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Abstract

Let H2n be the set of the trees having a perfect matching with 2n vertices. In
H2n, ordering the trees in terms of their maximal Estrada indices is considered. A
new transformation is introduced. As an application of the new transformation, we
give a simpler proof for the result in Deng’s paper [H. Deng, MATCH Commun.
Math. Comput. Chem. 62 (2009) 607–610]. Then, we obtain the trees with the
largest and the second largest Estrada indices among H2n with n ≥ 5.

1 Introduction

Let G be a simple graph with n vertices and A(G) its adjacency matrix. The characteristic

polynomial of G is Φ(G, λ) = det[λI − A(G)], where I is the unit matrix of order n [1].

The n roots of Φ(G, λ) = 0 are denoted by λ1 ≥ · · · ≥ λn. Since A(G) is a real symmetric

matrix, λ1, · · · , λn are all real numbers. The Estrada index (EI), put forward by Estrada

[2] is defined as

EE(G) =
n∑
i=1

eλi . (1)

In the last decade the EI had numerous applications and attracted much attention of

mathematicians. For example, it can measure the degree of protein folding [2] and the

centrality of complex (communication, social, metabolic, ect.) networks [3]. It is shown

that there is a connection between the EI and the concept of extended atomic branching

[4]. Some mathematical properties of the EI and the lower and upper bounds for EI may
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be found in Refs. [5–7]. For the characterization of graphs with the extremal EI and some

other results on the EI, one can refer to Refs. [8–13].

A walk W of length k in G is any sequence of vertices and edges of G, namely W =

v0, e1, v1, e2, · · · , vk−1, ek, vk such that ei is the edge joining vertices vi−1 and vi for every

i = 1, 2, · · · , k. If v0 = vk, the walk is closed and is referred to as the (v0, v0)-walk of

length k. For k ≥ 0, we denote Mk(G) =
∑n

i=1 λ
k
i and refer to Mk(G) as the k-th spectral

moment of G. It is well known that Mk(G) is equal to the number of the closed walks of

length k in G [1]. From the Taylor expansion of eλi , EE(G) in (1) can be rewritten as

EE(G) =
∞∑
k=0

Mk(G)

k!
. (2)

In particular, if G is a bipartite graph, then M2k+1(G) = 0 for k ≥ 0. Hence, we have

EE(G) =
∞∑
k=0

M2k(G)

(2k)!
. (3)

Let G1 and G2 be two bipartite graphs of order n. If M2k(G1) ≥ M2k(G2) holds

for any positive integer k, then EE(G1) ≥ EE(G2). Moreover, if the strict inequality

M2k(G1) > M2k(G2) holds for at least one integer k, then EE(G1) > EE(G2).

The characterization of graphs with the extremal Estrada indices (EIs) is an interesting

problem. Recently, the trees and cyclic graphs with the extremal Estrada indices have

successfully been characterized [8–13]. For the general trees [14–17], the trees with a fixed

maximal degree [18], the trees with a perfect matching and a maximal degree [18], the

trees with a given matching number [8], the trees with a fixed diameter [8], the trees with

a given number of pendant vertices [9], and the trees with an independence number [9],

etc., some results were recently reported.

Let H2n be the set of trees with a perfect matching having 2n vertices. In this pa-

per, we will study the trees with the largest and the second largest EIs in H2n. Recall

that molecular graphs with perfect matchings correspond to molecules with the Kekulé

structures. This, in particular, means that the trees with a perfect matching in which the

maximum vertex degree is 3, are the molecular graphs of acyclic polyenes. Thus we will

characterize the acyclic Kekuléan π-electron systems with the largest Estrada indices.

The rest of this paper is organized as follows. In Section 2, a new transformation is

introduced (see Lemma 7) for studying the EI. As an application of the new transforma-

tion, we give a simpler proof for the result which has been obtained by Deng [17]. In
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Section 3, with the aid of the new transformation, we deduce the trees with the largest

and the second largest EIs in H2n as n ≥ 5.

2 Transformations for Studying the Estrada Indices

To deduce the main results of this paper, Lemmas 1–6 are simply quoted here.

Let the coalescence G(u) ·H(v) be the graph obtained from G and H by identifying

u of G with v of H. Let Mk(G, u) be the number of closed walks of length k starting at

u in G.

Lemma 1 ([8]) If G1 and G2 are two bipartite graphs satisfying M2k(G1) ≥ M2k(G2)

and M2k(G1, w) ≥ M2k(G2, u) for any positive integer k, then M2k(G) ≥ M2k(G
′) for

any positive integer k, where G ∼= G1(w) · G3(a) and G′ ∼= G2(u) · G3(a). Furthermore,

if M2k(G1, w) > M2k(G2, u) for some positive integer k, then there must exist a positive

integer l such that M2l(G) > M2l(G
′).

Lemma 2 ([19]) Let G and H be two vertex-disjoint graphs with u, v ∈ V (G) and z ∈

V (H), where |V (H)| ≥ 2. For each positive integer k, if Mk(G;u) ≥ Mk(G; v) and there

exists at least one k such that Mk(G;u) > Mk(G; v) holds, then EE(G(u) · H(z)) >

EE(G(v) ·H(z)).

Lemma 3 ([20]) Let A, B, and C be three connected graphs, each of which has at least

two vertices. Let u and v be two different vertices of C, u′ ∈ V (A) and v′ ∈ V (B). Let

H = A(u′) · C(u), G = H(v) · B(v′) and G′ = H(u) · B(v′). Suppose that there exists an

automorphism θ of C such that θ(u) = v, then

(i) Mk(H, u) ≥ Mk(H, v) for all positive integer k and it is strict for some positive

integer k0;

(ii) Mk(G
′) ≥Mk(G) for all positive integer k and it is strict for some positive integer

k0.

Proof. Lemma 3(i) is Lemma 2.4(i) in Ref. [20]. Lemma 3(ii) follows from Lemma 3(i)

and Lemma 2. �

Remark: It should be noted that Deng and Chen [20] deduced Lemma 3(ii) by Lemma

3(i) and Lemma 1. Bearing the condition of Lemma 1 in mind, we point out that H in

Lemma 2.4 in Ref. [20] must be a bipartite graph.
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Lemma 4 ([10]) Let A be the adjacency matrix of a connected graph G with n vertices.

For two vertices vi and vj in G, the number of the walks of length k from vi to vj is

Aki,j =
∑

vh∈NG(vj)
Ak−1ih , where NG(vj) is the set of the vertices which are adjacent to the

vertex vj in G and Akij is the element of Ak which lies in the i-th row and the j-th column

with 1 ≤ i, j ≤ n. Furthermore, Aki,j = Akj,i.

Lemma 5 has been obtained by Zhang et al. [8]. For completeness, we give another

proof for Lemma 5. For v ∈ V (G), let dG(v) be the degree of v.

Lemma 5 ([8]) Let G and H be two vertex-disjoint connected graphs with |V (G)| ≥ 3

and |V (H)| ≥ 2. Let z ∈ V (H) and vs, vs−1 ∈ V (G), where vs and vs−1 are adjacent,

dG(vs) = 1, and dG(vs−1) ≥ 2. We have Mk(G; vs−1) ≥Mk(G; vs) and there exists at least

one k such that the inequality holds. Furthermore, EE(G(vs−1) · H(z)) > EE(G(vs) ·

H(z)).

Proof. Let A be the adjacency matrix of G. Obviously, Mk(G; vi) = Aki,i.

As k = 1, Aks−1,s−1 = Aks,s = 0. As k = 2, since dG(vs) = 1 and dG(vs−1) ≥ 2, we have

Aks−1,s−1 ≥ 2 > 1 = Aks,s. Let k ≥ 3. Since vs and vs−1 are adjacent, dG(vs) = 1, and

dG(vs−1) ≥ 2, by Lemma 4, we get

Aks−1,s−1 = Ak−1s−1,s +
∑

vh∈NG(vs−1)\{vs}

Ak−1s−1,h ≥ Ak−1s−1,s = Ak−1s,s−1 = Aks,s. (4)

Thus, we get Mk(G; vs−1) ≥ Mk(G; vs) and there exists at least one k = 2 such that

Mk(G; vs−1) > Mk(G; vs) holds. Furthermore, by Lemma 2, we get Lemma 5. �

By Lemma 5, we have another proof for Lemma 6 which has been obtained by Du and

Zhou [19].

Lemma 6 ([19]) Let G1 and G2 be two connected graphs, u ∈ V (G1), and v ∈ V (G2).

Let G be the graph obtained from G1 and G2 by joining u and v with an edge. Let G′

be the graph obtained from G1 and G2 by identifying u with v, and attaching a pendant

vertex to the common vertex u(v). If dG(u) ≥ 2 and dG(v) ≥ 2, then EE(G′) > EE(G).

Proof. Let A be G2(v) ·P2(v1), where P2 = v0v1. Obviously, v0 and v1 of A are adjacent,

dA(v0) = 1, dA(v1) ≥ 2, A(v1) ·G1(u) = G′, and A(v0) ·G1(u) = G. By Lemma 5, we have

EE(G′) > EE(G). �

To get our main results of this paper, Lemma 7 is introduced as follows.
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Lemma 7 Let G and H be two vertex-disjoint connected graphs with |V (G)| ≥ 4 and

|V (H)| ≥ 2. Let z ∈ V (H) and vs, vs−1, vs−2 ∈ V (G), where dG(vs) = 1, dG(vs−1) = 2,

dG(vs−2) ≥ 2, and vs−1 is adjacent to vs and vs−2. We have Mk(G; vs−2) ≥ Mk(G; vs−1)

for all positive k. Furthermore, if there exists at least one k such that Mk(G; vs−2) >

Mk(G; vs−1), then EE(G(vs−2) ·H(z)) > EE(G(vs−1) ·H(z)).

Proof. Let A be the adjacency matrix of G. Obviously, Mk(G; vi) = Aki,i. We prove

Mk(G; vs−2) ≥Mk(G; vs−1) by induction on k.

As k = 1, Aks−2,s−2 = Aks−1,s−1 = 0. As k = 2, since dG(vs−1) = 2 and dG(vs−2) ≥ 2,

we have Aks−2,s−2 ≥ 2 = Aks−1,s−1. As a fixed k with k ≥ 3, we suppose Mk(G; vs−2) ≥

Mk(G; vs−1). Next, we prove Mk+1(G; vs−2) ≥Mk+1(G; vs−1).

Since dG(vs−2) ≥ 2, we can choose a vertex vy which is adjacent to vs−2 and vy 6= vs−1.

By using Lemma 4 twice, we get

Ak+1
s−2,s−2 = Aks−2,s−1 +

∑
vh∈NG(vs−2)\{vs−1}

Aks−2,h

≥ Aks−2,s−1 + Aks−2,y

= Aks−2,s−1 +
∑

vh∈NG(vy)

Ak−1s−2,h

≥ Aks−2,s−1 + Ak−1s−2,s−2. (5)

Since dG(vs) = 1, dG(vs−1) = 2, and vs−1 is adjacent to vs and vs−2, by using Lemma

4 twice, we get

Ak+1
s−1,s−1 = Aks−1,s−2 + Aks−1,s = Aks−2,s−1 + Ak−1s−1,s−1. (6)

By the induction assumption, we have Ak−1s−2,s−2 ≥ Ak−1s−1,s−1 for a fixed k with k ≥ 3.

Therefore, by (5) and (6), we get Ak+1
s−2,s−2 ≥ Ak+1

s−1,s−1. Namely, we obtain Mk(G; vs−2) ≥

Mk(G; vs−1) for all positive k. Furthermore, if there exists at least one k such that

Mk(G; vs−2) > Mk(G; vs−1) holds, then by Lemma 2, we get Lemma 7. �

Lemma 7 will provide us with a useful and direct method to compare EIs for two

graphs. For example, we show some applications of Lemma 7 as follows.

(i) By Lemma 7, we have a simpler proof for Theorem 1 which has been obtained by

Deng [17].

(ii) By Lemmas 5 and 7, we get Lemma 8 in Section 3. By Lemma 7, we get Lemma

9 in Section 3.
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For n ≥ 2, let Pn and Xn be a path and a star graph, respectively, where n is

the number of vertices. Let S4
n = P5(v2) · Xn−4(v) and S5

n = P5(v1) · Xn−4(v), where

P5 = v0 · · · v4, v is the center vertex of Xn−4, and n ≥ 6.

Theorem 1 [17] EE(S4
n) > EE(S5

n) for n ≥ 6.

Proof. Since P5 = v0 · · · v4, we have dP5(v0) = 1, dP5(v1) = 2, dP5(v2) = 2, and v1 is

adjacent to v0 and v2. By Lemma 7, we get Mk(P5; v2) ≥ Mk(P5; v1). Furthermore, by

Lemma 3.1 in Ref. [18], for sufficiently large k, Mk(P5; v2) > Mk(P5; v1) holds. Since

S4
n = P5(v2) ·Xn−4(v) and S5

n = P5(v1) ·Xn−4(v), by Lemma 7 again, we obtain Theorem

1. �

3 The Largest and the Second Largest Trees with the

Maximal Estrada Indices in H2n

In this section, we study the trees with the largest and the second largest EIs in H2n.

Some definitions are introduced first.

For T ∈ H2n, let Q(T ) = L(T ) −M(T ), where L(T ) is the edge set of T and M(T )

the perfect matching of T . It is clear that |M(T )| = n and |Q(T )| = n− 1, where |M(T )|

and |Q(T )| are the numbers of edges in M(T ) and Q(T ), respectively. Let T̂ be the

graph induced by Q(T ), namely T̂ = T −M(T )− S0, where S0 is the set of singletons in

T −M(T ). We call T̂ the capped graph of T and T the original graph of T̂ .

For n ≥ 4, let Yn be the graph obtained from P4 = v0v1v2v3 by attaching n−4 pendant

edges to v2.

Let F2n (for n ≥ 3) and B2n (for n ≥ 4) be respectively the trees obtained from the

star graph Xn and Yn by attaching a pendant edge to every vertex. As n ≥ 3, let the

center vertex of F2n be the vertex of F̂2n = Xn with degree n−1. For n = 2, let F2n be P4

and the center vertex of F4 be the second vertex of P4. For n = 1, let F2n be P2 and the

center vertex of F2 be the pendant vertex of P2. For n ≥ 4, let M2n be the tree obtained

from P7 by attaching n − 4 paths of length 2 and a pendant edge to the third vertex of

P7. Obviously, F̂2n = Xn, B̂2n = Yn, and M̂2n = Xn−1 ∪ P2. For example, F12, B12, and

M12 are shown in Fig. 1.

By Lemmas 5 and 7, we get Lemma 8.

Lemma 8 EE(F2n) > EE(B2n) > EE(M2n) for n ≥ 4.
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(a) F12 (b) B12

(c) M12

Figure 1: F12, B12, and M12

Proof. Let G in Lemmas 5 and 7 be F2n−2 with n ≥ 4. Let vs, vs−1, vs−2 ∈ V (F2n−2)

be the three vertices as follows. (i) vs−2 is the center vertex of F2n−2. (ii) vs−1 is a

vertex adjacent to vs−2 with dF2n−2(vs−1) = 2. (iii) vs is the pendant vertex adjacent

to vs−1. Obviously, dF2n−2(vs) = 1 and dF2n−2(vs−2) ≥ 3 since n ≥ 4. Note that F2n =

F2n−2(vs−2) · P3(v0), B2n = F2n−2(vs−1) · P3(v0), and M2n = F2n−2(vs) · P3(v0), where

P3 = v0v1v2. Obviously, M2(F2n−2; vs−2) ≥ 3 > 2 = M2(F2n−2; vs−1). By Lemma 7, we

obtain EE(F2n) > EE(B2n) as n ≥ 4. By Lemma 5, we have EE(B2n) > EE(M2n) as

n ≥ 4. �

Let c(T̂ ) be the component numbers of T̂ hereinafter. Let d(G) be a diameter of G.

Lemma 9 For T1 ∈ H2n with n ≥ 5, if c(T̂1) = 1 and d(T̂1) ≥ 4, then there exists a tree

T2 ∈ H2n with c(T̂2) = 1 and d(T̂2) = d(T̂1)− 1, satisfying EE(T2) > EE(T1).

Proof. Let T1 ∈ H2n with n ≥ 5, c(T̂1) = 1, and d(T̂1) ≥ 4. As c(T̂1) = 1, we get that

T1 is the tree obtained from T̂1 by attaching a pendant edge to each vertex of T̂1. As

d(T̂1) ≥ 4, we have d(T1) ≥ 6. Let Pd+1 = v0v1v2 · · · vd be a diameter of T1, where d ≥ 6.

Since T1 has a perfect matching, Pd+1 is a diameter of T1, and c(T̂1) = 1, we get that T1

is the tree obtained from Pd+1 with the following three properties:

(i) v0, v1, vd−1, vd of Pd+1 of T are attached by no trees, namely, v0v1, vd−1vd ∈M(T );

(ii) v2 (resp., vd−2) of Pd+1 of T is identified with the center vertex of Fn2 (resp., Fnd−2
),

where n2, nd−2 ≥ 2;
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(iii) vi (3 ≤ i ≤ d− 3) of Pd+1 of T is attached by a tree (denoted by T ini
), where ni is

the number of the vertices of T ini
(including the vertex vi). Obviously, ni is an even and

ni ≥ 2.

Let T ′1 be the tree obtained from T1 by replacing T ini
with Fni

for each 3 ≤ i ≤ d− 3.

Namely, in T ′1, each vi of Pd+1 of T ′1 with 3 ≤ i ≤ d− 3 is identified with the center vertex

of Fni
. Obviously, c(T̂ ′1) = 1 and d(T̂ ′1) = d(T̂1). We prove Claims 1 and 2 as follows.

Claim 1 EE(T ′1) ≥ EE(T1), with the equality if and only if T ′1 = T1.

For each i with 3 ≤ i ≤ d − 3, if ni = 2 or ni = 4, then each vi of Pd+1 of T1 is

identified with the center vertex of Fni
. Namely, T ′1 = T1. Obviously, Claim 1 holds since

EE(T ′1) = EE(T1).

Next, we suppose that there exists one tree T jnj
of T1 (attached at vj) with T jnj

6= Fnj

and nj ≥ 6, where 3 ≤ j ≤ d − 3. Since T jnj
6= Fnj

and T1 has a perfect matching,

in T jnj
, there exists one vertex (denoted by u) with a degree not less than 3 in such a

way: (i) u is adjacent to vj and a pendant vertex (denoted by s); and (ii) u is identified

with a vertex z of a tree H of order at least 3 (including z), where uvj, us /∈ E(H)

and us ∈ M(T ). Let G in Lemma 7 be the graph obtained from T1 by deleting all the

vertices in V (H) (except for z, namely u). Obviously, G(u) · H(z) = T1, dG(s) = 1,

dG(u) = 2, dG(vj) ≥ 3, and M2(G; vj) ≥ 3 > 2 = M2(G;u). By Lemma 7, we have

EE(G(vj) ·H(z)) > EE(G(u) ·H(z)) = EE(T1). Repeatedly using the same procedure,

we get Claim 1.

Claim 2 There exists a tree T2 ∈ H2n with c(T̂2) = 1 and d(T̂2) = d(T̂1) − 1, satisfying

EE(T2) > EE(T ′1).

Let the two components of T ′1−vd−2vd−3 be A and B, where A and B contain vd−3 and

vd−2, respectively. Obviously, B = Fnd−2+2. In B, we denote the pendant vertex adjacent

to vd−2 by v′d−2. Let G in Lemma 7 be A(vd−3) ·P3(vd−3), where P3 = vd−3vd−2v
′
d−2. Let H

in Lemma 7 be B−v′d−2. Obviously, dG(v′d−2) = 1, dG(vd−2) = 2, and dG(vd−3) ≥ 3. Since

vd−3 of Pd+1 of T ′1 is attached by at least a pendant edge, we have M2(G; vd−3) ≥ 3 > 2 =

M2(G; vd−2). By Lemma 7, we have EE(G(vd−3) · H(vd−2)) > EE(G(vd−2) · H(vd−2)),

where G(vd−2)·H(vd−2) is T ′1. Let T2 = G(vd−3)·H(vd−2). Obviously, T2 ∈ H2n, c(T̂2) = 1,

and d(T̂2) = d(T̂1)− 1. Thus, we get Claim 2.

By the proofs of Claims 1 and 2, we obtain Lemma 9. �
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Lemma 10 For T ∈ H2n with n ≥ 5, if c(T̂ ) = 1 and d(T̂ ) = 3, we have EE(B2n) ≥

EE(T ), where the equality holds if and only if T = B2n.

Proof. Let Q be the tree obtained from P6 = v0v1 · · · v5 by attaching a pendant edge to

v2 and v3. For T ∈ H2n, if c(T̂ ) = 1 and d(T̂ ) = 3, then T must be the tree obtained from

Q by attaching pathes of length two to v2 and v3. In Lemma 3, let C be Q, A be the

graph attached at v2 of Q of T , and B be the graph attached at v3 of Q of T . Obviously,

there exists an automorphism θ of C such that θ(v2) = v3. Thus, by Lemma 3, we get

Lemma 10. �

Lemma 11 For T ∈ H2n with n ≥ 5, if c(T̂ ) ≥ 2, then EE(B2n) > EE(T ).

Proof. Let T ∈ H2n and c(T̂ ) ≥ 2. Let T̃ be the tree obtained from T̂ by coalescing the

two vertices in T which are incident with a common edge in M(T ). Obviously, T̃ is a tree

with n vertex and the edges of T̃ are those of T̂ . Two cases are considered as follows.

Case (i) T̃ = Xn.

As T̃ = Xn, we have T̂ = Xa+1 ∪Xb+1, where a, b ≥ 1 and a+ b = n− 1.

If a = 1 or b = 1, then T = M2n. By Lemma 8, we have EE(B2n) > EE(M2n) as

n ≥ 5.

Next, let a, b ≥ 2. Hence n ≥ 5 and T is the tree obtained from P6 = v0v1v2v3v4v5 by

attaching a− 1 paths of length two to v2 and b− 1 paths of length two to v3. In Lemma

3, let C be P6, A and B be the graphs attached at v2 and v3 of P6 of T , respectively.

Obviously, there exists an automorphism θ of C such that θ(v2) = v3. Thus, by Lemma

3, we get EE(M2n) ≥ EE(T ). Furthermore, by Lemma 8, we obtain EE(B2n) > EE(T )

as n ≥ 5.

Case (ii) T̃ 6= Xn.

For T ∈ H2n, if c(T̂ ) ≥ 2, then there exists a cut edge e = uv ∈ M(T ) which is not a

pendant edge, where dT (u), dT (v) ≥ 2. Let T1 be the tree obtained from T by identifying

u with v, and attaching a pendant vertex to the common vertex u (namely v) of T .

Obviously, T1 ∈ H2n and c(T̂1) = c(T̂ ) − 1. By Lemma 6, we have EE(T1) > EE(T ).

Repeatedly using the same procedure until all the edges in M(T1) are pendant edges,

we can get a tree T2 ∈ H2n with c(T̂2) = 1 such that EE(T2) ≥ EE(T1). Bearing the

definition of T̃ in mind, we have T̂2 = T̃ . As T̃ 6= Xn, we get T̂2 6= Xn. Namely, d(T̂2) ≥ 3.

By Lemmas 9 and 10, we obtain EE(B2n) ≥ EE(T2). Therefore, EE(B2n) > EE(T ).
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By the proofs of Cases (i) and (ii), we get Lemma 11. �

By Lemmas 8–11, we obtain the trees with the largest and the second largest EIs in

H2n with n ≥ 5.

Theorem 2 Let T ∈ H2n with n ≥ 5. We have EE(F2n) > EE(B2n) > EE(T ), where

T 6= F2n, B2n.

Proof. By Lemma 8, we get EE(F2n) > EE(B2n) as n ≥ 5. Let T ∈ H2n \ {F2n, B2n}

and n ≥ 5.

Let |c(T̂ )| = 1. As d(T̂ ) = 2, H2n has only one tree F2n. As d(T̂ ) = 3, by Lemma 10,

we have EE(B2n) > EE(T ). As d(T̂ ) ≥ 4, by Lemmas 9 and 10, we obtain EE(B2n) >

EE(T ).

Let |c(T̂ )| ≥ 2. By Lemma 11, we get EE(B2n) > EE(T ). �
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