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Abstract

Let E£(G) denote the normalized Laplacian energy of an isolate-free graph G,
and let Ez(G — e) be the energy with edge e = uv removed. In [4] it is shown that
if e is not incident to a pendant vertex, then |E-(G) — E-(G — )| < 1.8366. We
show that if v and v also have no common neighbors, then the change in energy is
less than 1.5404. If d, > 3 and d,, > 3, then |E-(G) — E£(G —e)| < .9916. If d, > d
and d, > d then the change is within O(d~°?).

1 Introduction

Let G = (V, E) be an undirected graph with vertex set V and edge set E. For each v € V,
N(v) denotes the set neighbors of v. The degree of v, denoted d,, is the cardinality of
N(v). We write e = uv to represent an edge e € E between u and v. We call v a pendant
if d, = 1. We let G — e denote the graph obtained by removing edge e. We say an edge e
is a bridge if G — e has more components than G.

Throughout this paper, if M is a square matrix of order n, we let spec(M) denote its

multi-set of eigenvalues which we also denote with

(M), . A (M),
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Spectral graph theory associates a matrix with a graph, and then ideally attempts to
answer questions about the graph’s structure using the eigenvalues of the matrix. Some
matrices like the adjacency matrix A and the combinatorial Laplacian matrix L have been
widely studied.

The normalized Laplacian matrix, introduced by Chung [6] in the 1990’s to study
random walks, has fewer known results. The normalized Laplacian matrix of a graph
G = (V, E) is denoted by Lg, and is the matrix whose rows and columns are indexed by
V', and defined by

1 if u =v and d, # 0;

Loluv] =TT

0 otherwise .

It is well-known that 0 = A\ (£) < X (L) < ... < A\ (L) < 2.

if uv € E;

Our paper deals with the normalized Laplacian energy of a graph, which we also call
its L-energy. It is defined as
Ep(G) =[x —1] (1)
i=1

where Ai(L), ..., A\, (L) are the eigenvalues of L. Cavers shows that 2 < E.(G) < 2 L%J
and when G is connected Ez(G) < /2 (n +1) (see [5)).

The energy of a matrix is intended to measure the deviation of the eigenvalues from
their mean. While the matrix L¢ is defined when G has isolates, in such a graph its
average eigenvalue would no longer be 1, and the above definition of E.(G) would not be

meaningful. For this reason, we will assume all graphs are isolate-free.

The Randié matriz R = [r;;] of a graph G is defined [2,7,10] as

o i ifuve F

0 otherwise
Historically, it is related to a descriptor for molecular graphs used by Milan Randi¢ in 1975
[12]. The Randié energy RE(G) of a graph G is Y4 |p;| where spec(R) = {p1,...,pn}
It is interesting that RE(G) and E.(G) are equal in graphs without isolates [10]. Thus,
results in this paper on normalized Laplacian energy apply also to Randié¢ energy.

Energy change relating to a graph’s adjacency matrix has been studied in several

papers. Day and So [8] study the energy change when the edges in an induced subgraph
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are removed. In [9] they observe that when removing a single edge, the energy can
increase, decrease, or remain the same. However when deleting a bridge the energy must
decrease (Theorem 4.2). In [1] the authors study energy change in graphs where parallel
edges are allowed. All these papers, including ours, utilize a classic inequality involving
singular values. Beyond that, our techniques appear to be new.

This note is motivated by results in [4,5] involving the effect of edge deletion on
L-energy. It is shown that deleting an edge may either increase, decrease or leave the £-
energy unchanged. Cavers, Fallat and Kirkland show [4, Thr. 19] that if G is isolate-free
and e = uv not incident to a pendant vertex, then |E.(G) — E(G —e)] is at most 1.8366.

We strengthen the above bound if we also assume N(u) N N(v) = 0. In that case,
|E-(G) — Ec(G —e)| < 1.5404. If d,, and d, are at least 3, the energy change is strictly
less than 1. More generally, if d = min{d,, d,}, then |E;(G) — E£(G —¢)| < %, and so
|Ec(G) — Ec(G —e)| is in O(d=%%). As an application, we show how energies of certain
trees conjectured to have largest L-energy among connected graphs, are related when n
is large.

The condition N(u) N N(v) = 0 is equivalent to e not being in a cycle Cs. If e = uv
is a bridge, it satisfies the condition. In triangle-free graphs, such as a bipartite graphs,

all edges satisfy the condition.

Uy vy

Uy (%]

Figure 1. Edge uv with N(u) N N(v) = 0.

Before proceeding, it will be useful to consider the graph G and edge e = wuv in
Figure 1, and the matrices L& and L5, that are given respectively below. Whenever a
non-pendant edge is removed in any isolate-free graph, Lo and Lg_. must be identical
except in two rows and two columns, the differing entries being precisely the entries
corresponding to edges incident to u or v. Note that the condition N(u) N N(v) = 0 also

implies that for w # u,v we can not have both Lg[u, w] # 0 and Lg[v,w] # 0.
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u v Uy U V1 Vg u v Uy U9 U1 (0]
—1 —1 —1 —1 —1

U 1 5 5 5% 0 0 U o % 5 0 0
-1 -1 -1 y -1 -1

. -1 -1 -1 . -1 -1 -1

w |5 0 1 N 0 u | 75 0 1 7% % 0
-1 -1 -1 -1

. -1 -1 1 -1

v | 0 7 7 0 1 0 N 7 0 1 0

vy \ 0 % 0 0 0 1 vy \ 0 % 0o o0 0 1

The remainder of this paper is organized as follows. In Section 2 we recall some useful
facts about the singular values of a matrix. Our main results are obtained Section 3. In

Section 4 we give some applications.

2 Singular Values and Energy

The singular values of a rectangular matrix N with complex entries, are defined to be the
square roots of the eigenvalues of the positive semi-definite matrix N*N, where N* is the
conjugate transpose of N. From here on, we denote singular values by 0;(N),i =1,...,n.

Lemma 1 is straightforward, Lemma 2 is in [11, Cor. 3.4.3], and Lemma 3 appears in [5].

Lemma 1 The singular values of a real symmetric matric M are the absolute values of

the eigenvalues of M.

Lemma 2 Let A and B be square matrices of order n. Then

S oA+ B) < Y oilA) + Y oi(B).

i=1 i=1

Using (1) and Lemma 1, we can express L-energy as:
E(G) =Y [N — 1= N = La)l = > ol = La) 2)
i=1 i=1 i=1

Lemma 3 (Cavers) Let G and H be graphs of order n, and M = Lg — Ly. Then
|Ec(G) — Ec(H)| < 3Ly 0i(M).

Proof: Since I — Ly =M + (I — L), from Lemma 2 we get:

éai(lf[,y) < Xn:oi(kf) +zn:rri(lf£,q)

i=1 i=1



-347-

and so from (2) we have Ep(H) — E¢(G) < Y ,0;(M). To complete the proof, it
suffices to show E.(G) — Ec(H) < ¥, 0;(M). Applying Lemma 2 to the equation

I—Le=(—M)+ (I - Lg) we have

im([fﬁc) < iai(f]\/[) +Xn:gi(],£H)_

=1
Using (2) and 0;(M) = 0;(—M), we have
Ep(G) = Eg(H) <) oi(—=M) <) 0i(M)
i=1 ;

completing the proof. ]

3 Main Results

Our results give upper bounds on the change in £-energy when we remove an edge e = uv,
not incident to a pendant, for which N(u) N N(v) = (. Our strategy in bounding the
change in normalized Laplacian energy is to use the singular values of the difference matrix

M =Lg— Lg_.. By Lemma 3 we are guaranteed that

-

|Ec(G) = Ec(G —e)| < ) _ai(M). 3)

i=1

We partition V' — {u, v} into V,, = {us,...,up,—1} and V,, = {v1,...,vn,-1} such that
N(u)—{v} CV, and N(v)—{u} C V,, where n = n; +ns is the order of G. This partition
is possible because N(u) N N (v) = 0.

We examine the structure of M. M is symmetric with diagonal values of zero. If we
order the vertices as

Uy Uy Upyeeoy Uny—1, V10 oo Ung—1

then only entries in the first two rows or first two columns of M can be nonzero:

0 T T f S | 0
T 0 0 ... 0 Y - Yngo—1
Ty 0 0 0 0 ... 0
M= Twm—1 O 0 ... 0 0 ... 0 @)
0 Y1 0 0 0 0
0 Ynp-1 O ... 0 0 ... 0
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The entries of M are defined as follows. Clearly

-1
Mu,v] = Mv,u] =z = T (5)
In the first row,
Mu, uj] = z; = { —1 +0¥ g Zl i%gzg —{v} (6)
and in the second row
Mlv,v] =i = { EESRT ) %EZ; ~ {u} ™
dudo;  /(do—1)du; '

Note the expressions in (6) and (7) make sense only if d, > 2 and d, > 2. We denote
with x and y the vectors [zy,..., 2, 1]T and [y, ..., yn,1]7 respectively. Both x and y
have nonzero entries, and = # 0. Our arguments depend heavily on the quantities ||x||

and ||y||, where || - || denotes the Euclidean norm.
Lemma 4 For some A\; and Ay, spec(M) = {0"™*, =g, = A1, A1, Ao}

Proof: Since x and y each have a nonzero entry, it is easy to see that rank(M) = 4, and
therefore M has exactly four nonzero eigenvalues. Now suppose A # 0 is an eigenvalue of
M. Let [, B, v,u]T be an eigenvector for A\, where o, € R, v.€ R~ and u € R~
Then

M

£ < @R
Il
>

£ < ®e

Using (4) we see that

Bz +x"v = Aa (®)
az +yTu= )3 )
o = v (10)
By = Au (11)

Since A # 0, (10) and (11) give v = $x and u = §y. Thus (8) and (9) give us:
Bz + %HXHQ = a (12)

oz + Iyl = A8 (13)
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Isolating 8 = L(Aa — ¢||x[|?) from (12) and substituting in (13) we find

o+ 00 L 03— ity = 2030 = )

Since a0 # 0 (for otherwise, we have a zero eigenvector) we obtain
X+ X2 (=2® = [y = [Ix[[*) + [1x]]*]ly]]* = 0. (14)

Letting B = 22+||y||*+||x||*> and C = ||x||?||y]|?, we see that the discriminant B?—4C >
(Ily11? + [Ix|1%)? = 4C = (|ly]|* — |1x||*)? > 0 so the roots of (14) are

n |B++vB?—4C
2

since both BEVEE-4C ”22_46 are positive. This completes the proof. |

Lemma 5 A\ (M) + Ao(M) = /a? + [ly[[2 + [[x]]* + 2[x]| - [|y]|

Proof: Using B and C from Lemma 4, we have

M) + 20 = (2 52 N gz ~Lye (15)
Squaring both sides of (15) shows (A (M) + X (M))? = B +2v/C. So
M(M) + (M) = VB +2VC = a2 + [IxI[2 + [y |2 + 2/[x]| - Iyl
|

Theorem 1 Let G be an isolate-free graph, and e = wv an edge with d,,d, > 2 and
N@w)NN(v)=0. Then |[Ez(G) — Ec(G — e)| < 1.5404.

Proof: By (3) and Lemma 1 we know

IE2(G) = Fe(G — )] € o) = S IN(M)

Applying Lemma 4 and Lemma 5 this sum equals

20\ + Ag) = 2/ +[[Y[12 + [[x][2 + 2[|x]| - []]] (16)

We complete the proof by bounding each term on the right side of (16). From (5) we

know 22 = s d < 1. From (6) and (7) we have:
-1 1
2= > ( + )?
u; €N (u)—{v} \/d du/ \/(du - 1)dul

-1

1
Iyl = —t ———)’
1€N(u) {u} d dh (dv - l)dw
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i S 1 | -1 1 -1 1 . .
Since o t T~ i (7= + 77=0) < 7= + 7z= and applying a similar
observation to ——— + ———— we see that

v/ dvdv; v/ (dy—1)dy,’

1
[1x|* < (du — 1)

-1
(\/77 T —)? (17)

IVIF < (= 1) + <= (18)

We claim that the right sides of (17) and (18) are each maximized by the minimum integer
values d, = d, = 2. To see this, one can show

-1 1 1
f(d):(df )(\f \/7 7872 - (19)

and then observe f/(d) < 0, for d > 1. Hence ||x||> and ||y||? are each bounded above by
(1- —) Thus |E.(G) — E£(G — e)| is at most

—_

I

1 1
24/ 2 2 242 . < 24/=+4(1 — —=)2 < 1.5404
Va? + [[x|P + [y [12 + 21|l - Iyl 1 T ﬁ) 5
completing the proof. ]

Theorem 2 Let G be an isolate-free graph, and e = uv an edge with d,,d, > 3 and
N(u)NN(v)=0. Then |EL(G) — E-(G — ¢)| < .9916.

Proof: Here ||x||?> < 2(Z 7 f) and 27 = ¢ in the previous computation. |
The following theorem shows that the chango in normalized Laplacian energy is in

O(d172).

Theorem 3 Let G be an isolate-free graph, and e = uv an edge with d,,d, > d and
N(u) N N(v) = 0. Then |E¢(G) — Ec(G —¢)| < 22.

Proof:  Using the right side of (19), we have 4|[x||> < 4(2 —  — 2\/d(d — 1)), and so
2y/2% + 4]|x]||? becomes
L g 4 8VAa—D) ) [148@ —dd—s8d/a(d 1)
d2 d d B d?
2 Ad — _
- 2/1 +8d 4;12 8d(d — 1)

GVI+dd _ Vod _ 2V5
d d
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4 Applications

Suppose we have a sequence of graphs G, each with an edge e, = ugvy and N(uy) N
N(vg) = 0. Suppose also that limg_o, min{d,, , d,, } = co. Then by Theorem 3,

lim (Eg(Gk) — EL(Gk — ek)) = klggo |E£(Gk) — EL(Gk — ek)\ =0

k—00

We give two illustrations involving trees. As noted earlier, all edges of bipartite graphs sat-
isfy the disjoint neighborhood condition. In our first example, limy_,o, E-(G)) converges
and in the second example it does not.

Diameter 3 trees: As a simple application consider an infinite sequence
N1, 1,. ..

of trees, each with diameter 3. Each tree T}, of diameter 3 can be represented as two stars
Sk, and Sk, with an edge ej, between their centers. Let my = min{k;, k3}, and suppose

limy_,o My = 00. Then we must have
0 = ]}LI{.IO(EL(T]C) - El;(Tk — ek))

Tt is well-known that the normalized Laplacian energy of a star is 2, and so Ez(Ty—ey) = 4.
Therefore
Jim Ee(Ty) = 4

Interestingly, a diameter 3 tree T" of order n is known to have eigenvalue 1 with multiplicity
n—4, and therefore it will have four eigenvalues that contribute to its £-energy (see [3, Thr.
3.2]).

Suns and double suns: For a second application we refer to the work of Gutman,
Furtula and Bozkurt [10] on the energy of the Randi¢ matrix, which for isolate-free graphs,
equals L-energy, as noted above. For each p > 0, the p-sun, which we denote with SP, is
the tree of order n = 2p+1 formed by taking the star on p+1 vertices and subdividing each
edge. For p,q > 0 the (p, q)-double sun, denoted DP4, is the tree of order n = 2(p+q+1)
obtained by connecting the centers of SP and S? with an edge. Without loss of generality
we assume p > ¢q. When p — ¢ < 1 the double sun is called balanced. Figure 2 depicts the

balanced double sun D%*?, the sun S5, and the balanced double sun D*?. The authors [10]
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conjecture that among connected graphs of order n, the graph with largest L-energy is the
sun when n is odd, and balanced double sun when n is even. Note that when n = 2 mod 4

the balanced double sun is constructed with two p-suns, and when n = 0 mod 4, it uses a

n—2
4

p+ 1-sun and a p-sun. In either case, p = [ J Consider the balanced double sun DPP

Figure 2. double sun D2, sun S°, and double sun D32,

whose order is 4p + 2. It has an edge e = uv for which d, = d, = p+ 1. Also, DP? — e is

two disjoint suns S?. By Theorem 3,

2v5
NESS

Now consider the balanced double sun DP1P of order 4p + 4. It has an edge e = uv for

|E£(Dp’p) — QEL(SPN <

which d, = p+2 and d, = p+ 1. Also, D" —¢ is disjoint suns SP** and SP. Therefore,

2v/5
NESE

These observations show that for large n, the L£-energy of the balanced double suns can

|Ec(DP17) — Bp(SP) — Ee(7)] <

be approximated using smaller suns of about half the size.

5 Final Remarks

Our computational experiments suggest that the bound in Theorem 1 may be too high.
In fact, we could find no example where the change in energy was more than 1. It is
interesting that if G = P,, the path on four vertices, and e is the middle edge, then
|E-(G) — E-(G — ¢e)] = 1. Can these results be improved by assuming all graphs are
triangle-free? Finally, we note that Lemmas 4 and 5 depend only the pattern of the

entries of M, not on the values, so we wonder if they might have other uses.
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