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Abstract

Intrinsically disordered proteins (IDPs) are a kind of protein that plays important roles but
lack well defined three-dimensional structure. In this paper, comprehensive sequence analysis
is performed based on a larger dataset derived from the latest version of Disprot database. The
results indicate that there are significant differences between the disordered regions and the
ordered regions of IDPs. Further analysis shows that the disordered regions prefer hydrophilic
amino acids such as D, E, K, Q, S, T and the ordered regions prefer hydrophobic amino acids
suchasF, I, L, M, V, W, Y. Then, a classification algorithm for disordered regions and ordered
regions is proposed by incorporating the information of sequence composition, sequence
order and long range correlation based on Chou’s pseudo amino acid composition (PseAAC)
method. The results show that the efficiency of the hybrid features can be improved in
accordance with the diverse evaluation indiceA@€, MCC and AUC in comparison to the

traditional components composition based numerical features.
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1 Introduction

Intrinsically disordered proteins (IDPs) lack weléfined three dimensional structure
under physiological conditions, but carries impottaiological functions [1-2]. The 15 years
studies show that IDPs are not rare exceptionsalmew rule [3]. It is estimated that about 10
~ 35% of prokaryotic and about 15 ~ 45% of eukdcyptoteins contain significant disorder
at least 30 residues in length [4]. IDPs play @lmles in regulation, recognition, signaling,
and control of protein-protein interaction networksd they are usually to carry out the
functions through binding with other partn¢s$. The highly flexibility and random coil-like
conformation of IDPs make them a formidable chajéernto identify the intrinsically
disordered regions (IDRs) and to determine theimagyics dynamic ensembles so called
“protein clouds” by experimental methods [6]. THere, computational tools for IDPs
prediction and analysis have become the main miean®Ps studies. Some IDPs predictors
were developed mainly based on simple statisticsaofino acid propensity or the
physical/chemical properties of amino acids [7-Bhese predictors relied on the sequence
features between the ordered regions and disordergions of IDPs. However, earlier
statistics of amino acid propensity only based be smaller dataset using the limited
bioinformatics methods [10], which cannot provideoegh input information for IDRs
prediction. In the past several years, the numlbexperimentally verified IDPs has been
improved, then it is interesting to mine furthee timtrinsic features of ordered/disordered
regions of IDPs based on the bigger database, wmah provide more solid basis for
justified protein disorder prediction. On the otland, recent works have demonstrated that
the arranging order of the amino acids and the I@amge correlation of amino acids play
important roles in many protein analysis relateabfgms [11, 12]. Therefore, the influence of
long range correlation of amino acids on disordenered regions classifications is studied
by incorporating sequence complexity and the PseAwdathod in this work. Firstly, a larger
dataset with experimentally verified IDPs is consted, based on which we try to reveal the
novel characters of IDRs for the creation of cquoeling computational tools. Then
comprehensive sequence analysis by incorporatingesee complexity and the PseAAC
method is first used for finding novel sequenceuiess for IDRs. The results indicate that the
intrinsically ordered region exhibit explicitly drent features from the intrinsically
disordered regions. Finally, an efficient algorithisnproposed for classifying the ordered
regions and the disordered regions of IDPs, whidh provide new input information for

developing of later IDPs predictors.
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2 Materials and methods

2.1 Dataset

The IDPs sequences are downloaded from Disprot[63)1A total of 683 IDPs sequences
are released in this version. The CD-Hit program] [5 used to exclude the redundant
sequences with the threshold of 30%. Those segseghaecontain special characters such as
B, X and Z are also excluded. Then, a dataset ceathof 548 IDPs is obtained. Among the
548 sequences, there are 911 disordered regions9a@®dordered regions, respectively.
Traditionally, the regions with the sequence lengtBO amino acids are regarded as IDPs.

Therefore, 387 disordered regions and 749 ordexgidms are finally obtained.

2.2 Methods for sequence analysis
2.2.1 Sequence components composition

The compositions of the 20 kinds of amino acids #ed400 kinds of dipeptide are used to

depict sequence features of IDPs.

2.2.2 Sequence complexity

The sequence complexity is defined as [15]
N
K= —z filog, fi 1)
i=1
wheref; represent the usage frequency of itekind of amino acidsN = 1, 2, 3, ..., 20.
Obviously, wherK reaches its maximum 4.32, this denotes that thkirzfs of amino acids

are averagely used.

2.2.3 Chou's pseudo amino acid composition

The PseAAC proposed by Chou is a versatile indexlifsplaying the intrinsic information
of amino acids order and long range correlationgratein sequences, which has been widely
applied to protein classification algorithms [16k28owever, there is no any use for IDPs in
our knowledge. For a protein sequencdRfRs...R. with the length ofL, the PseAAC is

denoted
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where; is called thejth-tier correlation factor that reflects the sequeeiorder correlation,
which is written as
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The correlation functio® is given by
oR,.R)=3{HR ) -HRF +[H.R) - H.RF +[HR)-HRF @

Where H(R) represents the physiochemical parameters atluesR, which should be

subjected standard conversion as follows

o 20 Ho(i)
H™(@i) - 20
H() = B - (5)
2 I ~ 20 H(i)
;{H 0] ; % }
20

whereH® is the original values of each physiochemical pester. In this way, each protein
sequence transformed into a (2D vector, the first 20 components of which refléte
information of the amino composition, and the comgmds from 20+1 to 20+reflect the

information of sequence order [21].

2.3 Support vector machine

Support vector machine (SVM) has been widely usegrediction related problems of
bioinformatics. In this work, the libSVM 3.17 [2@hckage with RBF kernel function [23] is

adopted to accomplish the classification algorifomordered and disordered regions.
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2.4 Evaluation indices

To evaluate the efficiency of the proposed classifon algorithm in this paper, the
sensitivity &), specificity &), accuracy ACC), the Matthew’s correlation coefficierICC)
are employed respectively. The definition of eachlgation index is described as

S = TP

- 6
TP+FN ©
N

S =—" 7
P IN+FP ™

TP+TN
ACC=——— (8)

TP+TN +FP+FN

MCC TPxTN -FNxFP ©)

_\/(I'P+ FN) x (TP + FP)x (TN + FN) x (TN + FP)
Where, TP and TN denote the positive and negative samples that heen correctly
predicted respectivelfiP andFN denote the positive and negative samples that haea
falsely predicted respectively.

Considering the distribution imbalance of the sawmph the training set, the receiver
operating characteristic (ROC) curve is also adbpte evaluate the classification results

besides the indices mentioned above.

3 Results and discussion

3.1 Sequence complexity analysis

Sequence complexity reflects the degree of eaah &ddramino acid usage bias in protein
sequences. In figure 1, thevalues of the 387 disordered regions and the 7déred regions
are calculated respectively. From this figure sifound that the disordered regions exhibit
different patterns with that of the ordered regiddise observation shows that the K values
of the disordered regions are universally lowemnttizat of the ordered regions. As can be
seen, most sequences in the ordered regions hav¢ thlues larger than 4.0, while tike
values of most disordered regions are less thanFufiher analysis shows that the mean
value of K in disordered regions and ordered regions are artD 3.94 respectively. In
addition, most disordered regions distribute frofd ® 4.3 of complexity, more than 90%
disordered regions range from 3.1 to 4.2, more 8G# disordered regions is less than 3.9,

and some is less 3.0. In contrast, most disordeegibns distribute from 3.4 to 4.3 of
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complexity, more than 90% ordered regions rangen fB5 to 4.3 of complexity, only less
than 30% ordered regions is less than 3.9 of coxtpleand almost there is no ordered
regions when the complexity is less than 3.4. Tioeee figure 1 shows that disordered
regions prefer low sequence complexity.

On the other hand, it is noted that the lengthgeanom 31 to 2369 in ordered regions
and from 31 to 1861 in disordered regions. Thes ihteresting to investigate whether the
differences of sequence complexity of each kindegfions in figure 1 are caused by the
diverse lengths. In figure 2, tlevalue as well as the length of each sequencddslated in
ordered and disordered regions respectively. Semn figure 2,K values fluctuate largely
when the length is less than 750 in ordered andrdised regions, and thé values in
disordered regions fluctuate much bigger than deoed ones, then th¢€ values tend to flat
and independent of the sequence lengths in therégions. Figure 2 also shows that te
values in disordered regions are always lower tthet in the ordered regions, which is

consistent with the results in figure 1.
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Figure 1. Sequence complexity analysis in ordered/disortiezgions of IDPs
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Figure 2. Sequence complexity vs. sequence lengths of edétisordered regions
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As have been elaborated in equation 1,Khealue reaches its maximum of 4.32 when
the 20 kinds of amino acids are averagely usedatem sequence. On the contrary, e
value decreases till zero with the increasing @f #mino acids usage bias. Therefore, the
results both in figures 1 and 2 indicate that amamids usage in disordered regions is

different from ordered regions.

3.2 Amino acids usage bias analysis in IDPs

Amino acids composition is one of the most adoptednerical features for protein
sequence. In the early work by Weathers [24], #ega frequencies of the 20 kinds of amino
acids have been deemed as one of the most efficienterical features for IDPs
classifications. In figure 3, the usage frequenfcgazh kind of amino acid is provided. As can
be seen from this figure, some amino acids in teerdered regions such as A, D, E, G, K, L,
P and S have the frequencies that are greate6#tanespectively, while the frequencies of C,
H, M and W are less than 2%. In the ordered regitesfrequencies of A, E, G, K, L, S and
V are greater than 6%, while that of C and W ass than 2%.

A CDETFGTH I KLMNPI QRST VWY
Amino acid

Figure 3. Composition of the 20 kinds of amino acids in oediédisordered regions

We have shown that the sequence complexities éxtiffierent tendencies between the
disordered regions and ordered regions in figur©Hserving the curve of the disordered
region, it is found that the sequence complexity loa divided into four intervals, i.e. Ok<
3.1,3.1 <K< 34, 3.4<K<4.0, 4.0 <K < 4.3, which contain 3.10%, 9.82%, 75.19% and
11.89% of the 387 disordered regions respectiv@imilarly, the K values of the ordered
regions can be also divided into four intervals, 0 <K < 3.4, 3.4 <K < 3.8, 3.8 <K <4.1,
4.1 <K < 4.3, which contain 2.27%, 17.90%, 57.81% and 22.88 the 749 ordered regions
respectively. Then, the amino acids compositiondifferent intervals are analyzed both in
disordered region and ordered region. The resaltable 1 show that in disordered regions,
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the percentages of A, D, E, G, K, L, P, S are hidghgan 6% in mosK value intervals, while
the percentages of C, H, M W are less than 2%interval of 0 <K < 3.1, the amino acids
usage bias is extremely displayed that the pergeataf almost 10 kinds of amino acids C, E,
F, H, I, K, M, N, V, W are less than 2%. In thisywéhe amino acids compositions in ordered
regions can be also analyzed according to tablésdnerally, in ordered regions, the
percentages of A, E, G, K, L, S, V are bigger t6& while the percentages of C, W are less
than 2% in most intervals. Then, table 1 shows tifratamino acids compositions usages are
consistent with the results of figure 3 in spitetaf vibration of th& values.

The correlations of the sequences lengths and dhgplexity are analyzed in figure 2,
according to which the sequences lengths are dividéo five intervals both for the
disordered regions and the ordered regions, i.e [3& 150, 150 < < 300, 300 < < 450,
450 <L < 600, 600 < < 2400. Similarly with table 1, the amino acids casigions in each
sequence length interval are calculated in tablsZan be seen from table 2, the amino acids
compositions are very consistent with the resuitBgure 3. Therefore, both tables 1 and 2
indicate that the results of figures 1, 2 and 3 edmibit the intrinsic features of amino acids
compositions.

Table 1. Amino acids composition analysis in different qoexity intervals

Regions Intervals Amino acids with frequency > 6% iAonacids with frequency< 2%
0 <K <4.3(100%) A D EGKLPS C,H,M,W
0<K<3.1(3.10%) G PQSTY C,E,FH I K MWW

Disordered 3.1 <K < 3.4 (9.82%) A,D,E GK,P S C,FH, I,MWY
34<K<4.0(75.19%) AD,E G,KL,PS C,H,M,W, Y
40<K<43(11.89%) A,D,E K, L, S C,W
0 <K <4.3(100%) A E,GKLSV C,W
0<K<3.4(2.27%) E,G L PQS C,FEH I,MW

Ordered 34<K<38(17.09%) AEG,KL,PQ,S C,H,WY
3.8<K<4.1(57.81%) AEGKLSV C,W
41<K<4.3(2283%) A EG,K/L, S,V w
Table 2. Amino acids composition analysis in défe@rsequence length intervals

Regions Intervals Amino acids with frequency> 6%  Amacids with frequency < 2%
30 <L <2400 (100%) ADEGKLPS C,H,M,W
30<L <150 (72.87%) A,D,E G K, L P S C,H, W

) 150<.< 300 (17.83%) A, D,E,G KL PQ,S C,W

Disordered
300<L <450 (4.91%) A D EGKLPST C, H,M,W
450<L < 600 (1.55%) A E,GPS TV C,H,M,W, Y
600<.< 2400 (2.84%) A, D,E,G,K,P, S C,H, M, W,Y
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30 <L <2369 (100%) A E G, KL, S,V C,W

30<L <150 (55.54%) A E G,K/ L, SV Cc,w

150<.< 300 (20.29%) A EG,L SV C,w
Ordered

300<L.< 450 (11.35%) A E G,K L, SV C,W

450<L < 600 (4.94%) A, D, E G KL, SV Cc,w

600<L <2400 (7.88%) A,E,G,K,L,S,V C,w

In general, usage frequency is 1/20 = 5% whenhie@acid is randomly used. To given
more explicit information of amino acids usageshi@e propose a simple index called amino
acids preferenceA@P) to display the differences between the disordeegibns and ordered
regions, which is given as

AAP'r :i.R—l. (10)

P

Where,i represents the 20 kinds of amino acids, the rigitiscriptR denotes disordered
regions or ordered region®' is the frequency of thith kind of amino acid in IDPs (both
ordered and disordered regions). Th&AP = 0 indicates that corresponding amino acid is
used randomly, andAP > 0 indicates that corresponding amino acid isgored. In figure 4,
we provide the amino acids usage bias analysidtsesased oAAP. Obviously, the amino
acids of A, D, E, G, K, P, Q, S and T are moregmreid in disordered regions, while C, F, H, I,
L, M, N, R, V, Wand Y are more preferred in orderegions. Further analysis shows that
most of the amino acids preferred in disorderedbreggare hydrophilic (D, E, K, Q, S, T) and
most of the amino acids preferred in ordered regire hydrophobic (F, I, L, M, V, W, Y),
which may be related to the fact that some IDPa gaistable 3D structure by exposed its
amino acids to bind other partners. Therefore &g8 and 4 imply that the amino acids usage
bias is different between the disordered regiomstha ordered regions.
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Figure 4. Amino acids usage analysis in ordered/disordezgibns
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3.3 Classification of disordered/ordered regions basl on hybrid sequence

features

Above analysis has demonstrated the potentiallyingit differences between the
disordered regions and ordered regions. In thissedheK value, usage frequency of the 20
kinds of amino acids (AA), usage frequency of th@0 &inds of dipetides (DAA) and
PseAAC are adopted as sequence features in thaficlatson algorithm respectively. It is
noted that the hydrophobicity, mass and pK2 of eactino acid are used for PseAAC
calculation. The 5-fold cross validation is perfecby classifying the training set into five
groups randomly, then one is used as testing sethenother four groups are used as training
set. In table 3, the classification efficiency ack numerical feature is presented. It is found
that the PseAAC achieve the highest classificagificiency compare with AA, DAA and.

The ACC, MCC and AUC for solely using PseAAC are 79.22%, 0.52tfd 0.8467,
respectively. In comparison, the same indices @e #\A, DAA andK value are (78.34%,
0.4987, 0.8309), (76.76%, 0.4547, 0.8202) and (P8,40.2759, 0.7669), respectively. From
the comparison of the ROC curves in figure 5, e results can be inferred. On the other
hand, combination oK+AA+DAA+PseAAC achieve the highestCC (79.40%) andCC
(0.5262). In summary, the classification efficiensignificantly improved by integrating the

PseAAC, which shows that sequence order and longeraorrelation are important factors

for describing the disordered/ordered regions.

Table 3. Classification of disordered/ordered regions badsdxtid features

Numerical features ACC(%) S(%) Si(%) MCC AUC
PseAAC 79.22 89.31 59.70 0.5211 0.8467
AA 78.34 89.70 56.33 0.4987 0.8309
DAA 76.76 93.04 45.24 0.4547 0.8202
K 70.40 91.29 29.97 0.2759 0.7669
K+PseAAC 79.05 88.77 60.23 0.5180 0.8449
AA+PseAAC 78.52 88.63 58.95 0.5057 0.8444
DAA+PseAAC 79.05 89.04 59.72 0.5175 0.8443
K+AA+PseAAC 79.13 88.77 60.48 0.5201 0.8465
K+DAA+PseAAC 79.22 89.04 60.22 0.5217 0.8462
AA+DAA+PseAAC 79.05 89.04 59.72 0.5175 0.8444
K+AA+DAA+PseAAC 79.40 89.04 60.74 0.5262 0.8476
AA+DAA 78.69 90.90 55.06 0.5057 0.8342
K+AA 78.96 88.77 59.96 0.5166 0.8398
K+DAA 76.31 88.77 52.20 0.4481 0.8283
K+AA+DAA 79.23 89.31 59.73 0.5212 0.8360
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Figure 5. Comparison of the ROC curves of different sequdeatires

4 Conclusions

The discovery of IDPs challenges the tradition&qisence-structure-function’ paradigm
[25]. Because lack of stable 3D structure, sequdrased prediction has been one of the
prerequisites for further understanding the biatagsignificances of IDPs. Up to now, a great
number of IDPs predictors have been put forwardesihe first one proposed in 1997 [26].
However the biological mechanisms of IDPs are resy \clear, the sequence characteristics
employed in these predictors mainly focus on thgusece components compositions and
physiochemical properties of amino acids, it isessary to provide more comprehensive
sequence features for accurate prediction of IBRsv to propose effective computational
methods for demonstrating the features for proseguences has been an important topic all
the time [27, 28]. In this paper, we study the iitdic sequence features between the
disordered regions and ordered regions based @mgarldataset of IDPs. Then, a novel
classification algorithm for disordered regions anddered regions is proposed by
incorporating the PseAAC method for the first tifibe results show that the sequence order
and long range correlation provides complementarfprination to other components
composition based methods.
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