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Abstract 
 

In order to perform the screening of new potential pollution points and to estimate their impact on the 
environment, a quantitative structure-activity research (QSAR) modeling procedure was used to 
estimate possible toxicological effects of substances that were introduced into the environment. We 
have focused our study initially to known persistent toxic compounds with defined toxicological 
mechanisms. Such groups of studied chemicals are polychlorinated aromatic compounds. Three 
multiple linear regression (MLR) models were developed for the calculation of aryl hydrocarbon 
receptor (AhR) binding affinity of polychlorinated biphenyls (PCBs), dibenzofurans (PCDFs) and 
dibenzodioxins (PCDDs). In all cases models were able to explain more than 70% of the total 
variance. Additionally, the correlating capability of the newly developed variable distance-based 
topological index was tested. It showed reasonable modeling abilities and superior interpretation 
abilities compared to classical MLR QSAR models. 

MATCH 

Communications in Mathematical 

and in Computer Chemistry 

MATCH Commun. Math. Comput. Chem. 75 (2016) 559-582 
                          

                                          ISSN 0340 - 6253  

 



 
 

 

Abbreviations 

AhR  aryl hydrocarbon receptor 
CODESSA comprehensive descriptors for structural and statistical analysis 
DDT  1,1-(4,4’-dichlorodiphenyl)-2,2,2-
trichloroethane 
EC50  half maximal effective concentration (1/log 
EC50 = induction activity) 
ESP  electrostatic potential 
EU  European Union 
LOO  leave one out 
MLR  multiple linear regression 
MOPAC molecular orbital package 
PCB  polychloro-biphenyl 
PCDD  polychloro-dibenzodioxin 
PCDF  polychloro-dibenzofuran 
PNSA  partial negative surface area 
PPSA   partial positive surface area 
r2   squared correlation coefficient 
q2  cross-validated squared correlation coefficient 
QSAR  quantitative structure-activity relationship 
QSPR  quantitative structure-property relationship 
REACH registration, evaluation and authorization of chemicals 
RMS  root mean square 
s   standard error 
TFP  traditional food products 
TMSA  total molecular surface area 
 
 

1 Introduction 
 

A quantitative risk assessment becomes increasingly important in the modern society 

and is slowly incorporated into legislation of different countries. For instance, the European 

Union (EU) has introduced the Registration, Evaluation and Authorization of CHemicals 

(REACH) program for assessment of human and environmental risk of all chemicals that are 

produced or imported in the amount greater than 1 ton per year. It is clear that if such a risk 

assessment is performed purely experimentally, it would require a huge amount of resources 

as well as time. Therefore, the introduced program encouraged the use of QSAR modeling 

and other alternatives especially for the risk assessment of chemicals that are produced or 

imported in smaller quantities. 

In order to perform screening of new potential pollution points and to estimate their 

impact on environment, a QSAR modeling procedure was used to estimate possible 
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toxicological effects of substances that were introduced into the environment due to 

modification of traditional food products (TFP) production. Since we are dealing with 

structurally very diverse sets of compounds possessing different toxicological mechanisms, it 

is impossible to create just one prediction model for all possible compounds. Therefore, we 

have focused our study initially to known persistent toxins with defined toxicological 

mechanisms. Such groups of studied chemicals are the polychlorinated aromatic compounds. 

Among polychlorinated aromatic compounds, the most environmentally dangerous 

chemicals are derivatives of polychloro-dibenzofuran (PCDF, 1), polychloro-dibenzo-1,4-

dioxin (PCDD, 2), and polychloro-biphenyl (PCB, 3), as shown in Fig. 1. Like the persistent 

chlorofluorocarbons that were extensively used until the discovery of their deleterious effect 

on the ozone layer, these polychloroaromatic compounds are harmful to the environment. 

Similarly to other polychlorinated compounds (used as efficient pesticides such as DDT, 

Aldrin and Dieldrin, which led to the “Silent Spring” due to bioaccumulation in fatty tissues 

of insects, birds and other higher organisms), the title compounds exert a powerful toxic effect 

on humans (endocrine disruptors, neurotoxic, carcinogens), and one of the polychlorodibenzo-

1,4-dioxin isomers is among the most toxic organic chemicals.[1] Due to their chemical 

stability, these compounds make their way up the food chain, therefore they bioaccumulate in 

fatty tissues. Their emissions have been decreasing during last decades. This can be observed 

in the trend of their environmental concentration[2-7] as well as exposure measurements.[8-

11] However, even as impurities of other present-day pesticides and other small sources, these 

polychlorinated compounds constitute a threat.[12] A comprehensive review of their different 

toxicological effects was published.[13]  

The toxic equivalency factors (TEFs) or toxic equivalent concentrations (TEQs) 

released by the World Health Organization[14] indicate relative toxicities with respect to the 

most harmful compound, 2,3,7,8-TCDD by half-orders of magnitude. Such imprecise data 

discussed in literature[12] may be due to multiple mechanisms of action. In the present study, 

we examined more accurate data dealing with the interaction with a single receptor. An 

important stereochemical feature of PCBs is the coplanarity dictated by the absence of 

substituents in positions 2, 2’,6, and 6’. It is suggested that the toxic effects are not the result 

of direct action of these compounds but are mediated through a specific protein complex 

known as the aryl hydrocarbon receptor. The structure of this complex is unknown. The 
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analysis of these effects is further complicated due to the chemical diversity of PCDFs, PCBs 

and PCDDs.  

 

 

Figure 1. Numbering of carbon atoms for polychloro derivatives studied in this communication:  
1 – PCDF, 2 – PCDD, 3 – PCB 

 

The Aryl hydrocarbon Receptor (AhR) protein is a cytosolic transcription factor that is 

normally inactive, being attached to several co-chaperones. Upon binding to some natural 

ligands (e. g. bilirubin, prostaglandin G) or synthetic chemicals (such as polychloro 

compounds or aromatic hydrocarbons), the chaperones dissociate allowing the translocation 

of AhR into the nucleus leading to changes in gene transcription, and resulting in the 

induction of metabolizing enzymes that cause the production of metabolites which should be 

more easily excreted but in this case are more toxic. 

Among QSAR studies about the toxicity of polyhalogenated aromatics (expressed 

either by the affinity for aryl hydrocarbon receptor or by the toxic equivalency factors, TEF), 

several papers will be mentioned with a brief characterization. TEF values assume a value of 

8.444 for 2,3,7,8-TetraCDBF are larger than the original published pIC50 data by a factor of 

1.143 (one may check if this factor is involved in data sets by looking at the values for 4-

monochloroCDF: 3.00 for original AhR affinity and 3.43 for TEF). 

Whereas the trend of increasing cancer incidence is being counteracted by measures 

for restricting smoking and chlorinated insecticides, and also for reducing organics in exhaust 

gases, polyhalogenated aromatics are still present in the environment and are responsible for 

both cancer and endocrine disruption. Municipal solid waste combustion produces PCDDs 

and PCDFs[15-16] whereas PCBs employed in industrial processes (heat-transfer and 

insulating fluids in cooling systems and electrical equipment, as well as sealants, rubber, 

paints, plastics, printing ink, and insecticides) are still around and are accidentally released.  

Previous QSAR analyses have suggested that steric, electrostatic, hydrophobic, 

hydrogen bonding and dispersion properties may all be important for receptor binding 
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affinity.[17-20] In order to take into consideration all these structural descriptor electronic 

eigenvalues,[21] topological charge indices,[22] quantum chemical descriptors[23] were 

suggested as suitable structural descriptors. The studies were not limited just to prediction of 

toxicological effects but were trying to model some environmental behavior as well, that is, 

partitioning properties,[24] sub-cooled liquid vapor pressure,[25] bioconcentration 

factors,[26] and even microbial degradation properties.[27]  

Toxic potency differences have been discovered among species such as humans and 

fish.[28] Correspondences among bromo- and chloro- substituted aromatics could be 

accounted for.[29] Elaborated approaches using CoMFA involving alignment of ligands,[30] 

3D-QSAR,[31] or molecular descriptors based on other quantum-chemical data[32-33] have 

been employed. The binding mechanism for AhR[34] (34) or a multidimensional approach 

involving two other receptors offered new insights.[35]  

A thorough QSAR study by Katritzky, Karelson and their coworkers[36] used their 

CODESSA program for modeling bioconcentration factors of polychlorinated biphenyls.  We 

report results obtained by using the CODESSA program for modeling AhR binding affinities. 

Several authors analyzed the published data for AhR binding affinities for the three 

classes of polyhalogenated aromatics. Benfenati and coworkers[37] mentioned that in the 

absence of the AhR molecular structure, one has to use virtual screening, and we agree that 

the information provided by Song et al.[38] on the X-ray crystallographic data because it 

covers only the bHLH domain of AhR.[39] The pIC50 data used[37] were normalized to a 

value of 8.444 for 2,3,7,8-TetraCDBF are larger than the original published data by a factor of 

1.143; three PCDF structures are duplicated, namely 54-56 and 60–62 in reference.[37] The 

same normalization factor was applied in ref. 18. We used logP values from the same 

reference[37] in order to examine how the Balaban index or the related variable indices 

behave in biparametric correlations having as the second parameter either the number of 

halogen atoms or the logP value of the polyhalogenated aromatics. 

Table 1.   Experimental and cross-validated AhR affinity values for polychlorobiphenyls (3) 
 

No. Structure Experimentala 
Cross-

validatedb 
Code 

1 2,4,2',4'-TetraCBP 3.89 3.93 47 
2 2,3,4,4'-TetraCBP 4.55 4.87 60 
3 2,3,4,5-TetraCBP 3.85 4.27 61 
4 3,3',4,4'-TetraCBP 6.15 6.37 77 
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5 2,3,3',4,4'-PentaCBP 5.37 5.18 105 
6 2,3,4,4',5-PentaCBP 5.39 5.14 144 
7 2,3',4,4',5-PentaCBP 5.04 5.19 118 
8 3,3',4,4',5-PentaCBP 6.89 5.90 127 
9 2,3',4',4,5'-PentaCBP 4.85 4.77 123 

10 2,2',4,4',5,5'-HexaCBP 4.10 4.09 153 
11 2,3,3',4,4',5-HexaCBP 5.15 5.54 156 
12 2,3,3',4,4',5’-HexaCBP 5.33 5.27 157 
13 2,3',4,4',5,5'-HexaCBP 4.80 5.31 167 
14 2,3',4,4',5',6-HexaCBP 4.00 4.36 168 
15 4'-Me-2,3,4,5-TetraCBP 4.51 5.21  
16 4'-OH-2,3,4,5-TetraCBP 4.05 4.49  
17 4'-I-2,3,4,5-TetraCBP 5.82 5.68  
18 4'-F-2,3,4,5-TetraCBP 4.60 4.57  
19 4'-Br-2,3,4,5-TetraCBP 5.60 5.43  
20 4'-Et-2,3,4,5-TetraCBP 5.46 5.04  
21 4'-i-Pr-2,3,4,5-TetraCBP 5.89 5.21  
22 4'-n-Bu-2,3,4,5-TetraCBP 5.13 5.12  
23 4'-t-Bu-2,3,4,5-TetraCBP 5.17 5.42  
24 4'-Ph-2,3,4,5-TetraCBP 5.18 5.27  
25 4'-F3C-2,3,4,5-TetraCBP 6.43 6.59  
26 4'-CN-2,3,4,5-TetraCBP 5.27 3.99  
27 4'-MeO-2,3,4,5-TetraCBP 4.80 4.33  
28 4'-Ac-2,3,4,5-TetraCBP 5.17 5.52  
29 4'-NO2-2,3,4,5-TetraCBP 4.85 5.31  
30 4'-AcNH-2,3,4,5-TetraCBP 5.09 4.94  
a From refs. [42, 46] 

b Leave-one-out cross-validation results. 

 

Within our study, we have tested the creation of multivariate models using different 

structural descriptors to model aryl hydrocarbon receptor binding affinity of chlorinated 

biphenyls, dibenzofurans and dioxins. A special emphasis was given to the development of 

some simple mathematical structural representations in order to obtain structural 

interpretations of the prediction models. It should be stressed that the QSAR methodology 

applied in this study can be applied also to other classes of chemicals and it is not limited to 

chlorinated organic compounds (in a few cases, the present study deals also with brominated 

derivatives). 
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2 Experimental 
 
Data sets 

Aryl hydrocarbon receptor (AhR) binding affinities [log(1/EC50)] for 30 

polychlorobiphenyls (PCBs), 20 polychlorodibenzo-1,4-dioxins (PCDDs), and 32 

polychlorodibenzofurans (PCDFs) have been taken from the literature and are shown in 

Tables 1 to 3.[40-49] For the 209 possible PCBs the nomenclature proposed by Ballschmiter 

and Zell[50] (50) was completed by Schulte and Malisch,[51] then by Guitart et al. (52),[52] 

and reviewed by Mills III et al.;[53] this corresponding code is presented in the last column of 

Table 1. For PCBs derived from 2,3,4,5-TetraCBD that have a 4-substituent different from 

chlorine and are shown in the lower part of Table 1, no number is provided in the last column. 

Since the chlorine atom in abbreviations is indicated by C instead of Cl, we replace only P for 

‘poly’ in abbreviations by Mono, Di, etc. but when bromine is present, we use Br. One should 

mention that halogens in mixed halogenated pollutants are occasionally designated by X in 

the literature.[54-55] The names used in our Tables 1 to 3 are easy to understand, using the 

IUPAC numbering presented in Fig, 1. 

 

Calculation of molecular descriptors and the creation of models using CODESSA 

In order to obtain molecular descriptors[56-59] (56-59) required for the creation of the 

models, the optimized structural co-ordinates and net atomic charges were calculated by the 

MOPAC software package.[60] More than 500 different topological, geometric, 

informational, electrostatic, electrotopological and quantum-chemical descriptors were 

calculated from the MOPAC output files using the CODESSA software.[36, 61] The 

descriptors applied in the study contain information about the connections between atoms, 

symmetry, shape, branching, distribution of charge, and quantum-chemical properties of the 

molecule. 

 

Table 2.   Experimental and cross-validated AhR values for polyhalodibenzo-1,4-dioxins (2) 
 

No. Structure Experimentala 
Cross-

validatedb 
1 1-MonoCD 4.00 4.52 
2 2-MonoBrD 6.53 6.75 
3 2,7-DiBrD 7.81 7.08 
4 2,8-DiCD 5.50 5.52 
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5 1,2,4-TriCD 4.89 5.01 
6 1,7,8-TriCD 6.66 6.33 
7 2,3,7-TriCD 7.15 6.60 
8 2,3,7-TriBrD 8.93 5.75 
9 1,2,3,4-TetraCD 5.89 8.49 
10 1,2,7,8-TetraCD 6.80 6.79 
11 1,3,7,8-TetraCD 6.10 6.52 
12 1,3,7,8-TetraBrD 8.70 8.22 
13 2,3,7,8-TetraCD 8.00 7.23 
14 1,3,7,9-TetraBrD 7.03 7.61 
15 2,3,7,8-TetraBrD 8.82 9.48 
16 2,3-DiBr-7,8-DiCD 8.83 9.13 
17 1,2,3,7,8-PentaCD 7.10 6.61 
18 1,2,4,7,8-PentaBrD 7.77 8.57 
19 1,2,3,4,6,7,8-HeptaCD 6.55 6.88 
20 OctaCD 5.00 5.57 

   a From ref. [21] 
   b Leave-one-out cross-validation results. 

 

The CODESSA software was also used for the selecting the best subset of structural 

descriptors by minimizing errors in prediction using the MLR modeling procedure. The 

program is able to search for the best MLR model with the in-advance-selected number of 

parameters by using the following selection procedure. Initially all information-less 

descriptors were omitted from the study, that is, descriptors with no variation between 

structures, descriptors which did not cover the whole modeling space, and descriptors with the 

squared correlation coefficient (r2) smaller than 0.01. Afterwards, all squared pair-wise 

correlation coefficients were calculated and one of the two descriptors was removed if r2 

exceeded 0.95. By using this described elimination procedure 367 descriptors were left for the 

stepwise selection of the best subset of structural indices.  

In the next step, the remaining descriptors were sorted in the decreasing order of the 

squared correlation coefficient of the simple linear regression model. The best ten descriptors 

were selected. Afterwards, two-parameter MLR models were created by adding to each of ten 

pre-selected descriptors a new descriptor from the set of remaining structural indices. At the 

same time the descriptors within individual MLR model were pair-wise correlated and the 

models in which the correlation coefficient exceeded 0.8 were rejected. Finally, ten best two-

parameter models showing the highest F-value were selected. The addition of new descriptors 

was repeated until the MLR model with the prescribed number of parameters was obtained. A 

new descriptor was added to the existing MLR model if it was not highly correlated with the 

-566-



 
 

descriptors already included (i.e. the pair-wise correlation coefficient above 0.8) and if the 

resulting correlation gave F-value above Fold × n/(n + 1) (n = number of descriptors in the new 

working set). During each step the dimension of the MLR model was increased by one. As the 

final result of the described stepwise addition procedure, ten correlations with the pre-selected 

number of descriptors were obtained showing the highest squared correlation coefficient. 

 

Application of variable topological indices in the prediction of biological toxicity 
 

It should be mentioned that a molecular descriptor characterizing the ‘topological 

shape’ of molecules, namely the distance-based averaged molecular connectivity, is known as 

the Balaban index, J.[62] The averaged distance-based connectivity index J is a molecular 

descriptor devised so as to encode information on the “topological shape” of the molecular 

hydrogen-depleted graph: unlike the molecular connectivity index introduced by Randić,[63] 

which is based on the vertex degree and depends both on the shape and the size of the 

molecule, index J compensates the size (represented by the number n of graph vertices)  by 

multiplication with the number q of graph edges and division by one plus the cyclomatic 

number µ = q – n + 1: 
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Table 3. Experimental and calculated AhR values for polychlorodibenzofurans (1) 

No. Structure Exper.a J Jf c CVb CVc logP d 
1 DF 3.00 2.3207 0.05447 2.86 2.54 3.71 
2 2-MonoCDF 3.55 2.2977 0.05434 3.06 3.78 4.48 
3 3-MonoCDF 4.38 2.2742 0.05427 4.02 4.31 4.48 
4 4-MonoCDF 3.00 2.3251 0.05440 3.34 3.29 4.48 
5 2,3-DiCDF 5.33 2.2884 0.05417 4.98 5.17 5.04 
6 2,6-DiCDF 3.61 2.3054 0.05427 4.22 4.35 5.12 
7 2,8-DiCDF 3.59 2.2832 0.05421 3.89 4.92 5.12 
8 1,3,6-TriCDF 5.36 2.3367 0.05423 5.57 4.59 5.82 
9 1,3,8-TriCDF 4.07 2.3158 0.05417 4.90 5.26 5.82 

10 2,3,4-TriCDF 4.72 2.3406 0.05414 5.73 5.49 5.59 
11 2,3,8-TriCDF 6.00 2.2763 0.05404 6.29 6.23 5.67 
12 2,6,7-TriCDF 6.35 2.2959 0.05410 5.75 5.67 5.67 
13 1,2,3,6-TetraCDF 6.46 2.3658 0.05414 5.82 5.31 6.23 
14 1,2,3,7-TetraCDF 6.96 2.3237 0.05401 6.73 6.43 6.23 
15 1,2,4,8-TetraCDF 5.00 2.3767 0.05420 5.05 4.89 6.42 
16 1,3,6,8-TetraCDF 6.66 2.3432 0.05412 6.24 5.43 6.53 
17 2,3,4,6-TetraCDF 6.46 2.3464 0.05408 6.31 5.87 6.23 
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18 2,3,4,7-TetraCDF 7.60 2.3049 0.05395 7.38 6.90 6.23 
19 2,3,4,8-TetraCDF 6.70 2.3266 0.05402 6.24 6.41 6.23 
20 2,3,6,8-TetraCDF 6.66 2.3049 0.05400 6.67 6.55 6.53 
21 2,3,7,8-TetraCDF 7.39 2.2703 0.05388 7.45 7.61 6.23 
22 1,2,3,4,8-PentaCDF 6.92 2.4000 0.05407 5.58 5.96 6.83 
23 1,2,3,6,7-PentaCDF 7.17 2.3540 0.05398 7.35 6.71 6.98 
24 1,2,3,7,8-PentaCDF 7.13 2.3379 0.05392 7.32 7.23 6.79 
25 1,2,3,7,9-PentaCDF 6.40 2.3751 0.05405 5.55 6.18 6.93 
26 1,2,4,6,8-PentaCDF 5.51 2.4014 0.05416 5.41 5.17 7.13 
27 1,2,4,7,8-PentaCDF 5.89 2.3660 0.05404 6.57 6.28 6.98 
28 1,3,4,7,8-PentaCDF 6.70 2.3479 0.05397 6.33 6.80 6.93 
29 1,3,4,7,9-PentaCDF 4.70 2.4041 0.05416 4.81 5.34 7.13 
30 1,3,6,7,8-PentaCDF 6.70 2.3544 0.05398 6.74 6.73 6.98 
31 2,3,4,7,8-PentaCDF 7.82 2.3179 0.05386 7.69 7.75 6.79 
32 2,3,4,7,9-PentaCDF 6.70 2.3544 0.05398 6.98 6.73 6.93 
33 1,2,3,4,7,8-HexaCDF 6.64 2.3884 0.05391 7.16 7.51 7.39 
34 1,2,3,6,7,8-HexaCDF 6.57 2.3810 0.05390 7.23 7.49 7.34 
35 1,2,3,6,7,9-HexaCDF 5.08 2.4117 0.05402 5.90 6.59 7.53 
36 2,3,4,6,7,9-HexaCDF 7.33 2.3917 0.05396 6.79 6.89 7.34 

a From ref. [21, 32] 
b Cross-validation results of the model with parameters presented in Table 5. 
c Cross-validated results using the modified variable Balaban index 
d From ref.27 

 

As a consequence, when the data set indicates a systematic variation with molecular size, 

index J should be used in multiparametric (at least biparametric) correlations.  

As a side remark, in a paper by H. X. Zhang and coworkers[64] on a QSAR study of 

PCDD, PCDF, and PCB using a heuristic method and support vector machine, the heuristic 

method for selecting CODESSA-parameters found that the Balaban index was the first and 

most powerful descriptor. 

Variable topological indices have been introduced in early nineties[65-67] as an 

alternative way to account for characterization of heteroatoms in the molecule. The individual 

contributions of different atoms were introduced by replacing zero diagonal entries in the 

adjacency matrix with the variable weights whose values are optimized during modeling 

procedure. Despite initial promising results and reported high quality regressions (68-70),[68-

70] it was soon obvious that only adjacency-matrix-related indices cannot be used in all cases 

because they somehow postulate intramolecular interaction/influences only for adjacency 

between atoms in the molecules. To account for longer-range interactions, several classes of 

distance related indices were introduced from the universal distance connectivity indices .[71-

72] Then variable distance connectivity index to pure variable distance indices based solely 

on distance matrix. However, especially for the latest two classes, very limited numbers of 

applications were reported.[73-74] 
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The aim of this report is to apply the variable distance connectivity index and the 

newly-developed distance-weighted variable connectivity index for modeling the toxicity of 

polychlorobenzofurans, where presumably long-range intramolecular interactions play very 

important role. However, an even more important goal of this study was the structural 

interpretation of the obtained models. 

The distance-weighted variable connectivity index was recently introduced for the 

modeling of pKa values of organic and halogenated organic acids.[75] It was defined as a 

topological distance-weighted variable connectivity index of the complete graph (equation 1): 

 ∑∑ ∏∑∑
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where di,j represents the topological distance between vertices i and j, n is the number of 

vertices in the molecule, λ is the distance weighting exponent, f ji ,χ is the partial contribution 

of the vertex pair i,j , and f
iδ is the row sum of the i-th vertex in the augmented adjacency 

matrix. The index is calculated for the complete graph representing the hydrogen-depleted 

compound. 

On the other hand, the variable distance-based index (or variable Balaban index) is a 

topological-distance-related index and is calculated from the modified distance matrix,[74] 

where individual atom contributions are introduced into the diagonal of the distance matrix. 

Afterwards the variable index is calculated in the same way as with the modified Balaban 

index,[62] by using equation 2:   
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where dj and di are row sums of the modified distance matrix, and where diagonal zero 

elements were substituted by the weights for the individual types of heteroatoms. In equation 

3, we leave out the normalizing factor containing the number of edges and the cyclomatic 

number, in order to allow the size of the graph to influence the value of the descriptor. Earlier, 

it was shown that the advantage of distance-based topological indices consisted in the fact that 

local vertex invariants such as distance sums could easily allow including information on the 

nature of heteroatoms and bond multiplicity.[76-78] For the Balaban index, one could choose 

between parameters characterizing the relative electronegativity or covalent radius of the 

heteroatom with respect to those of the carbon atom. 
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Testing of the prediction capabilities of the MLR models 

 

The leave-one-out (LOO) cross-validation procedure was used for the evaluation of 

the prediction capabilities of MLR models during the stepwise selection of structural 

descriptors. The MLR model with the best cross-validation results was chosen for further 

evaluation. Since the number of data points in each data set was relatively low, the same 

cross-validation procedure was used also for the final evaluation of the created models. 

 

3 Results and Discussion 
Most data points were found for AhR binding affinities and this is why the most 

detailed studies were performed on this data set.  Separate QSPR models were developed for 

the prediction of binding affinities for the three sets of polychlorinated compounds 1, 2, and 3. 

A chemical structure was encoded by 367 different informational, topological, geometric, 

electrostatic, electrotopological and quantum-chemical indices calculated by the CODESSA 

software. Afterwards an optimal m-parameter MLR model with up to 10 descriptors was 

selected based on the best cross-validation capabilities obtained by the leave-one-out cross-

validation procedure. The influence of the number of selected parameters of the MLR model 

on its cross-validation capabilities was evaluated. The squared correlation coefficients r2 and 

q2 as well as standard error(s) were calculated for each m-dimensional MLR model. As an 

example, the dependence of the values of these parameters on the number m of descriptors for 

modeling the toxicity of polychloro-biphenyls is shown in Fig. 2. 

 

Figure 2. Dependence of r2, q2 and s on the number of descriptors in MLR model (PCBs) 
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Figure 3. Experimental vs. calculated activities: a - polychloro-biphenyls, b - polychloro-

dibenzofurans and c - polyhalo-dibenzodioxins 

 

In all cases, r2 for the retrieved values increases with the number of parameters of the 

MLR model. On the other hand, the parameter for the predicted values (q2) increases 

markedly only at the beginning and then more slowly with fluctuations. Such a result is 
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expected because with the addition of each new descriptor to the model we are improving the 

structural description of the chemical compound, that is, we are introducing structural features 

that contain some information about modeled property. This goes only up to the point where 

new descriptors cannot improve the structural representation any more. The r2 for the 

retrieved values still increases but the cross-validation ability of the models decreases. The 

model is over-fitted and the new structural indices are introducing noise into the model. 

In the case of polychloro-biphenyls, three-parameter MLR models were selected for 

the calculating AhR binding affinities. Using a similar approach, four-parameter and three-

parameter MLR models were selected for the modeling AhR binding affinities for chlorinated 

dibenzofurans and dioxins, respectively. The selected descriptors and the regression 

coefficients of all three models are listed in Tables 4. Interestingly, there is no common 

descriptor for these three polyhalo-aromatics. 

All final models were cross-validated in order to obtain estimates for the prediction 

ability of the developed models. The experimental vs. cross-validated results are shown in 

Figure 3 and Tables 1 to 3. The corresponding q2 values for chlorinated biphenyls, 

dibenzofurans and dibenzodioxins were 0.638, 0.860 and 0.877, respectively, as seen in Table 

5. This Table also contains data for the correlation factor r2, standard error (s), root mean 

square error (RMS), and RMS of cross-validation procedures (RMScv). The most 

homogeneous data set was for chlorinated dibenzodioxins. On first sight, the models for 

toxicity were different between the three chemical classes. However, a closer analysis of the 

obtained models showed that intramolecular distances between chlorine atoms as well as 

distribution of the charges play an important role in the determining the biological activity. 

This is why we have tested some topological indices that are able to encode such structural 

features. 

Two types of variable topological indices (the variable distance connectivity index and 

the variable Balaban distance index) were tested using the polychloro-dibenzofuran data set. 

Both indices are able to encode information about heteroatoms and distant intramolecular 

interactions. However, the first index failed to encode structural features that are important for 

the particular modeling property. During the optimization procedure, the Simplex algorithm 

did not converge to the better solution but was oscillating around the value that was obtained 

by random weights. On the other hand, a strong convergence was noticed in the case of the 
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variable Balaban index. In Fig. 4 we show the experimental vs. calculated results for the 

variable Balaban index. 

 

Table 4. Regression coefficients and selected structural descriptors for predicting AhR receptor 

binding affinities of polychloro-biphenyls, polychloro-dibenzofurans and polychloro-dibenzodioxins 

by the CODESSA program 

 

Regression 

coefficient 

Standard error of 

regression coefficient 

Structural descriptor 

Polychloro-biphenyls (3) 

-445.1 84.9 Intercept 

1.189 0.21    Minimal electron-nucleus attraction for a C–Cl bond 

-222.8 47.8   Fractional PPSA (PPSA-3/TMSA) [Zefirov's PC] 

-0.0893 0.022   Minimal electron-nucleus attraction for a C–C bond 

Polychloro-dibenzofurans (1) 

40.2 6.0 Intercept 

47.2   4.1 Topographic electronic index (all bonds) [Zefirov's PC] 

-27.0 3.0  Balaban index 

-170 64  Minimal nucleophilic reactivity index for a Cl atom 

85 35 Maximal 1-electron reactivity index for an O atom 

Polychloro-dibenzodioxins (2) 

11.0    1.4 Intercept 

40.8    3.7 Minimal net atomic charge for a C atom 

0.172    0.037    ESP-PNSA-3 Atomic charge weighted PNSA [Semi-MO 

PC] 

-471.2    135.9   Maximum nucleophilic reaction index for an O atom 

 

The following equation was obtained for modeling the AhR of PCDFs: 

 
3.4538273

1
log

50

+−= fJ
EC

 (4) 

where weights for C, O, and Cl atoms were 208.6, 31126, and 7317.6, respectively. As it can 

be seen, the much higher weight of chlorine indicates its decisive role in toxicity; the even 
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higher weight for oxygen is not essential because it does not vary among the PCDFs. Since 

this index is bond-additive, we can analyze which structural feature of the molecule is 

predominant in determining the toxicity: the equation 4 contains a negative slope for J f, 

therefore the lower the value of J f, the higher the toxicity. From equation 3 one can see that 

small bond contributions are associated with chlorine atoms situated at larger distances from 

the central furan ring in PCDFs, which is consistent with experiments, and may be useful for a 

better understanding of the interaction between the agonist and the AhR protein. 

 

Table 5. Statistical parameters for MLR and variable descriptor models 

 

  PCBsa PCDDsa PCDFsa PCDFsb 

r2 0.73 0.92 0.89 0.80 

q2 0.64 0.88 0.86 0.76 

s 0.40 0.43 0.48 0.62 
RMS 0.37 0.39 0.45 0.60 

RMScv 0.44 0.48 0.51 0.66 
                                                       a MLR procedures 
                                                       b Variable descriptor model  

 

 

 

Figure 4. Calculated vs. experimental biological activities using the variable Balaban index for 

polychloro-dibenzofurans 1. 
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Although the result of MLR models using electrostatic and quantum-chemical 

descriptors appears to be better than when using topological models, the advantage of the 

latter is the structural interpretation. The analysis of the optimal weights showed that the 

position of chlorine atoms at the highest distance between them in the molecule is the most 

important structural factor for the modeling toxicity in the case of polychloro-dibenzofurans. 

The three MLR models that were developed for the calculation of aryl hydrocarbon 

receptor (AhR) binding affinity of chlorinated biphenyls, dibenzofurans and dibenzodioxins 

were able to explain more than 70% of the total variance. The best prediction models were 

obtained in the case of polychloro-dibenzodioxins and the worst in the case of biphenyls. The 

structural interpretation of the obtained models shows that the distribution of charge and the 

distant intramolecular interactions play important roles for modeling the toxicity. The newly 

developed variable Balaban’s distance-based topological index showed reasonable modeling 

abilities and superior interpretation abilities when compared to classical MLR QSAR models. 

It should be mentioned that Sabljic et al.[79-80] and Jäntschi et al.[81-83] have also published 

reports correlating the toxicity of polychlorinated aromatics with topological molecular 

descriptors. 

As a side remark to data for PCBs, the logP values listed in Table 3 show weak 

correlations (r2 = 0.51) with experimental AhR values and with the J and J’ indices (r2 = 0.64) 
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