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Abstract 

 Intrinsically disordered proteins (IDPs) are a kind of protein that plays important roles but 
lack well defined three-dimensional structure. In this paper, comprehensive sequence analysis 
is performed based on a larger dataset derived from the latest version of Disprot database. The 
results indicate that there are significant differences between the disordered regions and the 
ordered regions of IDPs. Further analysis shows that the disordered regions prefer hydrophilic 
amino acids such as D, E, K, Q, S, T and the ordered regions prefer hydrophobic amino acids 
such as F, I, L, M, V, W, Y. Then, a classification algorithm for disordered regions and ordered 
regions is proposed by incorporating the information of sequence composition, sequence 
order and long range correlation based on Chou’s pseudo amino acid composition (PseAAC) 
method. The results show that the efficiency of the hybrid features can be improved in 
accordance with the diverse evaluation indices of ACC, MCC and AUC in comparison to the 
traditional components composition based numerical features. 
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1 Introduction 

Intrinsically disordered proteins (IDPs) lack well defined three dimensional structure 

under physiological conditions, but carries important biological functions [1-2]. The 15 years 

studies show that IDPs are not rare exceptions, but a new rule [3]. It is estimated that about 10 

~ 35% of prokaryotic and about 15 ~ 45% of eukaryotic proteins contain significant disorder 

at least 30 residues in length [4]. IDPs play crucial roles in regulation, recognition, signaling, 

and control of protein-protein interaction networks and they are usually to carry out the 

functions through binding with other partners [5]. The highly flexibility and random coil-like 

conformation of IDPs make them a formidable challenge to identify the intrinsically 

disordered regions (IDRs) and to determine their dynamics dynamic ensembles so called 

“protein clouds” by experimental methods [6]. Therefore, computational tools for IDPs 

prediction and analysis have become the main means for IDPs studies. Some IDPs predictors 

were developed mainly based on simple statistics of amino acid propensity or the 

physical/chemical properties of amino acids [7-9]. These predictors relied on the sequence 

features between the ordered regions and disordered regions of IDPs. However, earlier 

statistics of amino acid propensity only based on the smaller dataset using the limited 

bioinformatics methods [10], which cannot provide enough input information for IDRs 

prediction. In the past several years, the number of experimentally verified IDPs has been 

improved, then it is interesting to mine further the intrinsic features of ordered/disordered 

regions of IDPs based on the bigger database, which may provide more solid basis for 

justified protein disorder prediction. On the other hand, recent works have demonstrated that 

the arranging order of the amino acids and the long range correlation of amino acids play 

important roles in many protein analysis related problems [11, 12]. Therefore, the influence of 

long range correlation of amino acids on disordered/ordered regions classifications is studied 

by incorporating sequence complexity and the PseAAC method in this work. Firstly, a larger 

dataset with experimentally verified IDPs is constructed, based on which we try to reveal the 

novel characters of IDRs for the creation of corresponding computational tools. Then 

comprehensive sequence analysis by incorporating sequence complexity and the PseAAC 

method is first used for finding novel sequence features for IDRs. The results indicate that the 

intrinsically ordered region exhibit explicitly different features from the intrinsically 

disordered regions. Finally, an efficient algorithm is proposed for classifying the ordered 

regions and the disordered regions of IDPs, which will provide new input information for 

developing of later IDPs predictors. 
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2 Materials and methods 

2.1 Dataset 

The IDPs sequences are downloaded from Disprot 6.01 [13]. A total of 683 IDPs sequences 

are released in this version. The CD-Hit program [14] is used to exclude the redundant 

sequences with the threshold of 30%. Those sequences that contain special characters such as 

B, X and Z are also excluded. Then, a dataset composed of 548 IDPs is obtained. Among the 

548 sequences, there are 911 disordered regions and 978 ordered regions, respectively. 

Traditionally, the regions with the sequence length > 30 amino acids are regarded as IDPs. 

Therefore, 387 disordered regions and 749 ordered regions are finally obtained.  

 

2.2 Methods for sequence analysis 

2.2.1 Sequence components composition 

The compositions of the 20 kinds of amino acids and the 400 kinds of dipeptide are used to 

depict sequence features of IDPs.  

 

2.2.2 Sequence complexity 

The sequence complexity is defined as [15] 

∑
=

−=
N

i

ii ffK
1

2log                  (1) 

where fi represent the usage frequency of the ith kind of amino acids, N = 1, 2, 3, …, 20. 

Obviously, when K reaches its maximum 4.32, this denotes that the 20 kinds of amino acids 

are averagely used.  

 

2.2.3 Chou’s pseudo amino acid composition 

The PseAAC proposed by Chou is a versatile index for displaying the intrinsic information 

of amino acids order and long range correlations in protein sequences, which has been widely 

applied to protein classification algorithms [16-20]. However, there is no any use for IDPs in 

our knowledge. For a protein sequence R1R2R3…RL with the length of L, the PseAAC is 

denoted 
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where θj is called the jth-tier correlation factor that reflects the sequence order correlation, 

which is written as 
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The correlation function Θ is given by 
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Where H(R) represents the physiochemical parameters of residue R, which should be 

subjected standard conversion as follows 
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where H0 is the original values of each physiochemical parameter. In this way, each protein 

sequence transformed into a (20+λ)-D vector, the first 20 components of which reflect the 

information of the amino composition, and the components from 20+1 to 20+λ reflect the 

information of sequence order [21].  
 

2.3 Support vector machine 

Support vector machine (SVM) has been widely used in prediction related problems of 

bioinformatics. In this work, the libSVM 3.17 [22] package with RBF kernel function [23] is 

adopted to accomplish the classification algorithm for ordered and disordered regions.  
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2.4 Evaluation indices 

To evaluate the efficiency of the proposed classification algorithm in this paper, the 

sensitivity (Sn), specificity (Sp), accuracy (ACC), the Matthew’s correlation coefficient (MCC) 

are employed respectively. The definition of each evaluation index is described as 

FNTP

TP
Sn +

=                      (6) 

FPTN
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S p +

=                       (7) 
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Where, TP and TN denote the positive and negative samples that have been correctly 

predicted respectively, FP and FN denote the positive and negative samples that have been 

falsely predicted respectively. 

Considering the distribution imbalance of the samples in the training set, the receiver 

operating characteristic (ROC) curve is also adopted to evaluate the classification results 

besides the indices mentioned above. 

 

3 Results and discussion 

3.1 Sequence complexity analysis 

Sequence complexity reflects the degree of each kind of amino acid usage bias in protein 

sequences. In figure 1, the K values of the 387 disordered regions and the 749 ordered regions 

are calculated respectively. From this figure, it is found that the disordered regions exhibit 

different patterns with that of the ordered regions. Close observation shows that the K values 

of the disordered regions are universally lower than that of the ordered regions. As can be 

seen, most sequences in the ordered regions have the K values larger than 4.0, while the K 

values of most disordered regions are less than 4.0. Further analysis shows that the mean 

value of K in disordered regions and ordered regions are 3.70 and 3.94 respectively. In 

addition, most disordered regions distribute from 3.0 to 4.3 of complexity, more than 90% 

disordered regions range from 3.1 to 4.2, more than 50% disordered regions is less than 3.9, 

and some is less 3.0. In contrast, most disordered regions distribute from 3.4 to 4.3 of 
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complexity, more than 90% ordered regions range from 3.5 to 4.3 of complexity, only less 

than 30% ordered regions is less than 3.9 of complexity, and almost there is no ordered 

regions when the complexity is less than 3.4. Therefore, figure 1 shows that disordered 

regions prefer low sequence complexity. 

On the other hand, it is noted that the lengths range from 31 to 2369 in ordered regions 

and from 31 to 1861 in disordered regions. Then it is interesting to investigate whether the 

differences of sequence complexity of each kind of regions in figure 1 are caused by the 

diverse lengths. In figure 2, the K value as well as the length of each sequence is calculated in 

ordered and disordered regions respectively. Seen from figure 2, K values fluctuate largely 

when the length is less than 750 in ordered and disordered regions, and the K values in 

disordered regions fluctuate much bigger than in ordered ones, then the K values tend to flat 

and independent of the sequence lengths in the two regions. Figure 2 also shows that the K 

values in disordered regions are always lower than that in the ordered regions, which is 

consistent with the results in figure 1. 

           

Figure 1.  Sequence complexity analysis in ordered/disordered regions of IDPs 

 

Figure 2.  Sequence complexity vs. sequence lengths of ordered/disordered regions 
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As have been elaborated in equation 1, the K value reaches its maximum of 4.32 when 

the 20 kinds of amino acids are averagely used in protein sequence. On the contrary, the K 

value decreases till zero with the increasing of the amino acids usage bias. Therefore, the 

results both in figures 1 and 2 indicate that amino acids usage in disordered regions is 

different from ordered regions.  
 

3.2 Amino acids usage bias analysis in IDPs 

Amino acids composition is one of the most adopted numerical features for protein 

sequence. In the early work by Weathers [24], the usage frequencies of the 20 kinds of amino 

acids have been deemed as one of the most efficient numerical features for IDPs 

classifications. In figure 3, the usage frequency of each kind of amino acid is provided. As can 

be seen from this figure, some amino acids in the disordered regions such as A, D, E, G, K, L, 

P and S have the frequencies that are greater than 6%, respectively, while the frequencies of C, 

H, M and W are less than 2%. In the ordered regions, the frequencies of A, E, G, K, L, S and 

V are greater than 6%, while that of C and W are less than 2%. 

 

Figure 3. Composition of the 20 kinds of amino acids in ordered/disordered regions 
 

We have shown that the sequence complexities exhibit different tendencies between the 

disordered regions and ordered regions in figure 1. Observing the curve of the disordered 

region, it is found that the sequence complexity can be divided into four intervals, i.e. 0 < K ≤ 

3.1, 3.1 < K ≤ 3.4, 3.4 < K ≤ 4.0, 4.0 < K ≤ 4.3, which contain 3.10%, 9.82%, 75.19% and 

11.89% of the 387 disordered regions respectively. Similarly, the K values of the ordered 

regions can be also divided into four intervals, i.e. 0 < K ≤ 3.4, 3.4 < K ≤ 3.8, 3.8 < K ≤ 4.1, 

4.1 < K ≤ 4.3, which contain 2.27%, 17.90%, 57.81% and 22.83% of the 749 ordered regions 

respectively. Then, the amino acids compositions in different intervals are analyzed both in 

disordered region and ordered region. The results in table 1 show that in disordered regions, 
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the percentages of A, D, E, G, K, L, P, S are bigger than 6% in most K value intervals, while 

the percentages of C, H, M W are less than 2%; for interval of 0 < K ≤ 3.1, the amino acids 

usage bias is extremely displayed that the percentages of almost 10 kinds of amino acids C, E, 

F, H, I, K, M, N, V, W are less than 2%. In this way, the amino acids compositions in ordered 

regions can be also analyzed according to table 1. Generally, in ordered regions, the 

percentages of A, E, G, K, L, S, V are bigger than 6%, while the percentages of C, W are less 

than 2% in most intervals. Then, table 1 shows that the amino acids compositions usages are 

consistent with the results of figure 3 in spite of the vibration of the K values.  

The correlations of the sequences lengths and the complexity are analyzed in figure 2, 

according to which the sequences lengths are divided into five intervals both for the 

disordered regions and the ordered regions, i.e. 30 < L ≤ 150, 150 < L ≤ 300, 300 < L ≤ 450, 

450 < L ≤ 600, 600 < L ≤ 2400. Similarly with table 1, the amino acids compositions in each 

sequence length interval are calculated in table 2. As can be seen from table 2, the amino acids 

compositions are very consistent with the results of figure 3. Therefore, both tables 1 and 2 

indicate that the results of figures 1, 2 and 3 can exhibit the intrinsic features of amino acids 

compositions. 

Table 1.  Amino acids composition analysis in different complexity intervals 

Regions Intervals Amino acids with frequency > 6% Amino acids with frequency< 2% 

Disordered 

0 < K ≤ 4.3 (100%) A, D, E, G, K, L, P, S C, H, M, W 

0 < K ≤ 3.1 (3.10%) G, P, Q, S, T, Y C, E, F, H, I, K, M, N, V, W 

3.1 < K ≤ 3.4 (9.82%) A, D, E, G, K, P, S C, F, H, I, M, W, Y 

3.4 < K ≤ 4.0 (75.19%) A, D, E, G, K, L, P, S C, H, M, W, Y 

4.0 < K ≤ 4.3 (11.89%) A, D, E, K, L, S C, W 

Ordered 

0 < K ≤ 4.3 (100%) A, E, G, K, L, S, V C, W 

0 < K ≤ 3.4 (2.27%) E, G, L, P, Q, S C, F, H, I, M, W 

3.4 < K ≤ 3.8 (17.09%) A, E, G, K, L, P, Q, S C, H, W, Y 

3.8 < K ≤ 4.1 (57.81%) A, E, G, K, L, S, V C, W 

4.1 < K ≤ 4.3 (22.83%) A, E, G, K, L, S, V W 

Table 2. Amino acids composition analysis in different sequence length intervals 

Regions Intervals Amino acids with frequency> 6% Amino acids with frequency < 2% 

Disordered 

30 < L ≤ 2400 (100%) A, D, E, G, K, L, P, S C, H, M, W 

30< L ≤ 150 (72.87%) A, D, E, G, K, L, P, S C, H, W 

150<L≤ 300 (17.83%) A, D, E, G, K, L, P, Q, S C, W 

300< L ≤ 450 (4.91%) A, D, E, G, K, L, P, S, T C, H, M, W 

450< L ≤ 600 (1.55%) A, E, G, P, S, T, V C, H, M, W, Y 

600<L≤ 2400 (2.84%) A, D, E, G, K, P, S C, H, M, W, Y 
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Ordered 

30 < L ≤ 2369 (100%) A, E, G, K, L, S, V C, W 

30< L ≤ 150 (55.54%) A, E, G, K, L, S, V C, W 

150<L≤ 300 (20.29%) A, E, G, L, S, V C, W 

300<L≤ 450 (11.35%) A, E, G, K, L, S, V C, W 

450< L ≤ 600 (4.94%) A, D, E, G, K, L, S, V C, W 

600< L ≤ 2400 (7.88%) A, E, G, K, L, S, V C, W 

 
In general, usage frequency is 1/20 = 5% when the amino acid is randomly used. To given 

more explicit information of amino acids usages bias, we propose a simple index called amino 

acids preference (AAP) to display the differences between the disordered regions and ordered 

regions, which is given as 

1−=
i

R
i

R
i

P

P
AAP .                 (10)  

Where, i represents the 20 kinds of amino acids, the right subscript R denotes disordered 

regions or ordered regions, Pi is the frequency of the ith kind of amino acid in IDPs (both 

ordered and disordered regions). Then, AAP = 0 indicates that corresponding amino acid is 

used randomly, and AAP > 0 indicates that corresponding amino acid is preferred. In figure 4, 

we provide the amino acids usage bias analysis results based on AAP. Obviously, the amino 

acids of A, D, E, G, K, P, Q, S and T are more preferred in disordered regions, while C, F, H, I, 

L, M, N, R, V, W and Y are more preferred in ordered regions. Further analysis shows that 

most of the amino acids preferred in disordered regions are hydrophilic (D, E, K, Q, S, T) and 

most of the amino acids preferred in ordered regions are hydrophobic (F, I, L, M, V, W, Y), 

which may be related to the fact that some IDPs gain its stable 3D structure by exposed its 

amino acids to bind other partners. Therefore figures 3 and 4 imply that the amino acids usage 

bias is different between the disordered regions and the ordered regions. 

 

Figure 4.  Amino acids usage analysis in ordered/disordered regions 
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3.3 Classification of disordered/ordered regions based on hybrid sequence 
features 

Above analysis has demonstrated the potentially intrinsic differences between the 

disordered regions and ordered regions. In this section, the K value, usage frequency of the 20 

kinds of amino acids (AA), usage frequency of the 400 kinds of dipetides (DAA) and 

PseAAC are adopted as sequence features in the classification algorithm respectively. It is 

noted that the hydrophobicity, mass and pK2 of each amino acid are used for PseAAC 

calculation. The 5-fold cross validation is performed by classifying the training set into five 

groups randomly, then one is used as testing set and the other four groups are used as training 

set. In table 3, the classification efficiency of each numerical feature is presented. It is found 

that the PseAAC achieve the highest classification efficiency compare with AA, DAA and K. 

The ACC, MCC and AUC for solely using PseAAC are 79.22%, 0.5211 and 0.8467, 

respectively. In comparison, the same indices for sole AA, DAA and K value are (78.34%, 

0.4987, 0.8309), (76.76%, 0.4547, 0.8202) and (70.40%, 0.2759, 0.7669), respectively. From 

the comparison of the ROC curves in figure 5, the same results can be inferred. On the other 

hand, combination of K+AA+DAA+PseAAC achieve the highest ACC (79.40%) and MCC 

(0.5262). In summary, the classification efficiency is significantly improved by integrating the 

PseAAC, which shows that sequence order and long range correlation are important factors 

for describing the disordered/ordered regions. 

Table 3. Classification of disordered/ordered regions based hybrid features 

Numerical features ACC(%) Sn(%) Sp(%) MCC AUC 

PseAAC 79.22  89.31  59.70  0.5211  0.8467  

AA 78.34  89.70  56.33  0.4987  0.8309  

DAA 76.76  93.04  45.24  0.4547  0.8202  

K 70.40 91.29 29.97 0.2759 0.7669 

K+PseAAC 79.05 88.77 60.23 0.5180 0.8449 

AA+PseAAC 78.52 88.63 58.95 0.5057 0.8444 

DAA+PseAAC 79.05 89.04 59.72 0.5175 0.8443 

K+AA+PseAAC 79.13 88.77 60.48 0.5201 0.8465 

K+DAA+PseAAC 79.22 89.04 60.22 0.5217 0.8462 

AA+DAA+PseAAC 79.05 89.04 59.72 0.5175 0.8444 

K+AA+DAA+PseAAC 79.40 89.04 60.74 0.5262 0.8476 

AA+DAA 78.69  90.90  55.06  0.5057  0.8342  

K+AA 78.96  88.77  59.96  0.5166  0.8398  

K+DAA 76.31  88.77  52.20  0.4481  0.8283  

K+AA+DAA 79.23 89.31 59.73 0.5212 0.8360 
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Figure 5. Comparison of the ROC curves of different sequence features 

 

4 Conclusions 

The discovery of IDPs challenges the traditional ‘sequence-structure-function’ paradigm 

[25]. Because lack of stable 3D structure, sequence based prediction has been one of the 

prerequisites for further understanding the biological significances of IDPs. Up to now, a great 

number of IDPs predictors have been put forward since the first one proposed in 1997 [26]. 

However the biological mechanisms of IDPs are not very clear, the sequence characteristics 

employed in these predictors mainly focus on the sequence components compositions and 

physiochemical properties of amino acids, it is necessary to provide more comprehensive 

sequence features for accurate prediction of IDPs. How to propose effective computational 

methods for demonstrating the features for protein sequences has been an important topic all 

the time [27, 28]. In this paper, we study the intrinsic sequence features between the 

disordered regions and ordered regions based on a larger dataset of IDPs. Then, a novel 

classification algorithm for disordered regions and ordered regions is proposed by 

incorporating the PseAAC method for the first time. The results show that the sequence order 

and long range correlation provides complementary information to other components 

composition based methods.  
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