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Abstract
We find new upper and lower bounds for the Kirchhoff index R(G) of a graph

G = (V,E) using standard tools of electric networks. We compare our lower bounds
with those found in the literature and we report a sharp threshold for R(G): when

the minimum degree exceeds b |V |2 c then R(G) is linear in |V |; if the minimum degree

is strictly less than b |V |2 c, there are graphs for which R(G) is quadratic in |V |.

1 Introduction

Let G = (V,E) be a finite simple connected graph with vertex set V = {1, 2, . . . , n} and

degrees di for 1 ≤ i ≤ n, with δ and ∆ the smallest and largest such degrees, respectively.

The most popular resistive descriptor in Mathematical Chemistry is the Kirchhoff index

R(G), introduced in [12], and defined by

R(G) =
∑
i<J

Rij

where Rij is the effective resistance between the vertices i and j. There exists an abundant

literature about this index, of which the bibliography at the end of this article is but a

sampler of the variety of approaches used through the years, and referred mostly to upper

and lower bounds for R(G).

Possibly the first general bound for R(G) was the proof in [14] that the minimum of

R(G) is attained by the complete graph Kn, that is

R(G) ≥ n− 1 = R(Kn) (1)
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for all G. Another simple proof of (1) using Foster’s first formula is found in [15]. It should

be mentioned that the inequality in (1) is strict if G is not Kn because the Kirchhoff

index is strictly increasing in the number of edges (see [14, 19, 24] for three different and

increasingly briefer proofs of this fact).

After the discovery (see [10] and [27], and also [11] and [17] for alternative proofs) that

K(G) can be expressed in terms on the non-zero eigenvalues λi of the Laplacian as

R(G) = n
n∑
i=2

1

λi
(2)

a cornucopia of general bounds (in the sense that they are applicable to all graphs) and

also some more particular bounds (for graphs which are regular, bipartite, planar, edge-

transitive, c-cyclic, with diameter 2, etc.) were found by applying a variety of approaches

to maximize and minimize the expression (2) with real analysis, and the use of standard

inequalities, majorization and Schur-convex functions. Other approaches with slightly

different flavors are those that include the ideas of random walks on graphs and Wiener

capacities. A relevant list of works, focused chiefly on bounds and hardly exhaustive,

would include [1–3,5, 7, 10–27].

Perhaps not so frequent in the literature, with some exceptions like direct calculations

in [14] and sporadic mentions to Foster’s formulas ( [15, 16, 19, 22, 23]), is the use of well

known facts from electric networks in order to produce upper and lower bounds for R(G).

In this article we return to the electrical ideas in order to find new bounds in terms of

the number of vertices n, the number of edges |E| and the largest and smallest degrees,

∆ and δ, respectively. We compare our lower bounds to those found in the literature that

depend on the same parameters. Lower bounds involving other parameters, such as the

number of spanning trees, connectivity, chromatic number, independence number, clique

number, etc., will not be discussed here. We also give some upper bounds, particularly

when δ ≥ bn/2c, in which case R(G) is linear in n, and finally show that there is a sharp

threshold at δ = bn/2c, in the sense that if δ < bn/2c then R(G) can be quadratic in n.

2 Lower bounds

We present in this section what we believe are new and simple upper and lower bounds

for the Kirchhoff index which are derived from well known electric principles.

Proposition 1 For any n-vertex graph G we have

R(G) ≥ n− 1 +
2

∆

((
n

2

)
− |E|

)
. (3)
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This lower bound is attained by Kn.

Proof. Using Foster’s first formula (see [9]) which states that
∑

i<j:d(i,j)=1Rij = n−1,

and the fact (see [6]) that

Rij ≥
1

di
+

1

dj
≥ 2

∆
,

whenever i and j are not neighbors, we can write

R(G) =
∑

i<j:d(i,j)=1

Rij +
∑

i<j:d(i,j)>1

Rij = n− 1 +
∑

i<j:d(i,j)>1

Rij

≥ n− 1 +
∑

i<j:d(i,j)>1

2

∆
= n− 1 +

2

∆

((
n

2

)
− |E|

)
.

It is clear that this lower bound is greater than or equal to n − 1 and becomes this

value if and only if the graph is Kn •
We obtain immediately the following

Corollary 1 For any d-regular graph we have

R(G) ≥ n− 1 +
n

d
(n− 1− d). (4)

We are going to show now that the equality in the lower bound (4) (and therefore

in (3)) is attained not only by Kn but by a large family of regular graphs. Let N(i) be

the neighborhood of the vertex i, i.e., the set of its neighbors, and let the diameter D be

defined as D = maxi,j{d(i, j) : i, j ∈ V }. Then we have

Proposition 2 The bound (4) is attained by any n-vertex d-regular graph G for which

D = 2 and |N(i) ∩N(j)| = d for all i, j such that d(i, j) = 2.

Proof. First we get an upper bound for Rij when d(i, j) = 2. By the monotonicity

principle (see [8]) and by deleting enough edges, Rij is bounded above by the effective

resistance of a graph which consists of d linear graphs of length 2 set in parallel between

i and j, and the effective resistance of such a graph, using the rules of resistors in series

and in parallel is
2

d
. Now using Foster’s first formula we get

R(G) = n− 1 +
∑

i<j:d(i,j)=2

Rij ≤ n− 1 +
∑

i<j:d(i,j)=2

2

d

= n− 1 +
2

d

∑
i<j:d(i,j)=2

1 = n− 1 +
2

d

((
n

2

)
− nd

2

)
,

which coincides with (4) •
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To show that the set of graphs satisfying the previous proposition is nonempty consider,

for j ≥ 1, p ≥ 1, the graph G(j, p) on n = (p+ 1)(j + 1) vertices which is d-regular, with

d = j(p+ 1), defined by the neighbors of its vertices thus: the neighbors of vertex v come

in p+1 bunches of j consecutive vertices (the first bunch would be v+1, v+2, . . . , v+j−1)

separated by a non-neighbor (the first non-neighbor would be v + j). Here the addition

is mod n. The densest of these examples occurs when p = 1; in that case d = n− 2 and

G(j, 1) can be described thus: from the complete graph K2j we delete the j edges (i, i+j),

for 1 ≤ i ≤ j, i.e., any vertex is connected to all others but its “opposite vertex”. The

least dense example occurs when j = 1; in that case d = n
2

and G(1, p) can be described

thus: every odd vertex is connected to all even vertices and every even vertex is connected

to all odd vertices.

We now give a brief summary of the lower bounds for R(G) found in the literature

that resemble ours, in the sense that they are given in terms of n, |E| and some of the

degrees of the vertices.

Zhou and Trinajstić in [25] found that

R(G) ≥ n

1 + ∆
+

n(n− 2)2

2|E| − 1−∆
(5)

with equality if and only if G = Kn or G = K1,n−1.

In [7], Das et al. obtained the following bounds

R(G) ≥ n

∆ + 1
+

n

2|E| −∆− 1

(
(n− 2)2 +

(∆2 − δ)2

∆2δ

)
, (6)

where ∆2 is the second largest degree, and the equality holds if and only if G is either

K1,n−1 or Kn. Also

R(G) ≥ 1 +
n

δ
+

n(n− 3)2

2|E| −∆− δ − 1
, (7)

where the equality holds if and only if G is either K1,n−1, Kn− e (the complete graph Kn

minus an edge e) or Kin,n−1 (a complete graph Kn−1 with an extra edge between one of

the vertices of the Kn−1 and a pendent vertex).

In [13], refining the ideas used in [25] and [7] Li found two bounds for which we need

some additional notation. Let ∆3 be the third largest degree, let N(v) be the set of

neighbors of v and

cu,v = |N(u) ∪N(v)|,

d∗i = |{v : dv ≥ i}|.

If du = ∆ and dv = ∆2, define

au,v =
1

2

(
dv + 2 +

√
(dv + 2)2 − 8dv + 4cu,v

)
,
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in case u and v are neighbors and

au,v =
1

2

(
dv + 1 +

√
(dv + 1)2 − 4cu,v

)
,

otherwise. Finally, define

a = max{au,v : du = ∆, dv = ∆2, u 6= v}.

Then if G is neither Kn nor K1,n−1 and n ≥ 4 we have

R(G) ≥ n

(
1

n
+

1

n+ d∗2 −∆− 1
+

1

δ
+

(n− 4)2

2|E| −∆− 1− a− δ

)
, (8)

with equality if and only if G is Kn − e,K2 ∨Kc
n−2, K2 ∨Kc

1,n−2, K1 ∨Kc
1,n−1, K1,n + e or

K1 ∨ (K1 ∪K1,n−2).

Also, for a non-complete G with n ≥ 5 Li showed that

R(G) ≥ 1 +
n

δ
+

n

n+ d∗2 + d∗3 −∆−∆2 − 1

+
n

n+ d∗2 −∆− 1
+

n(n− 5)2

2|E| −∆−∆2 −∆3 − δ
. (9)

Now we will show that our bound (3) is not comparable to (5), (6), (7), (8) and (9).

Indeed, (3) does not attain the equality for K1,n−1, as (5), (6) and (7) do, in fact its value

is 2n− 3 for that graph. Likewise, (3) does not attain the equality for Kn− e as (8) does,

but the value n− 1 +
2

n− 1
< R(Kn− e) = n− 1 +

2

n− 2
. Finally, even though (9) is not

optimal for K1,n−1, its value is 3n + 1 +
n(n− 5)2

n− 4
, which beats our value 2n − 3. This

shows that our bound is outperformed by all others in the specific examples mentioned.

On the other hand, the graph G(j, 1), which has n = 2j + 2 vertices and degree

d = 2j = n − 2, attains the equality in our bound (3), with a value equal to n +
2

n− 2
,

while (5), (6), (7) and (8) do not, because G(j, 1) is not among the maximal graphs of

these bounds. Lastly, for this same n-vertex (n−2)-regular graph, the bound (9) becomes

n+
2

n− 2
− 3

n+ 3
− 1

n+ 1
− 7n− 32

n2 − 6n+ 8
,

which is strictly smaller than the actual value n +
2

n− 2
attained by our bound when

n ≥ 5.

3 Upper bounds

We first get a simple and general upper bound in the next
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Proposition 3 For any G we have

R(G) ≤ n− 1 +

((
n

2

)
− |E|

)
R, (10)

where R = maxi,j Rij.

Proof. Write, using Foster’s first formula

R(G) = n− 1 +
∑

i<j:d(i,j)≥2

Rij ≤ n− 1 +R
∑

i<j:d(i,j)≥2

1

= n− 1 +

((
n

2

)
− |E|

)
R •

Of course, the bound (10) is not very useful unless we have a good grip on the value

of R. In general R can be very large, indeed its largest value for an n-vertex graph occurs

when i and j are the endpoints of a linear path, in which case Rij = n− 1; using this and

the fact that |E| ≥ n− 1 in (10) we obtain the following

Corollary 2 For any n-vertex graph we have

R(G) ≤ (n− 1)(n2 − 3n+ 4)

2
. (11)

This corollary establishes correctly the order of the maximum value of R(G), but little

else, not even the right constant, because this maximum is attained by the linear graph

on n vertices, whose value is
n3 − n

6
.

We can do much better than the above corollary for those graphs whose smallest degree

is larger than bn
2
c, for which R(G) is linear in n. Specifically we obtain the following

Proposition 4 For any G for which δ ≥ bn
2
c we have

R(G) ≤ 3n− 1 . (12)

Proof. Using the monotonicity principle, it is shown in [4] that if δ ≥ bn
2
c then

R ≤ 4
δ
. Also |E| ≥ nδ

2
≥ 1

2

(
n

2

)
. Inserting these bounds for R and |E| into (10) we get

R(G) ≤ (n − 1)
(
1 + n

δ

)
. It is easy to see that this latter bound becomes 3n − 3 is n is

even and 3n− 1 if n is odd •
It would be interesting to determine whether (12) is a tight bound.

Adapting the discussion in [4] to our context, it should be pointed out that there is

a sharp threshold at δ = bn
2
c. Indeed, when going from δ = bn

2
c − 1 to δ = bn

2
c the
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Kirchhoff index drops from an n2 order to an n order, as the previous proposition and the

following example show.

Example. To simplify the discussion, let us take n to be even. Consider G1 = G2 =

Kbn
2
c. Delete edges (ai, bi) from Gi for i = 1, 2, and join the resulting graphs with the

edges (a1, a2) and (b1, b2). The n-vertex graph thus built is (bn
2
c − 1)-regular, and if we

choose a ∈ G1, b ∈ G2 then by shorting all vertices in each Gi, i = 1, 2 into single vertices,

and applying the monotonicity principle we see that Rab ≥ 1
2
. Since there are roughly

n2

4
possibles choices for a and b, the Kirchhoff index of this graph is bounded below roughly

by
n2

8
•
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