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Antofagasta, Chile
mrobbiano@ucn.cl

(Received September 5, 2015)

Abstract

The Laplacian–energy–like invariant, LEL, is the sum of the square roots of the Laplacian

eigenvalues of the underlying graph G. The incidence energy IE is the sum of the square roots

of the signless Laplacian eigenvalues of G. The vertex bipartiteness υb of a graph G is the

minimum number of vertices whose deletion from G results in a bipartite graph. Graphs having

maximum LEL and IE values are determined among graphs with a fixed number n of vertices

and fixed vertex bipartiteness, 1 ≤ υb ≤ n− 3.

1 Introduction

In this paper we are concerned with simple graphs. For each such graph G, the vertex

set is denoted by V(G) and its edge set by E(G). The order of G is n, and we label its

vertices so that V(G) = {1, . . . , n}. An edge with end vertices i and j is denoted by ij.

If two vertices i and j are not adjacent, i.e., if ij 6∈ E(G), then we write i � j.
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The number of neighbors of a vertex i is its degree.

The complement of the graph G, denoted by G, is the graph for which V(G) = V(G)

and E(G) = {ij : ij 6∈ E(G)}.

The subgraph induced by a vertex subset S ⊂ V(G), denoted by 〈S〉, is a graph with

vertex set S and edge set E(〈S〉) = {ij : i, j ∈ S ∧ ij ∈ E(G)}.

The spectrum of a matrix M (the multiset of the eigenvalues of M) will be denoted

by σ(M). If convenient, the multiplicities of the eigenvalues are represented in σ(M) as

powers in square brackets. For instance, σ(M) = {ξ[m1]
1 , ξ

[m2]
2 , . . . , ξ

[mq ]
q } indicates that ξ1

has multiplicity m1, ξ2 has multiplicity m2, and so on. If α is an eigenvalue of M and x

one of its eigenvectors, then the pair (α,x) is an eigenpair of M .

The adjacency matrix of the graph G is the square matrix AG = (aij) of order n, such

that

aij =

{
1 if ij ∈ E (G)

0 otherwise.

The spectrum of AG , namely σ(AG) = {λ1, λ2, . . . , λn}, is referred to as the ordinary or

A-spectrum of the graph G [7].

The vertex degree matrix DG is the n×n diagonal matrix whose i-th diagonal entry is

the degree of the i-th vertex of G. Then the Laplacian and the signless Laplacian matrices

of G are LG = DG−AG and QG = DG +AG , respectively. Both are positive semidefinite

[4, 7], and their spectra are called the Laplacian and signless Laplacian spectra of the

graph G. The respective eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn = 0 and s1 ≥ s2 ≥ · · · ≥ sn ≥ 0

are the Laplacian and the signless Laplacian eigenvalues of G.

The Laplacian–energy–like invariant, LEL, was introduced in [26], and is defiend as

LEL = LEL(G) =
n∑

i=1

√
µi . (1)

In [26] it was claimed that the properties of LEL are similar to those of the Laplacian

graph energy (hence the name). It was later demonstrated that LEL is much more

analogous to the ordinary graph energy, based on the A-spectrum [21]. For more details

on LEL see the reviews [25,38], the recent papers [12,28,33–35], and the references cited

therein.

The incidence energy, IE(G) was introduced in [22] as the energy of the incidence

matrix of the underlying graph G. Eventually [20], it was discovered that IE obeys a
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relation fully analogous to (1), namely

IE = IE(G) =
n∑

i=1

√
si .

For details on IE see the review [3], the recent papers [2, 11, 19, 27, 29, 34], and the

references cited therein.

Of the numerous results known in the theory of Laplacian and signless Laplacian

graph spectra [5, 8, 9, 17, 18,24,30–32], we recall the following.

The Laplacian eigenvalues µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0 of a graph G and

µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0 of its complement G are related as µj(G) = n −

µn−j(G) for j = 1, 2, . . . , n− 1.

The spectra of LG and QG coincide if and only if the graph G is bipartite.

For u,w ∈ V(G) and u � v, let G+ be the graph obtained by adding to G the new

edge e = uw. The eigenvalues of L(G) and Q(G) interlace the eigenvalues of L(G+) and

Q(G+), respectively and

trace(L(G+))− trace(L(G)) = trace(Q(G+))− trace(Q(G)) = 2 .

This, in particular, implies

n∑
i=1

√
µi (G) <

n∑
i=1

√
µi(G+) and

n∑
i=1

√
si(G) <

n∑
i=1

√
si(G+)

i.e.,

LEL(G) < LEL(G+) and IE(G) < IE(G+) .

2 Join graph operations

Let G1 and G2 be two vertex–disjoint graphs. Their join is the graph G1 ∨G2 such that

V(G1 ∨G2) = V(G1) ∪ V(G2)

and

E(G1 ∨G2) = E(G1) ∪ E(G2) ∪ {ij : i ∈ V(G1) ∧ j ∈ V(G2)} .

A generalization of the join operation was introduced in [6] as follows:

Consider a family of vertex–disjoint graphs, F = {G1, . . . , Gk}, where Gi has order

ni, for 1 ≤ i ≤ k, and a graph H such that V(H) = {1, . . . , k}. Each vertex i ∈ V(H) is
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assigned to the graph Gi ∈ F . The H-join of G1, . . . , Gk is the graph G = H[G1, . . . , Gk]

such that V(G) =
k⋃

i=1

V(Gi) and

E(G) =

(
k⋃

i=1

E(Gi)

)⋃ ⋃
uv∈E(H)

{ij : i ∈ V(Gu) , j ∈ V(Gv)}

 .

If the graphs G1, . . . , Gk are regular, then we can characterize the signless Laplacian

spectrum of G. For this, we first need to specify some notation. For 1 ≤ i ≤ k, define

Ni =
∑

ij∈E(H)

nj .

In [14], the generalized composition of symmetric matrices was introduced as follows.

By this concept we obtain the following result.

Theorem 1. Let H be a graph such that A(H) = (aij)1≤i,j≤k . Let G1, . . . , Gk be regular

graphs of degrees r1, . . . , rk and with n1, . . . , nk vertices, respectively. Consider G =

H[G1, . . . , Gk]. Moreover, consider the k × k matrix Ω = (ωij), where

ωij =

{
2ri +Ni if i = j

aij
√
ni nj if i 6= j .

Then

σ(QG) = σ(Ω)
k⋃

i=1

[
σ(QGi

+Ni Ini
) \ {2ri +Ni}

]
. (2)

In a similar manner, by applying the results to the Laplacian matrix of H[G1, . . . , Gk]

where G1, . . . , Gk are arbitrary graphs (see [6, Theorem 8]), we arrive at:

Theorem 2. Let H be a graph such that A (H) = (aij)1≤i,j≤k . Let G1, . . . , Gk be

arbitrary graphs. Consider G = H[G1, . . . , Gk]. Moreover, consider the k × k matrix

Υ = (ηij), where

ηij =

{
Ni if i = j

−aij
√
ni nj if i 6= j .

Then

σ(LG) = σ(Υ)
k⋃

i=1

[
σ(LGi

+Ni Ini
) \ {Ni}

]
.

Remark 1. Using the Theory of Equitable Partitions (see, [4, Ch. 2]), it is also possible

to characterize the full spectrum of QG and LG .
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3 An application to incidence energy

We approach towards our application of Theorem 1 by means some external definitions

and results.

The algebraic connectivity of a graph, denoted by µ, is the second smallest Laplacian

eigenvalue [16]. It is among the most important and most studied Laplacian eigenvalues.

In recent years, it received much attention, see [1,10,13,23,36,37] and the references cited

therein. A graph is connected if and only if µ > 0.

The vertex connectivity (or just connectivity) of a connected graph G, denoted by

γ(G), is the minimum number of vertices of G whose deletion disconnects G.

The minimum number of vertices whose deletion yields a bipartite graph from G is

called the vertex bipartiteness of G and is denoted by υb(G), see [15].

Let a be a natural number such that a ≤ n− 3. Let

Σa(n) = {G = (V(G), E(G)) : |V(G)| = n and υb(G) ≤ a} .

If i, j ∈ V(G) are such that i � j, let G+ be the graph obtained from G by adding to it

a new edge ij. We have earlier shown that IE(G+) > IE(G) and LEL(G+) > LEL(G).

Let Ĝ ∈ Σa(n) such that IE(Ĝ) > IE(G) for all G ∈ Σa(n). Let b̃ ≤ a and consider

i1, . . . , ib̃ ∈ V(Ĝ) such that Ĝ \
{
i1, . . . , ib̃

}
is a bipartite graph with bipartition {X, Y }.

Let s = |X| and r = |Y |. Thus, n = s+ r + b̃.

Suppose that there exist vertices i ∈ X and j ∈ Y such that i � j. If we consider the

graph Ĝ+ = Ĝ+ ij, then Ĝ+ ∈ Σa(n), and

IE(Ĝ+) > IE(Ĝ)

which is a contradiction. This implies

Ĝ \
{
i1, . . . , ib̃

}
= Kr,s = Kr ∨Ks .

On the other hand, suppose that that there exist vertices i, j ∈
{
i1, . . . , ib̃

}
such that

i � j. Then Ĝ+ = Ĝ+ ij ∈ Σa(n) and IE(Ĝ+) > IE(Ĝ), which again is a contradiction.

This implies 〈{
i1, . . . , ib̃

}〉
= Kb̃ .

By the same kind of reasoning we obtain

Ĝ = Kb̃ ∨ (Kr ∨Ks) =: K3

[
Kb̃, Kr, Ks

]
. (3)

-335-



We now prove that b̃ = a. Assume the opposite, namely that b̃ ≤ a − 1 and s + r =

n − b̃ > n − a ≥ 3. Thus s + r ≥ 3, implying r ≥ 2 or s ≥ 2. We suppose that r ≥ 2.

Then the graph Kb̃ ∨ (Kr ∨Ks) has the subgraph Kb̃+1 = K1 ∨Kb̃ , formed by a vertex

of Kr and the vertices of Kb̃. It is easy to check that G = Kb̃+1 ∨ (Kr−1 ∨Ks) ∈ Σa(n)

and it has r − 1 ≥ 1 edges more than our graph Ĝ in (3), implying that

IE(G) > IE(Ĝ)

which obviously is again a contradiction. Therefore

Ĝ = Ka ∨ (Kr ∨Ks) =: K3

[
Ka, Kr, Ks

]
. (4)

Let f(z, w) = zw. Note that f(z, w) is the number of edges of Kz,w. The solution of

the optimum problem

zw = maximum, provided z + w = n− a

is reached whenever z = w. Therefore, if n − a is even, for Ĝ specified by Eq. (4) we

conclude that r = s = n−a
2

. If n− a is odd, then r =
⌊
n−a
2

⌋
and s =

⌊
n+1−a

2

⌋
.

If r = s = n−a
2

, then by Theorem 1,

σ(QĜ) =

{
(n− 2)[a−1] ,

(
n+ a

2

)[n−a−2]
}
∪ σ(Ω)

where

Ω =


n+ a− 2

√
(n−a)a

2

√
(n−a)a

2√
(n−a)a

2
n+a
2

n−a
2√

(n−a)a
2

n−a
2

n+a
2

 .

We have that

σ(Ω) =

{
a ,

a+2n−2−
√

4− 4a+ 4an− 3a2

2
,
a+2n−2+

√
4− 4a+ 4an− 3a2

2

}
resulting in

IE(Ĝ) =
√
a+ (a− 1)

√
n− 2 + (n− a− 2)

√
n+ a

2

+

√
a+ 2n− 2−

√
4− 4a+ 4an− 3a2

2
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+

√
a+ 2n− 2 +

√
4− 4a+ 4an− 3a2

2
. (5)

If r =
⌊
n−a
2

⌋
and s =

⌊
n+1−a

2

⌋
, then by Theorem 1,

σ(QĜ) =

{
(n− 2)[a−1] ,

(
n+ a

2

)[n−a−2]
}
∪ σ(Ω̃)

where

Ω̃ =


n+ a− 2

√
ar

√
as

√
ar a+ s

√
rs

√
as

√
rs a+ r

 .

Note that s = r + 1, implying

Ω̃ =


2r + 2a− 1

√
ar

√
a (r + 1)

√
ar a+ r + 1

√
r (r + 1)√

a (r + 1)
√
r (r + 1) a+ r

 .

If D=diag
(
a−

1
2 , r−

1
2 , (r + 1)−

1
2

)
, then we have that

S = DΩ̃D−1 =


2r + 2a− 1 r r + 1

a a+ r + 1 r + 1

a r a+ r

 (6)

resulting in

IE(Ĝ) =
√
γ1 + (a− 1)

√
n− 2 + (n− a− 2)

√
n+ a

2
+
√
γ2 +

√
γ3 (7)

where γ1 , γ2 , γ3 are the eigenvalues of the matrix S in Eq. (6). Thus we have proven:

Theorem 3. Let 1 ≤ a ≤ n− 3. Then the following holds.

(a) If n− a is even, then IE(Ĝ) ≥ IE(G) holds for all graphs G ∈ Σa(n), where

Ĝ = Ka ∨
(
K n−a

2
∨K n−a

2

)
∈ Σa(n) .

Equality holds if and only if G ∼= Ĝ. The expression for IE(Ĝ) is given by Eq. (5).

(b) If n− a is odd, then IE(Ĝ) ≥ IE(G) holds for all graphs G ∈ Σa(n), where

Ĝ = Ka ∨
(
Kbn−a

2 c ∨Kbn+1−a
2 c

)
∈ Σa(n) .

Equality holds if and only if G ∼= Ĝ. The expression for IE(Ĝ) is given by Eq. (7).
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4 An application to Laplacian–energy–like

invariant

The aim of this section is to prove that the graph Ĝ, specified in Theorem 3, has also

maximum Laplacian–energy–like invariant in Σa(n). Because the considerations are fully

analogous to those in the preceding section, we outline only the differences.

The search for the graph Ĝ ∈ Σa(n) satisfying the condition

LEL(Ĝ) ≥ LEL(G) for all G ∈ Σa(n)

leads to Ĝ = Ka ∨ (Kr ∨ Ks) where r = s = n−a
2

if n − a is even, and r =
⌊
n−a
2

⌋
,

s =
⌊
n+1−a

2

⌋
if n− a is odd.

If r = s = n−a
2

, then by Theorem 2,

σ(LĜ) =

{
n[a−1] ,

(
n+ a

2

)[n−a−2]
}
∪ σ(Υ)

where

Υ =


n− a −

√
(n−a)a

2
−
√

(n−a)a
2

−
√

(n−a)a
2

n+a
2

−n−a
2

−
√

(n−a)a
2

−n−a
2

n+a
2

 .

We have that

σ(Υ) =
{

0 , n[2]
}

resulting in

LEL(Ĝ) = 1 + (a+ 1)
√
n+ (n− a− 2)

√
n+ a

2
. (8)

If r =
⌊
n−a
2

⌋
and s =

⌊
n+1−a

2

⌋
, then by Theorem 2,

σ(LĜ) =
{
n[a−1] , (a+ s)[r−1] , (a+ r)[s−1]

}
∪ σ(Υ̃)

where

Υ̃ =


n− a −

√
ar −

√
as

−
√
ar a+ s −

√
rs

−
√
as −

√
rs a+ r

 .

We have that

σ(Υ̃) =
{

0 , n[2]
}
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resulting in

LEL(Ĝ) = 1 + (a+ 1)
√
n+ (r − 1)

√
a+ s+ (s− 1)

√
a+ r .

By using the condition s = r + 1, we obtain

LEL(Ĝ) = 1 + (a+ 1)
√
n+ (r − 1)

√
a+ r + 1 + r

√
a+ r . (9)

Thus we have proven:

Theorem 4. Let 1 ≤ a ≤ n− 3. Then the following holds.

(a) If n− a is even, then LEL(Ĝ) ≥ LEL(G) holds for all graphs G ∈ Σa(n), where

Ĝ = Ka ∨
(
K n−a

2
∨K n−a

2

)
∈ Σa(n) .

Equality holds if and only if G ∼= Ĝ. The expression for LEL(Ĝ) is given by Eq. (8).

(b) If n− a is an odd, then LEL(Ĝ) ≥ LEL(G) holds for all graphs G ∈ Σa(n), where

Ĝ = Ka ∨
(
Kbn−a

2 c ∨Kbn+1−a
2 c

)
∈ Σa(n) .

Equality holds if and only if G ∼= Ĝ. The expression for LEL(Ĝ) is given by Eq. (9).
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