)
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Figure 3. Experimental vs. calculated activities: a - polpcb-biphenyls, b - polychloro-

dibenzofurans and c - polyhalo-dibenzodioxins

In all casest? for the retrieved values increases with the nunofgrarameters of the
MLR model. On the other hand, the parameter for phedicted valuesqf) increases

markedly only at the beginning and then more slowlth fluctuations. Such a result is
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expected because with the addition of each newrigéscto the model we are improving the
structural description of the chemical compoundt th, we are introducing structural features
that contain some information about modeled prgpérhis goes only up to the point where
new descriptors cannot improve the structural memation any more. The? for the
retrieved values still increases but the crossdasiion ability of the models decreases. The
model is over-fitted and the new structural indiaesintroducing noise into the model.

In the case of polychloro-biphenyls, three-paramdteR models were selected for
the calculating AhR binding affinities. Using a #dan approach, four-parameter and three-
parameter MLR models were selected for the modeiimg binding affinities for chlorinated
dibenzofurans and dioxins, respectively. The setbctlescriptors and the regression
coefficients of all three models are listed in EsbK. Interestingly, there is no common
descriptor for these three polyhalo-aromatics.

All final models were cross-validated in order totain estimates for the prediction
ability of the developed models. The experimentl aross-validated results are shown in
Figure 3 and Tables 1 to 3. The correspondifigvalues for chlorinated biphenyls,
dibenzofurans and dibenzodioxins were 0.638, 0a88&800.877, respectively, as seen in Table
5. This Table also contains data for the correfafactorr? standard errorsj, root mean
square error (RMS), and RMS of cross-validation cpdures (RM§). The most
homogeneous data set was for chlorinated dibenziodioOn first sight, the models for
toxicity were different between the three chemidakses. However, a closer analysis of the
obtained models showed that intramolecular diswrmetween chlorine atoms as well as
distribution of the charges play an important rislehe determining the biological activity.
This is why we have tested some topological indibes$ are able to encode such structural
features.

Two types of variable topological indices (the aaie distance connectivity index and
the variable Balaban distance index) were testawjube polychloro-dibenzofuran data set.
Both indices are able to encode information abaietoatoms and distant intramolecular
interactions. However, the first index failed taede structural features that are important for
the particular modeling property. During the opt#iation procedure, the Simplex algorithm
did not converge to the better solution but wasllasag around the value that was obtained
by random weights. On the other hand, a strong eg@nce was noticed in the case of the



variable Balaban index. In Fig. 4 we show the expental vs. calculated results for the

variable Balaban index.
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Table 4.Regression coefficients and selected structursdrifgors for predicting AhR receptor

binding affinities of polychloro-biphenyls, polyaib-dibenzofurans and polychloro-dibenzodioxins

by the CODESSA program

Regression
coefficient

Standard  error

0

regression coefficient

f Structural descriptor

Polychloro-biphenyls3)

-445.1 84.9 Intercept

1.189 0.21 Minimal electron-nucleus attractiond C—CI bond
-222.8 47.8 Fractional PPSA (PPSA-3/TMSA) [ZeflsoPC]
-0.0893 0.022 Minimal electron-nucleus attracfiona C—C bond
Polychloro-dibenzofurand)

40.2 6.0 Intercept

47.2 4.1 Topographic electronic index (all borf@gfirov's PC]
-27.0 3.0 Balaban index

-170 64 Minimal nucleophilic reactivity index farCl atom

85 35 Maximal 1-electron reactivity index for ara@m

Polychloro-dibenzodioxins2f

11.0 14 Intercept

40.8 3.7 Minimal net atomic charge for a C atom

0.172 0.037 ESP-PNSA-3 Atomic charge weigH®5A [Semi-MO
PC]

-471.2 135.9 Maximum nucleophilic reactionerdor an O atom

The following equation was obtained for modeling &hR of PCDFs:

where weights for C, O, and Cl atoms were 208.6281and 7317.6, respectively. As it can
be seen, the much higher weight of chlorine indisats decisive role in toxicity; the even

log

=-8273)" +4533 )

ECy
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higher weight for oxygen is not essential becatswés not vary among the PCDFs. Since
this index is bond-additive, we can analyze whittuciural feature of the molecule is
predominant in determining the toxicity: the eqoati4 contains a negative slope fbf,
therefore the lower the value &f, the higher the toxicity. From equation 3 one sas that
small bond contributions are associated with che@toms situated at larger distances from
the central furan ring in PCDFs, which is consisteith experiments, and may be useful for a

better understanding of the interaction betweeragmist and the AhR protein.

Table 5. Statistical parameters for MLR and variable dggorimodels

PCBE PCDDZ PCDFE PCDF§
r2 0.73 0.92 0.89 0.80
o 0.64 0.88 0.86 0.76

s 0.40 0.43 0.48 0.62
RMS 0.37 0.39 0.45 0.60
RMS., | 0.44 0.48 0.51 0.66

®MLR procedures
PVariable descriptor model

9.0

8.0 y=0.788x +1.24
' ?=0.759 ¢ ¢

7.0
6.0

5.0

Cross-validated AhR

4.0

3.0

2.0

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Experimental AhR

Figure 4. Calculatedvs. experimental biological activities using the vaté Balaban index for
polychloro-dibenzofurans.
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Although the result of MLR models using electrastaaind quantum-chemical
descriptors appears to be better than when usipgidgical models, the advantage of the
latter is the structural interpretation. The analysf the optimal weights showed that the
position of chlorine atoms at the highest distabetveen them in the molecule is the most
important structural factor for the modeling toxycin the case of polychloro-dibenzofurans.

The three MLR models that were developed for tHeutation of aryl hydrocarbon
receptor (AhR) binding affinity of chlorinated biphyls, dibenzofurans and dibenzodioxins
were able to explain more than 70% of the totalavene. The best prediction models were
obtained in the case of polychloro-dibenzodioxind the worst in the case of biphenyls. The
structural interpretation of the obtained modelsvghthat the distribution of charge and the
distant intramolecular interactions play importesies for modeling the toxicity. The newly
developed variable Balaban's distance-based topmaibgndex showed reasonable modeling
abilities and superior interpretation abilities wheobmpared to classical MLR QSAR models.
It should be mentioned that Sabljic et al.[79-808Jantschi et al.[81-83] have also published
reports correlating the toxicity of polychlorinatestomatics with topological molecular
descriptors.

As a side remark to data for PCBs, the logP valisted in Table 3 show weak
correlations i? = 0.51) with experimental AhR values and with drendJ’ indices ¢ = 0.64)
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