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Abstract 

The spectral moments of the signless Laplacian matrix are obtained as function of embedding 

frequencies of sub-graphs. Higher order spectral moments have been represented also as 

functions of vertex degrees. We apply these to relate the number of distinct occurrences of 

sub-graphs with the Zagreb indices. 

1. Introduction 

The signless Laplacian matrix has found a growing interest among chemical graph 

theorists. The matrix appears to be a source of powerful topological indices, such as energy-

like invariants and Estrada index [1-5]. Clearly, researches of signless Laplacian spectrum are 

important. In the present paper we extend the use of line graphs to compute the spectral 

moments of the signless Laplacian matrix for higher orders: It is well known that the signless 

Laplacian spectrum of a graph G can be determined by the spectrum of the line graph of G. 

Moreover, by using a result of Estrada [6, 7], we are able to determine these spectral moments 

as functions of the number of occurrences of sub-graphs, called embedding frequencies. We 

also give relations of Zagreb group indices with the embedding frequencies of sub-graphs. 

The paper is organized as follows: we shall discuss methods, equations and identities 

required for our study in the first section, next, the main results will be presented and applied 

to the Zagreb group indices in the third section. 
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2. Preliminaries 

Signless Laplacian matrix Q of a simple graph that is undirected and has no multiple 

edges or loops is given as follows [5]: 

𝐐 = ∆ + 𝐀 (1.1) 

Where Δ is the diagonal matrix of vertex degrees and A is the adjacency matrix. The signless 

Laplacian relates to the incidence matrix R and also to the adjacency matrix (AL) of the line 

graph: 

𝐐 = 𝐑𝐑𝑇  (1.2) 

𝐑𝑇𝐑 = 𝐀𝐿 + 2𝐈 (1.3) 

As both RR
T
 and R

T
R matrices have the same set of non-zero eigenvalues, one has: 

𝜉𝑗 = 𝜆𝑗 + 2 (1.4) 

Where ξk is the j
th

 non-zero eigenvalue of Q and λk is the j
th

 non-zero eigenvalue of AL. 

Therefore, one may express the spectral moments of the signless Laplacian (κk) with the help 

of the spectral moments of the corresponding line graph(μk) like the following: 

𝜅𝑘 =  𝜉𝑖
𝑘𝑛

𝑖=1 =  (2 + 𝜆𝑗 )𝑘𝑚
𝑗=1  (1.5) 

Where n and m are, correspondingly, the numbers of vertices and of edges.  

In the present paper, we are concerned with the first five spectral moments: 

𝜅1 =   2 + 𝜆𝑗  
1𝑚

𝑗=1 = 2𝑚 +  𝜆𝑗
1𝑚

𝑗=1 = 2𝑚 + 𝜇1 (1.6a) 

𝜅2 =  (2 + 𝜆𝑗 )2𝑚
𝑗=1 = 4𝑚 + 2 𝜆𝑗

1𝑚
𝑗=1 +  𝜆𝑗

2𝑚
𝑗=1 = 4𝑚 + 2𝜇1 + 𝜇2 (1.6b) 

𝜅3 =   2 + 𝜆𝑗  
3𝑚

𝑗=1 =   8 + 12𝜆𝑗 + 6𝜆𝑗
2 + 𝜆𝑗

3 𝑚
𝑗=1 = 8𝑚 + 12 𝜆𝑗

1𝑚
𝑗=1 + 6 𝜆𝑗

2𝑚
𝑗=1 +

 𝜆𝑗
3𝑚

𝑗=1 = 8𝑚 + 12𝜇1 + 6𝜇2 + 𝜇3 (1.6c) 

𝜅4 =  (2 + 𝜆𝑗 )4𝑚
𝑗=1 =  (16 + 32𝜆𝑗 + 24𝜆𝑗

2 + 8𝜆𝑗
3 + 𝜆𝑗

4)𝑚
𝑗=1 = 16𝑚 + 32 𝜆𝑗

1𝑚
𝑗=1 +

24 𝜆𝑗
2𝑚

𝑗=1 + 8 𝜆𝑗
3𝑚

𝑗=1 +  𝜆𝑗
4𝑚

𝑗=1 = 16𝑚 + 32𝜇1 + 24𝜇2 + 8𝜇3 + 𝜇4 (1.6d) 

𝜅5 =  (2 + 𝜆𝑗 )5𝑚
𝑗=1 =  (32 + 80𝜆𝑗 + 80𝜆𝑗

2 + 40𝜆𝑗
3 + 10𝜆𝑗

4 + 𝜆𝑗
5)𝑚

𝑗=1 = 32𝑚 +

80 𝜆𝑗
1𝑚

𝑗=1 + 80 𝜆𝑗
2𝑚

𝑗=1 + 40 𝜆𝑗
3𝑚

𝑗=1 + 10 𝜆𝑗
4𝑚

𝑗=1 +  𝜆𝑗
5𝑚

𝑗=1 = 32𝑚 + 80𝜇1 + 80𝜇2 +

40𝜇3 + 10𝜇4 + 𝜇5 (1.6e) 

Estrada gives an expansion of the spectral moments of line graphs via sub-graph 

contributions [6, 7]: 

𝜇1 = 0 (1.7a) 

𝜇2 = 2|𝐾1,2| (1.7b) 

𝜇3 = 6 𝐾1,3 + 6|𝐶3| (1.7c) 
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𝜇4 = 2 𝐾1,2 + 12 𝐾1,3 + 24 𝐾1,4 + 4 𝐷1,1 + 12 𝐶3 + 8 𝐶4 + 8|𝐶3,1| (1.7d) 

𝜇5 = 30 𝐾1,3 + 120 𝐾1,4 + 10 𝐷2,1 + 120 𝐾1,5 + 30 𝐶3 + 40 𝐶3,1 + 10 Φ1 +

10 𝐶4,1 + 10 𝐶5 + 20 𝐶3,2 + 40 Φ2  (1.7e) 

Here, |F| means the embedding frequency (number of distinct occurrences) of a sub-graph F. 

We use the following notation: 

- Cn is a cycle with n vertices and Kn is a complete graph with n vertices 

- K1,n is a star with one central vertex and n pendant vertices 

- Dk,l is an edge with k and l pendant vertices attached to its vertices; e.g., D1,1 is path-3 

- Cn,k is a cycle with n vertices and k pendant vertices attached to one of its vertices 

- Φ1 is a triangle, such that two of its vertices have a pendant vertex (one for each) 

- Φ2 is a quadrangle with a diagonal edge 

One has to note that there is a typo in Table 1[7]; it is easy to check that the proper 

coefficient is 8.  

Also, the set of sub-graphs was limited to chemical graphs (i.e., di≤4); we extended the 

set. The first four spectral moments did not require any amendment, however K1,5 stars and 

C4,1(a quadrangle with a pendant vertex attached to one of the vertices of the cycle) had to be 

considered for the fifth; indeed, each K1,n star produces additional n! self-returning walks of 

length n on its line graph, which is Kn, whereas C4,1 secures 10 more self-returning walks of 

length 5; the line graph of C4,1 is a pentagon with a diagonal edge. 

As is well known, the spectral moments of signless Laplacian can be calculated as 

functions of vertex degrees [5]. The first three spectral moments can be taken thence (di is the 

degree of the i
th

 vertex): 

𝜅1 =  𝑑𝑖
𝑛
𝑖=1 = 2𝑚 (1.8a) 

𝜅2 = 2𝑚 +  𝑑𝑗
2𝑛

𝑖=1  (1.8b) 

𝜅3 = 6 𝐶3 + 3 𝑑𝑗
2𝑛

𝑖=1 +  𝑑𝑗
3𝑛

𝑖=1  (1.8c) 

In order to evaluate the higher order spectral moments of Laplacian, Preciado, 

Jadbabaie and Verghese employed the Laplacian graph of a simple graph G with n edges and 

m vertices [8]. The former is a weighted graph and constructed like the following: it consists 

of the same set of vertices as G and the set of edges is amended with n loops, one for each 

vertex. The weights on edges were -1; the loops were weighted with vertex degrees, di.  

The adjacency matrix of the Laplacian graph equals the Laplacian matrix of the 

corresponding simple graph. Once the k
th

 power of adjacency matrix relates to the number of 

walks, the k
th

 spectral moment of the Laplacian matrix can be interpreted in terms of the self-
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returning walks of the length k. One may similarly construct the signless Laplacian graph (no 

weights are applied to edges) and employ the technique designed by Preciado, Jadbabaie and 

Verghese in appendix of the aforementioned paper [8]. The benefit of the approach is that 

self-returning walks can be more easily projected onto sub-graphs than semi-edge walks; this 

might render the use of the former  more fruitful than application of the latter. 

It must be noted that the method of representation of Laplacian matrices of simple 

graphs by use of adjacency matrices of the corresponding graphs amended with vertex-

degree-weighted loops was first demonstrated by Gutman in 2003 [9]. Moreover, the 

Laplacian polynomial was explicitly determined as modification of the ordinary characteristic 

polynomial. 

3. Main Results 

Application of equations 1.7a-1.7e into equations 1.6a-1.6e results in the following 

expansions of the signless Laplacian spectral moments as functions of sub-graph 

contributions: 

𝜅1 = 2𝑚 (2.1a) 

𝜅2 = 4𝑚 + 2 𝐾1,2  (2.1b) 

𝜅3 = 8𝑚 + 12 𝐾1,2 + 6 𝐾1,3 + 6 𝐶3  (2.1c) 

𝜅4 = 16𝑚 + 50 𝐾1,2 + 60 𝐾1,3 + 24 𝐾1,4 + 4 𝐷1,1 + 60 𝐶3 + 8 𝐶4 + 8 𝐶3,1  (2.1d) 

𝜅5 = 32𝑚 + 180 𝐾1,2 + 390 𝐾1,3 + 360 𝐾1,4 + 40 𝐷1,1 + 10 𝐷2,1 + 120 𝐾1,5 +

390 𝐶3 + 80 𝐶4 + 120 𝐶3,1 + 10 𝐶4,1 + 10 Φ1 + 10 𝐶5 + 20 𝐶3,2 + 40 Φ2  (2.1e) 

Furthermore, we also calculated the fourth and fifth spectral moments as functions of 

vertex degrees by employing the technique provided in the appendix of ref 8: 

𝜅4 = − 𝑑𝑖
𝑛
𝑖=1 + 2 𝑑𝑖

2𝑛
𝑖=1 + 4 𝑑𝑖

3𝑛
𝑖=1 +  𝑑𝑖

4𝑛
𝑖=1 + 4 𝑑𝑖𝑑𝑗

𝑚
𝑣𝑖~𝑣𝑗

+ 8 𝑑𝑖𝑡𝑖
𝑛
𝑖=1 + 8 𝐶4  

 (2.1f) 

𝜅5 = −5 𝑑𝑗
2𝑛

𝑖=1 + 5 𝑑𝑗
3𝑛

𝑖=1 + 5 𝑑𝑗
4𝑛

𝑖=1 +  𝑑𝑗
5𝑛

𝑖=1 − 30 𝐶3 + 10 𝐶5 + 10   𝑑𝑖𝑑𝑗
𝑚
𝑣𝑖~𝑣𝑗

+

1

2
  𝑑𝑖

2𝑑𝑗𝐴𝑖𝑗
𝑛
𝑗≠𝑖

𝑛
𝑖=1 +  𝑑𝑖𝑡𝑖

𝑛
𝑖=1 +  𝑑𝑖

2𝑡𝑖
𝑛
𝑖=1 +  𝑑𝑖𝑞𝑖

𝑛
𝑖=1 +  𝑁𝑖𝑗𝑑𝑖𝑑𝑗

𝑚
𝑣𝑖~𝑣𝑗   (2.1g) 

Here, ti is the number of C3 sub-graphs (triangles) that are touching (contain) the i
th

 vertex; qi 

is the number of C4 sub-graphs (quadrangles) that are touching (contain) the i
th

 vertex and Nij 

is the number of common neighbors shared by the i
th

 and j
th

 vertices and Aij is an element of 

the adjacency matrix. 

 The equations 2.1a-2.1g present the main result of this contribution. 
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4. Applications 

Equations 2.1f and 2.1g can be rewritten by use of general Zagreb group indices. The first 

general Zagreb index was introduced by Li and Zheng [10]: 

𝑀1
𝑘 =  𝑑𝑖

𝑘𝑛
𝑖=1  (3.1a) 

The second general Zagreb index was suggested by Xavier, Suresh and Gutman [11]: 

𝑀2
𝑘 =   𝑑𝑖𝑑𝑗  

𝑘𝑚
𝑣𝑖~𝑣𝑗

 (3.1b) 

It is obvious that M1
2 

is the classical M1 index [12], M1
3
 is the recently re-introduced Forgotten 

index, F [13] and M2
1
 is the classical M2. 

Therefore, it is plausible to apply equations 2.1f and 2.1g in conjugation with 

equations 2.1d and 2.1e for elucidation of dependence of vertex-degree-based topological 

indices on embedding frequencies of sub-graphs.  

Let us examine the fourth spectral moment to investigate usefulness of the outlined 

approach. We shall attempt to reproduce some known identities. A subsequent paper will be 

dedicated to the fifth spectral moment. 

1. First Zagreb Index 

A substitution of equation1.8b into equation 2.1b yields: 

𝜅2 = 4𝑚 + 𝜇2 = 4𝑚 + 2 𝐾1,2 = 2𝑚 +  𝑑𝑗
2𝑛

𝑖=1  (3.2) 

The first Zagreb group index becomes: 

𝑀1 = 2𝑚 + 2 𝐾1,2  (3.2a) 

(The equation 3.2a seems to be suggested in ref 14, see equation 28 therein.) 

2. First General Zagreb Index and F-index 

Let us recall that 

 𝐾1,2 = 0.5 2𝑚 +  𝑑𝑖
2𝑛

𝑖=1 − 4𝑚 = 0.5  𝑑𝑖
2𝑛

𝑖=1 − 𝑑𝑖
𝑛
𝑖=1  =

1

2
 𝑑𝑖

𝑛
𝑖=1  𝑑𝑖 − 1   (3.3) 

Now, if we substitute equation3.2a into equation 1.8c and apply it to equation2.1c, we arrive 

at the following expression: 

6 𝐶3 + 3 𝑑𝑖
2𝑛

𝑖=1 +  𝑑𝑖
3𝑛

𝑖=1 = 8𝑚 + 12 𝐾1,2 + 6 𝐾1,3 + 6 𝐶3 = 6 𝑑𝑖
2𝑛

𝑖=1 − 2 𝑑𝑖
𝑛
𝑖=1 +

6 𝐾1,3 + 6 𝐶3  (3.4) 

From equation3.4 we can count the embedding frequency of K1,3(the same equation 

can be derived by use of combinatorial arguments [11, 15]): 

 𝐾1,3 =
1

6
(2 𝑑𝑖

𝑛
𝑖=1 +  𝑑𝑖

3𝑛
𝑖=1 − 3 𝑑𝑖

2𝑛
𝑖=1 ) (3.5) 

The above equation (3.5) can be rewritten as follows: 
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3 𝑑𝑖
2𝑛

𝑖=1 +  𝑑𝑖
3𝑛

𝑖=1 = 6 𝑑𝑖
2𝑛

𝑖=1 − 2 𝑑𝑖
𝑛
𝑖=1 + 6 𝐾1,3  (3.6) 

Therefore, 

 𝑑𝑖
3𝑛

𝑖=1 = 3 𝑑𝑖
2𝑛

𝑖=1 − 2 𝑑𝑖
𝑛
𝑖=1 + 6 𝐾1,3 =  𝑑𝑖

2𝑛
𝑖=1 + 2  𝑑𝑖

2𝑛
𝑖=1 −  𝑑𝑖

𝑛
𝑖=1  + 6 𝐾1,3 =

 𝑑𝑖
2𝑛

𝑖=1 + 4 𝐾1,2 + 6 𝐾1,3 = 2𝑚 + 6 𝐾1,2 + 6 𝐾1,3  (3.7) 

We now see that the F-index can be expressed as follows: 

𝐹 = 𝑀1
3 =  𝑑𝑖

3𝑛
𝑖=1 = 𝑀1 + 4 𝐾1,2 + 6 𝐾1,3  (3.8a) 

Or 

𝐹 = 2𝑚 + 6 𝐾1,2 + 6 𝐾1,3  (3.8b) 

The result has been recently reported [11, 15]. 

As embedding frequencies of any sub-graph are non-negative, from equation 3.5 we 

also have: 

3 𝑑𝑖
2𝑛

𝑖=1 ≤  𝑑𝑗
3𝑛

𝑖=1 + 2 𝑑𝑖
𝑛
𝑖=1  (3.9) 

Equality holds if and only if the graph in question contains no F3 sub-graph. 

Taking into account that embedding frequencies of K1,4 (star with four edges) can also 

be calculated by use of combinatorial arguments (the same is true for any sub-graph that is a 

star graph e.g., |K1,3| or |K1,2|), we have: 

 𝐾1,4 =   𝑑𝑖
4
 𝑖  (3.10) 

So that 

24 𝐾1,4 =  𝑑𝑖
4

𝑖 − 6 𝑑𝑖
3

𝑖 + 11 𝑑𝑖
2

𝑖 − 6 𝑑𝑖𝑖  (3.11) 

Now, considering equations 1.8a, 3.2a, 3.7 and 3.11, we immediately arrive at the desirable 

relationship (reported previously in ref 11): 

𝑀1
4 =  𝑑𝑖

4
𝑖 = 2𝑚 + 14 𝐾1,2 + 36 𝐾1,3 + 24 𝐾1,4  (3.12) 

It is noteworthy that both F-index and M1
4
 depend only on contribution of stars. 

3. Second Zagreb Index 

Equation 2.1f can be rewritten as follows: 

𝜅4 =  𝑑𝑖
𝑛
𝑖=1 + 4 𝑑𝑖

3𝑛
𝑖=1 +  𝑑𝑖

4𝑛
𝑖=1 + 4 𝑑𝑖𝑑𝑗

𝑚
𝑣𝑖~𝑣𝑗

+ 8 𝑑𝑖𝑡𝑖
𝑛
𝑖=1 + 4 𝐾1,2 + 8|𝐶4|     (3.13) 

We can apply equation1.8a and equation3.7 to equation3.13: 

𝜅4 = 2𝑚 + 4 2𝑚 + 6 𝐾1,2 + 6 𝐾1,3  +  𝑑𝑖
4𝑛

𝑖=1 + 4 𝑑𝑖𝑑𝑗
𝑚
𝑣𝑖~𝑣𝑗

+ 8 𝑑𝑖𝑡𝑖
𝑛
𝑖=1 + 4 𝐾1,2 +

8 𝐶4 = 10𝑚 +  𝑑𝑖
4𝑛

𝑖=1 + 4 𝑑𝑖𝑑𝑗
𝑚
𝑣𝑖~𝑣𝑗

+ 8 𝑑𝑖𝑡𝑖
𝑛
𝑖=1 + 28 𝐾1,2 + 24 𝐾1,3 + 8 𝐶4     (3.14) 

Now, we have: 

4 𝑑𝑖𝑑𝑗
𝑚
𝑣𝑖~𝑣𝑗

= 𝜅4 −  10𝑚 +  𝑑𝑖
4𝑛

𝑖=1 + 8 𝑑𝑖𝑡𝑖
𝑛
𝑖=1 + 28 𝐾1,2 + 24 𝐾1,3 + 8 𝐶4        (3.15) 
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Application of equation 2.1d into equation3.15 yields: 

4 𝑑𝑖𝑑𝑗
𝑚
𝑣𝑖~𝑣𝑗

= 16𝑚 + 50 𝐾1,2 + 60 𝐾1,3 + 24 𝐾1,4 + 4 𝐷1,1 + 60 𝐶3 + 8 𝐶4 +

8 𝐶3,1 −  10𝑚 +  𝑑𝑖
4𝑛

𝑖=1 + 8 𝑑𝑖𝑡𝑖
𝑛
𝑖=1 + 28 𝐾1,2 + 24 𝐾1,3 + 8 𝐶4  =  6𝑚 + 22 𝐾1,2 +

36 𝐾1,3 + 24 𝐾1,4 + 4 𝐷1,1 + 60 𝐶3 + 8 𝐶3,1 −  𝑑𝑖
4𝑛

𝑖=1 − 8 𝑑𝑖𝑡𝑖
𝑛
𝑖=1  (3.16) 

One may note that M2does not depend on embedding frequencies of quadrangles as|C4| 

is absent in equation 3.16, whichcan be rewritten as follows: 

 𝑑𝑖
4𝑛

𝑖=1 + 4 𝑑𝑖𝑑𝑗
𝑚
𝑣𝑖~𝑣𝑗

= 6𝑚 + 22 𝐾1,2 + 36 𝐾1,3 + 24 𝐾1,4 + 4 𝐷1,1 + 60 𝐶3 +

8 𝐶3,1 − 8 𝑑𝑖𝑡𝑖
𝑛
𝑖=1  (3.16a) 

Eventually, we can express the classicalM2 index in terms of sub-graph contributions 

(by substitution of equation 3.12 into equation 3.16a): 

𝑀2 =  𝑑𝑖𝑑𝑗
𝑚
𝑣𝑖~𝑣𝑗

= 𝑚 + 2 𝐾1,2 +  𝐷1,1 + 15 𝐶3 + 2 𝐶3,1 − 2 𝑑𝑖𝑡𝑖
𝑛
𝑖=1  (3.17) 

 It is straightforward to show that 

 𝑑𝑖𝑡𝑖
𝑛
𝑖=1 = 6 𝐶3 +  𝐶3,1  (3.18) 

Therefore, we write: 

12 𝐶3 + 2 𝐶3,1 − 2 𝑑𝑖𝑡𝑖

𝑛

𝑖=1

= 0 

The aforementioned allows for rewriting equation 3.17 as follows: 

𝑀2 = 𝑚 + 2 𝐾1,2 +  𝐷1,1 + 3 𝐶3  (3.19) 

Equation 3.19 was reported earlier [11]. 

By substitution of equation 3.2a into equation 3.19, one also arrives at a lemma that was 

proved by Vukičević and Pisanski [16] (see also [17, 18]): 

𝑀2 −𝑀1 =  𝐷1,1 − 𝑚 + 3 𝐶3  (3.20) 

5. New Topological Index 

We shall treat the left-hand sum in equation 3.16a as another (extended) topological 

index: 

𝐸𝑀2 =  𝑑𝑖
4𝑛

𝑖=1 + 4 𝑑𝑖𝑑𝑗
𝑚
𝑣𝑖~𝑣𝑗

= 6𝑚 + 22 𝐾1,2 + 36 𝐾1,3 + 24 𝐾1,4 + 4 𝐷1,1 + 12 𝐶3 

 (3.21) 

The modeling and interpretation abilities of the extended index will be researched in 

subsequent studies. 
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5. Conclusions 

Spectral moments of line graphs have been successfully employed for evaluation of 

signless Laplacian spectral moments. The latter were also represented as functions of vertex 

degrees. The main results of the paper will be used for investigations of various topological 

indices, which are based on the signless Laplacian. 

Combined use of the aforementioned representations (functions of sub-graph 

contributions vs. functions of vertex degrees) suggested a convenient framework for 

researches of vertex-degree-based topological indices, such as classical and general Zagreb 

group indices. This approach appears to be quite useful as numerous identities were 

reproduced with ease; therefore, it can be used for establishing identities, which relate Zagreb 

group indices with each other [19] and, also, with embedding frequencies of sub-graphs.  
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