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Abstract. Based on the physicochemical properties of amino acids, in this paper, we

first propose a novel graphical representation called 3D-PAF curve of protein sequence,

which incorporates the accumulative frequencies of adjacent amino acids of the protein

sequence. Then, we derive a 8-dimensional numerical vector to characterize a 3D-PAF

curve. Because a protein sequence corresponds to 12 kinds of 3D-PAF curves, we take a

96-dimensional vector as the feature vector of the protein sequence. The similarity be-

tween any two protein sequences can be measured by the standardized Euclidean distance

between their feature vectors. Finally we apply this new method on two data sets (nine

ND5 proeins, and 35 coronavirus spike proteins) to analysis the similarities of protein

sequences. The results both demonstrate the validity of our method.

1 Introduction

With more and more genome sequences being available on-line, biological sequence com-

parison becomes focus of research in bioinformatics and computational biology. Up to

now, lots of methods have been proposed to analyze DNA and protein sequences. These

methods can be classified into two categories: alignment-based [1–3] and alignment-free.
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Alignment–based methods use dynamic programming; it generates a matrix whose ele-

ments represent all possible alignments between two sequences. The highest set of se-

quential scores in the matrix defines an optimal alignment. But the search for optimal

solutions encounters difficulties in: (i) computational load with regard to large databases;

(ii) choosing the scoring schemes. Therefore, alignment-free methods have been developed

to overcome the limitations of alignment-based methods. The graphical representation of

biological sequences is one of the most commonly used alignment-free method, which can

not only transform biological sequences into visual curves but also offer effective numerical

descriptors.

Graphical representation methods were firstly introduced for representation of DNA

sequences on the basis of multiple dimension space. In 1983, Hamori and Ruskin firstly

proposed a graphical representation to describe DNA sequences [4]. Since then, a large

number of graphical representations of DNA sequences have been outlined [5–24]. The

graphical representations of proteins emerged only very recently. The increased com-

plexity of biological strings built on a 20-letter alphabet (representing the 20 natural

amino acids) delayed the emergence of graphical representations of proteins in compari-

son with DNA whose strings are built from only four letters. To date, many researchers

have put forward various methods of 2D and 3D graphical representation for protein se-

quences [25–45]. In these representations, 20 amino acids are usually first represented by

20 pre–given vectors. Then, a recurrence formula is given to generate a curve represent-

ing proteins based on these vectors, and the numerical characterizations of the curves are

used to describe corresponding protein sequences. For example, using indexes of some

physicochemical properties of 20 amino acids, He [25] ,Yu [26], Liu [27], Wu [28], Ma [29],

Wen [30], Huang [31], Li [32], el Maaty [33] and Gupta [34] proposed a number of dif-

ferent graphical representations of proteins, respectively. Bai [35] presented a method of

3D graphical representation of protein sequences by mapping the 20 amino acids to the

20 vertices of the regular dodecahedron. el Maaty [36] selected a unit sphere to represent

any protein sequence on its surface and Abo-Elkhier [37] represented any protein sequence

on the surface of a right cone. The Chaos Game Representation for DNA sequences, in-

troduced by Jeffrey [5], was generalized to obtain the graphical representation of protein

sequences by He [38] and Randić [39]. They placed the 20 amino acids on the periphery

of the unit circle, which is to replace a square with a 20-side polygon.
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The preceding graphical representation techniques of protein sequence only consider

the information of single amino acids, and do not consider the information between ad-

jacent amino acids. In this article, we propose a novel graphical representation called

3D-PAF curve of protein sequences based on five-letter model of amino acids which con-

verts the 20 amino acids to only five letters. Meanwhile, we first incorporate the accu-

mulative frequencies of adjacent amino acids into 3D-PAF curves of protein sequences.

Then we transform the 3D-PAF curve into a numerical characterization that will facili-

tate quantitative comparisons of protein sequences. Based on the distance between the

feature vectors of two protein sequences, the similarity matrices among proteins can be

calculated. Finally, we apply this approach for similarity analysis of protein sequences on

two data sets. The results all show that our method is effective.

2 Graphical Representation of Protein Sequences

Much effort has been made by considering minimalist models with a few types of amino

acid residues to simplify the natural set of residues of 20 types for better physical un-

derstanding and practical purposes [40–45]. In these models, the compositions are much

simpler than the real ones. In the following, we put forward a novel 3D graphical repre-

sentation of proteins based on the five-letter model of 20 amino acids.

Based on the method introduced by Li [41], the 20 amino acids can be classified into

five groups:

Group1 = {C,M,F, I, L, V,W, Y }

Group2 = {A, T,H}

Group3 = {G,P}

Group4 = {D,E}

Group5 = {S,N,Q,R,K}

We choose a representative letter in each group, which are I, A, G, E, and K, respec-

tively. Thus a protein primary sequence can be reduced into a five-letter sequence by sub-

stituting each letter with its representative letter. For example, the five-letter sequence

of MVHLTPEEKSAVTALWGKVNVDEVGGEALGR, which is the first 31 amino acid

residues of the gorilla β−globin protein, is IIAIAGEEKKAIAAIIGKIKIEEIGGEAIGK.

In the following, we will construct a graphical representation of a protein sequence.

By using two mappings ϕ and φ, we map the five representative letters and their pairs to

-449-



the points on the underside of a right cone, whose coordinates are given as follows

ϕ(Xi) = (cos (2iπ/5), sin (2iπ/5), 1), i = 1, 2, 3, 4, 5 (1)

φ(XiXj) = ϕ(Xi) +
1

4
(ϕ(Xj)− ϕ(Xi)), i, j = 1, 2, 3, 4, 5 (2)

where Xi is one of the five representative letters I, A, G, E, and K and XiXj is one of the

twenty-five letter pairs II, IA, IG,... and KK.

Given a five-letter sequence S = S1, S2, ..., Sn, we start at the origin and inspect it by

stepping one element at a time. For step i, the letter Si is mapped to a point Pi(xi, yi, zi)

in the 3D space by the following mapping

ψ(Si) = ψ(Si−1) + ϕ(Si) +
∑

X,Y ∈{I,A,G,E,K}

fXY · φ(XY ) (3)

where ψ(S0) = (0, 0, 0), fXY is the cumulative frequency of the letter pair XY in the

subsequence from the first letter to the i-th letter in the sequence. When i runs from 1 to

n, we obtain points P1, P2, ..., Pn . Connecting adjacent points, we can obtain a graphical

curve in 3D space for each protein sequence. And we call the curve 3D-PAF curve of the

protein sequence.

3 Numerical Characterization of Protein Sequence

In this section, we give a numerical characterization of the 3D-PAF curve that will facil-

itate quantitative comparisons of protein sequences. One of the possibilities to achieve

this goal is to characterize the graphical curves by invariants. In order to find some in-

variants which are sensitive to the form of the graphical curve, the graphical curve of

protein can be transformed into another mathematical object, a matrix. One of the ma-

trices which meet this condition is the L/L matrix, in which each off-diagonal element

is defined as a quotient of the Euclidean distance between two vertices of the graphi-

cal curve and the sum of geometrical lengths of edges between the same pair of vertices

measured along the graphical curve and all diagonal elements are equal to zero. Once a

real symmetric matrix is given, one often uses some of matrix invariants as descriptors

of the sequence. Therefore, the comparison of sequences is converted into a numerical

comparison of vectors instead of letters comparison. Here, we use the absolute values of

the first eight leading eigenvalues of L/L matrix to characterize the corresponding 3D-

PAF curve. In order to eliminate the influence of length of sequence, we normalize the

-450-



eigenvalue by dividing it by the length of the protein sequence. That is, we take the

vector (
∣∣λ1
N

∣∣ , ∣∣λ2
N

∣∣ , ..., ∣∣λ8
N

∣∣) as the numerical characterization of the 3D-PAF curve, where

λi is the i-th leading eigenvalue(i = 1, 2, ..., 8) of the L/L matrix and N is the length of

the protein sequence.

In our model, the five representative letters are mapped on the circumference of

the underside of a right cone. Each arrangment of the five letters on the circumference

corresponds to a kind of 3D-PAF curve of protein sequence. The number of circular

permutations of the five letters is 4!=24. Among the 24 kinds of 3D-PAF curves, two

symmetric curves have the same L/L matrices, so we only use the 12 kinds of intrinsically

different 3D-PAF curves to represent each protein sequence. By combining all numerical

characterizations of 12 3D-PAF curves, a protein primary sequence can be characterized

by a 96-dimensional feature vector.

Given a data set consisting of N protein sequences, we can obtain a N × 96 matrix,

each row of which corresponds to a protein sequence. Since the values of different columns

are on completely different scales, we take standardized Euclidean distance between row

vectors as the similarity measure between the corresponding protein sequences. The

smaller the standardized Euclidean distance between the two row vectors is, the more

similar are the two corresponding protein sequences.

4 Results and Discussion

4.1 The similarity analysis of nine ND5 proteins

To illustrate our method, we compare the similarities of the ND5 protein sequences across

nine species listed in Table 1. As mentioned in Section 3, we compute the feature vectors

of the nine ND5 protein sequences. Then the distance matrix for the nine ND5 proteins

is constructed by using standardized Euclidean distance and is shown in Table 2.

From Table 2, we find a fact that the ND5 proteins of human, gorilla, pigmy chim-

panzee and common chimpanzee are more similar to each other, also the proteins of fin

whale and blue whale are very similar to each other, and so do the pair of mouse and rat.

On the other hand, the protein of opossum is quite dissimilar to all other species. Also, we

can see that the entries of human−pigmy chimpanzee and human−common chimpanzee

are smaller than the entry of human−gorilla. That is to say, the ND5 protein of human is

more similar to that of common chimpanzee and pigmy chimpanzee than that of gorilla.
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Table 1: The information for nine ND5 protein sequences

NO. Species ID(NCBI) length

1 Human (Homo sapiens) AP 000649 603

2 Gorilla (Gorilla gorilla) NP 008222 603

3 Common chimpanzee (Pan troglodytes) NP 008196 603

4 Pigmy chimpanzee (Pan paniscus) NP 008209 603

5 Fin whale (Balenoptera physalus) NP 006899 606

6 Blue whale (Balenoptera musculus) NP 007066 606

7 Rat (Rattus norvegicus) AP 004902 610

8 Mouse (Mus musculus) NP 904338 607

9 Opossum (Didelphis virginiana) NP 007105 602

We believe that the results are not coming by accident since they are consistent with

the known fact of evolution. ClustalW is one of the most multiple sequence alignment

method. To compare our method with ClustalW, we list the results of multiple sequence

alignment among the nine species by using ClustalW under MEGA6.0 software, see the

distance matrix in Table 3. Observing Table 2 and Table 3, we can see that the sequence

similarity results are almost consistent in both our method and ClustalW. The phyloge-

netic trees constructed based on our method and CLUSTALW respectively in Fig. 1 show

same results.

Table 2: The distance matrix for the nine ND5 protein sequences calculated by our method

Human Gorilla C.Chim. P.Chim. F.Whale B.Whale Rat Mouse Opossum

Human 0 8.2096 7.8061 6.9508 11.9203 13.3220 15.7248 13.5202 16.4476

Gorilla 0 9.2376 8.2985 13.2242 14.0953 17.8533 14.4987 16.7827

C.Chim. 0 6.1237 12.3322 13.8987 16.7306 14.4406 19.2442

P.Chim. 0 11.3038 13.0564 16.1126 13.6451 18.0387

F.Whale 0 7.2549 14.9376 12.9769 16.0624

B.Whale 0 16.3437 13.1873 15.5091

Rat 0 12.9581 17.3784

Mouse 0 14.5673

Opossum 0

In addition, we calculate the correlation coefficients between our results and ClustalW.

The correlation coefficient between the first row of Tables 2 and 3 is 0.9286. The first

rows in both matrices are relative to human protein, the second ones to gorilla and so

on. The correlation coefficients for the rows relative to all nine species are listed in the

first column of Table 4. Analogously, the correlation coefficients between the results of
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Table 3: The distance matrix for the nine ND5 protein sequences calculated by ClustalW

Human Gorilla C.Chim. P.Chim. F.Whale B.Whale Rat Mouse Opossum

Human 0 0.104 0.067 0.069 0.375 0.377 0.456 0.443 0.464

Gorilla 0 0.096 0.093 0.390 0.387 0.469 0.453 0.494

C.Chim. 0 0.048 0.370 0.370 0.461 0.448 0.472

P.Chim. 0 0.368 0.368 0.453 0.443 0.459

F.Whale 0 0.034 0.410 0.422 0.486

B.Whale 0 0.407 0.415 0.486

Rat 0 0.241 0.494

Mouse 0 0.469

Opossum 0

Table 4: The correlation coefficients for nine ND5 proteins of our method and the methods in Ref.

[27–29,31,32,38,42], as compared with clustalW method
our

method
Ref. [27]
(Table4)

Ref. [28]
(Table3)

Ref. [29]
(Table3)

Ref. [31]
(Table1)

Ref. [32]
(Table4)

Ref. [38]
(Table3)

Ref. [42]
(Table4)

Human 0.9286 0.9380 0.9268 0.9620 0.8887 0.9497 0.9612 0.8940
Gorilla 0.9275 0.9276 0.9086 0.9524 0.9293 0.9570 0.9698 0.8461

C.Chim. 0.9273 0.9357 0.9060 0.9692 0.9470 0.9542 0.9681 0.8552
P.Chim. 0.9292 0.9323 0.7647 0.9644 0.9132 0.9421 0.9650 0.7691
F.Whale 0.9299 0.8853 0.5180 0.9653 0.9163 0.9817 0.9583 0.9280
B.Whale 0.9325 0.8862 0.5290 0.9657 0.9154 0.9833 0.9576 0.8749

Rat 0.9635 0.8687 0.6903 0.9542 0.9255 0.9884 0.9539 0.8979
Mouse 0.9269 0.8449 0.6305 0.9559 0.9251 0.7493 0.9296 0.8681

Opossum 0.9651 0.9961 0.6645 0.9986 0.8599 0.6649 0.9985 0.7556

Refs. [27–29,31,32,38,42] and ClustalW are also calculated in order to show the advantages

of our method, see Table 4. We find that our method has higher correlation coefficients

with ClustalW than other methods except the ones in Refs. [29, 38]. But, we will show

the robustness of methods in Refs. [29, 38] are much less than ours. To illustrate this

point, we add a sequence to the ND5 data set which is built by subtracting the first

amino acid from the ND5 sequence of pigmy chimpanzee and is denoted as P.chim0. The

phylogenetic trees of the new data set shown in Fig. 2 are constructed by our method

and Ref. [29, 38]’s methods, respectively. P.chim and P.chim0 are clustered together in

Fig. 2(a), but P.chim0 is very dissimilar to other species in Fig. 2(b) and Fig. 2(c) which

is obviously unreasonable.

Incorporating accumulative frequencies of adjacent amino acids into the graphical

representation is one of the characteristics of our method. In order to illustrate its effect

on the graphical representation, in Fig. 3, we show the phylogenetic tree of the nine ND5

proteins constructed by our method without considering the accumulative frequencies of

-453-



Figure 1: Phylogenetic trees of the nine ND5 proeins constructed by (a) our method and
(b) CLUSTALW

Figure 2: Phylogenetic trees of the modified ND5 proteins constructed by (a) our method,
(b) Ref. [29] and (c) Ref. [38]

Figure 3: phylogenetic tree of the nine ND5 proteins constructed by our method without
considering the accumulative frequencies of adjacent amino acids

adjacent amino acids. That is, let fXY in the equation (3) equal to be zero in the process of

construction of graphical curve. Comparing Fig. 3 and Fig. 1, we can easily find that the

results in Fig. 3 are inconsistent with the known fact of evolution. Thus, incorporating

accumulative frequencies of adjacent amino acids into the graphical representation can

reflect more information of the protein and improve its evolutionary study.

4.2 The similarity analysis of 35 coronavirus spike proteins

The coronaviruses (order Nidovirales, family Coronaviridae, genus Coronavirus) are mem-

bers of a family of large, enveloped, positive-sense single-stranded RNA viruses that repli-

cate in the cytoplasm of animal host cells. Generally, coronaviruses can be divided into
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three groups: the first group and the second group come from mammalian; the third

group comes from poultry (chicken and turkey). A novel coronavirus has been identi-

fied as the cause of the outbreak of severe acute respiratory syndrome (SARS). Previous

phylogenetic analyses based on sequence alignments show that SARS-CoV belongs to a

group distantly related to known group II coronaviruses [49–52]. The spike protein, which

is common to all known coronaviruses, is crucial for viral attachment and entry into the

host cell. In order to further verify the validity of our method, we perform similarity

analysis among the 35 spike protein sequences from coronavirus, which has been studied

by different methods [44,45]. Taxonomic information and accession numbers are provided

in Table 5.

Figure 4: Phylogenetic tree of the 35 spike proteins constructed by our method

The phylogenetic tree of the 35 coronavirus spike proteins, shown in Fig. 4, is built

based on our method. Observing Fig. 4, we find that the 35 coronavirus spike proteins can

be classified into four groups on the whole. The SARS-CoVs appear to cluster together

and form a separate branch, which can be distinguished easily from other three groups of

coronaviruses. The coronaviruses belonging to group I (FIPV-1146, FCoV-1683, PEDVC,

TGEVT, TGEVF, CECoV), group II (MHVM, MHVB, MHVA, MHVD, RtCoV, BCoVF,

BCoVM, BCoVL, BCoVT, HCoV-OC43) and Group III (IBV, IBV-6/82, IBVD, IBVC,

IBVA, IBVB, IBVH) can also be clustered together into three different branches, respec-
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Table 5: The information of 35 coronavirus spike proteins

No. ID(NCBI) Abbreviation Name Group

1 P10033 FIPV-1146 Feline infectious peritonitis virus strain 79-1146 I

2 Q66928 FCoV-1683 Feline coronavirus strain 79-1683 I

3 Q91AV1 PEDVC Porcine epidemic diarrhea virus strain CV777 I

4 Q9DY22 TGEVT Transmissible gastroenteritis virus strain TO14 I

5 P18450 TGEVF Porcine transmissible gastroenteritis coronavirus strain FS772/70 I

6 P36300 CECoV Canine enteric coronavirus strain INSAVC-1 I

7 Q9J3E7 MHVM Murine hepatitis virus strain ML-10 II

8 Q83331 MHVB Murine hepatitis virus strain Berkeley II

9 P11224 MHVA Murine hepatitis virus strain A59 II

10 O55253 MHVD Murine hepatitis virus strain DVIM II

11 Q9IKD1 RtCoV Rat coronavirus strain 681 II

12 P25190 BCoVF Bovine coronavirus strain F15 II

13 P15777 BCoVM Bovine coronavirus strain Mebus II

14 Q9QAR5 BCoVL Bovine coronavirus strain LSU-94LSS-051 II

15 Q91A26 BCoVT Bovine enteric coronavirus 98TXSF-110-ENT II

16 P36334 HCoV-OC43 Human coronavirus strain OC43 II

17 Q82666 IBV Infectious bronchitis virus III

18 P05135 IBV-6/82 Avian infectious bronchitis virus strain 6/82 III

19 P12722 IBVD Avian infectious bronchitis virus strain D274 III

20 Q64930 IBVC Infectious bronchitis virus strain CU-T2 III

21 Q82624 IBVA Infectious bronchitis virus strain Ark99 III

22 P11223 IBVB Avian infectious bronchitis virus strain Beaudette III

23 Q98Y27 IBVH Infectious bronchitis virus strain H52 III

24 AAP41037 Tor2 SARS coronavirus Tor2 IV

25 AAP30030 BJ01 SARS coronavirus BJ01 IV

26 AAR91586 NS-1 SARS coronavirus NS-1 IV

27 AAP51227 GD01 SARS coronavirus GD01 IV

28 AAP33697 Frankfurt 1 SARS coronavirus Frankfurt 1 IV

29 AAP13441 Urbani SARS coronavirus Urbani IV

30 AAQ01597 TC1 SARS coronavirus Taiwan TC1 IV

31 AAU81608 CDC SARS Coronavirus CDC #200301157 IV

32 AAS00003 GZ02 SARS coronavirus GZ02 IV

33 AAR86788 QXC1 SARS coronavirus ShanghaiQXC1 IV

34 AAR23250 Sino1-11 SARS coronavirus Sino1-11 IV

35 AAT76147 TJF SARS coronavirus TJF IV
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tively. The topology of the phylogenetic tree obtained by our method is quite consistent

with the results obtained by other authors [41,48–52].

Through further observation on the subtrees of the first and third branches, we can

see that MHV, BCoV and HCoV-OC43 in the first branch are separated clearly and

so do FCoV, CECoV and TGEV in the third branch. However, they are not clearly

distinguished by Deng’s and Li’s methods [44, 45]. In addition, we can find that HCoV-

OC43 is most closely related to BCoV. The same result is obtained by other authors based

on sequence alignment [49–52].

Table 6: The distance matrix between SARS-CoVs and other three groups of coronavirus

Species Tor2 BJ01 NS-1 GD01 Frankfurt 1 Urbani TC1 CDC GZ02 QXC1 Sino1-11 TJF

FIPV-1146 14.811 14.793 14.760 14.885 14.770 14.770 14.770 14.770 14.997 14.742 14.860 14.785

FCoV-1683 13.630 13.648 13.615 13.708 13.603 13.603 13.603 13.603 13.814 13.627 13.695 13.643

PEDVC 11.858 11.928 11.866 11.967 11.812 11.812 11.812 11.812 11.993 11.836 11.926 11.899

TGEVT 14.337 14.308 14.246 14.426 14.236 14.236 14.236 14.236 14.586 14.216 14.340 14.274

TGEVF 14.863 14.800 14.743 14.943 14.755 14.755 14.755 14.755 15.112 14.705 14.853 14.769

CECoV 14.565 14.546 14.502 14.586 14.494 14.494 14.494 14.494 14.699 14.487 14.592 14.534

MHVM 8.678 8.480 8.418 8.653 8.414 8.414 8.414 8.414 8.749 8.417 8.443 8.425

MHVB 11.584 11.456 11.424 11.532 11.356 11.358 11.358 11.358 11.629 11.416 11.383 11.433

MHVA 8.775 8.540 8.478 8.757 8.480 8.480 8.480 8.480 8.871 8.477 8.505 8.486

MHVD 10.483 10.355 10.285 10.520 10.259 10.259 10.259 10.259 10.628 10.270 10.310 10.298

RtCoV 10.836 10.752 10.705 10.827 10.634 10.634 10.634 10.634 10.925 10.692 10.669 10.722

BCoVF 12.722 12.763 12.688 12.674 12.610 12.610 12.610 12.610 12.753 12.600 12.706 12.749

BCoVM 13.339 13.407 13.324 13.322 13.230 13.230 13.230 13.230 13.392 13.219 13.337 13.387

BCoVL 12.394 12.532 12.486 12.405 12.370 12.370 12.370 12.370 12.421 12.400 12.444 12.536

BCoVT 13.342 13.673 13.634 13.440 13.458 13.458 13.458 13.458 13.402 13.534 13.537 13.674

HCoV-OC43 10.852 10.925 10.874 10.872 10.739 10.739 10.739 10.739 10.871 10.790 10.796 10.926

IBV 14.390 14.595 14.601 14.368 14.447 14.447 14.447 14.447 14.259 14.512 14.468 14.592

IBV-6/82 20.398 20.706 20.732 20.368 20.583 20.583 20.583 20.583 20.263 20.684 20.580 20.718

IBVD 15.451 15.710 15.731 15.444 15.583 15.583 15.583 15.583 15.345 15.662 15.595 15.715

IBVC 18.873 19.172 19.153 18.886 19.030 19.030 19.030 19.030 18.793 19.110 19.058 19.155

IBVA 13.367 13.514 13.502 13.336 13.428 13.428 13.428 13.428 13.225 13.462 13.438 13.503

IBVB 15.292 15.475 15.471 15.253 15.330 15.330 15.330 15.330 15.222 15.358 15.352 15.471

IBVH 15.576 15.774 15.773 15.491 15.645 15.645 15.645 15.645 15.452 15.663 15.684 15.779

The similarity distances between SARS-CoVs and other three groups of coronavirus

are listed in Table 6. As we can see from the Table 6, SARS-CoVs are more closely related

to group II coronaviruses than to group I and III coronaviruses. This result is consistent

with those reported in the literatures [49–52], in which SARS-CoV is considered to be a
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subgroup of the group II. Furthermore, it is obvious from the Table 6 that SARS-CoV is

closely related to MHV and RtCoV, which is consistent with the result reported in the

paper [52].

Figure 5: Phylogenetic tree of the 35 spike proteins constructed by CLUSTALW

In Fig. 5, we also construct the phylogenetic tree for the 35 coronavirus spike proteins

by CLUSTALW. Observing Fig. 4 and Fig. 5, we can find that our result is very similar

to that of CLUSTALW.

5 Conclusion

In this paper, we proposed a novel 3D graphical representation of protein sequences. This

approach takes into consideration not only the physicochemical characteristics of amino

acids but also the accumulative frequencies of adjacent amino acids that can reflect more

information of protein sequence and improve evolutionary study. The method has been

applied for similarity analysis of protein sequences on two data sets: nine ND5 proteins

and 35 coronavirus spike proteins. The obtained results are quite consistent with the

known fact of evolution and show that our method is valid.
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