MATCH Communications in Mathematical and in Computer Chemistry

Remarks on the Energy and the Minimum Dominating Energy of a Graph

Igor Ž. Milovanović, Emina I. Milovanović

Faculty of Electronic Engineering, Beogradska 14, P. O. Box 73, 18000 Niš, Serbia igor@elfak.ni.ac.rs, ema@elfak.ni.ac.rs

(Received October 23, 2015)

Abstract

Upper bounds for energy and minimum dominating energy of graph are established. Also upper and lower bounds for minimum dominating eigenvalues of a given graph are determined.

1 Introduction

Let G = (V, E), $V = \{1, 2, ..., n\}$, be a simple graph with *n* vertices, *m* edges, and the sequence of vertex degrees $d_1 \ge d_2 \ge \cdots \ge d_n > 0$, $d_i = d(i)$, i = 1, 2, ..., n. If *i*-th and *j*-th vertices of graph *G* are adjacent, we denote it as $i \sim j$. Well known properties of the sequence of vertex degrees are (see [4])

$$\sum_{i=1}^{n} d_i = 2m \quad \text{and} \quad \sum_{i=1}^{n} d_i^2 = M_1$$

where M_1 is the first Zagreb index [10].

The adjacency matrix, $A = (a_{ij})$, of graph G is defined as

$$a_{ij} = \begin{cases} 1, & \text{if } i \sim j \\ 0, & \text{otherwise.} \end{cases}$$

The eigenvalues of adjacency matrix $A, \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n$, represent ordinary eigenvalues of graph G. Well known properties of these are [4]

$$\sum_{i=1}^n \lambda_i = 0 \qquad \text{and} \qquad \sum_{i=1}^n \lambda_i^2 = \sum_{i=1}^n d_i = 2m$$

Denote by $|\lambda_1^*| \ge |\lambda_2^*| \ge \cdots \ge |\lambda_n^*|$, $\lambda_1 = |\lambda_1^*|$, a non increasing sequence of absolute values of the eigenvalues of G. The graph invariant called energy, E(G), of G is defined to be the sum of the absolute values of the eigenvalues of G [7] (see also [6,8–10,16]), i.e.

$$E(G) = \sum_{i=1}^{n} |\lambda_i| = \sum_{i=1}^{n} |\lambda_i^*|$$

A subset D of V is called a dominating set of G if every vertex of V - D is adjacent to some vertex in D. Any dominating set with minimum cardinality is called a minimum dominating set. Let D, |D| = k, be a minimum dominating set of a graph G. The minimum dominating adjacency matrix of G, $A_D = (a_{ij}^D)$, is the $n \times n$ matrix defined by

$$a_{ij}^{D} = \begin{cases} 1, & \text{if } i \sim j \\ 1, & \text{if } i = j, i \in D \\ 0, & \text{otherwise.} \end{cases}$$

The minimum dominating eigenvalues of the graph $G, \gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_n$ are eigenvalues of A_D . The following equalities are valid for $\gamma_i, i = 1, 2, \ldots, n$ [23]

$$\sum_{i=1}^{n} \gamma_i = k \quad \text{and} \quad \sum_{i=1}^{n} \gamma_i^2 = 2m + k$$

Let $|\gamma_1^*| \ge |\gamma_2^*| \ge \cdots \ge |\gamma_n^*|$, $\gamma_1 = |\gamma_1^*|$, be a non increasing sequence of absolute values of the minimum dominating eigenvalues of G. The minimum dominating energy of graph $G, E_D(G) = E_D$, is defined as [23,24]

$$E_D = \sum_{i=1}^n |\gamma_i| = \sum_{i=1}^n |\gamma_i^*|.$$

In this paper we consider upper bounds for graph invariants E and E_D , as well as upper and lower bounds for the minimum dominating eigenvalues.

2 Preliminaries

In the text that follows we recall some inequalities that establish upper bounds for graph invariants E and E_D , that are of interest for our work.

In [19] the following inequality for graph energy E was proven

$$E \le \sqrt{2mn}$$
. (1)

For E_D the following inequalities were proven in [23]

$$E_D \le \sqrt{n(2m+k)} \tag{2}$$

and

$$E_D \le \frac{2m+k}{n} + \sqrt{(n-1)\left[(2m+k) - \left(\frac{2m+k}{n}\right)^2\right]}.$$
 (3)

3 Main results

In the following theorem we prove an inequality that is stronger than (1).

Theorem 1. Let G be a simple graph with $n, n \ge 2$, vertices and m edges. Then

$$E \le \sqrt{2mn - \frac{n}{2}(|\lambda_1^*| - |\lambda_n^*|)^2}.$$
(4)

Equality holds if and only if $G \cong \overline{K}_n$ or $G \cong \frac{n}{2}K_2$ if n is even.

Proof. From the Lagrange's identity (see for example [22]),

$$0 \le 2mn - E^2 = n \sum_{i=1}^n |\lambda_i^*|^2 - \left(\sum_{i=1}^n |\lambda_i^*|\right)^2 = \sum_{1 \le i < j \le n} (|\lambda_i^*| - |\lambda_j^*|)^2$$

the following inequality can be obtained

$$0 \le 2mn - E^2 \ge \sum_{i=2}^{n-1} \left((|\lambda_1^*| - |\lambda_i^*|)^2 + (|\lambda_i^*| - |\lambda_n^*|)^2 \right) + (|\lambda_1^*| - |\lambda_n^*|)^2.$$

On the other hand, according to the Jennsen's inequality (see [21]), from the above inequality it follows that

$$0 \le 2mn - E^2 \ge \frac{n-2}{2} \left(|\lambda_1^*| - |\lambda_n^*| \right)^2 + \left(|\lambda_1^*| - |\lambda_n^*| \right)^2 = \frac{n}{2} \left(|\lambda_1^*| - |\lambda_n^*| \right)^2.$$
(5)

After rearranging the above inequality, the inequality (4) is obtained. Equality in (5) holds if and only if $|\lambda_1^*| = |\lambda_2^*| = \cdots = |\lambda_n^*|$, so the equality in (4) holds if and only if G is an empty graph, $G \cong \overline{K}_n$, or G is a union of $\frac{n}{2} K_2$ graphs, i.e., $G \cong \frac{n}{2} K_2$, if n is even.

-308-

Remark 2. Since $(|\lambda_1^*| - |\lambda_n^*|) \ge 0$, the inequality (4) is stronger than (1). Note that lower bounds analogous to (4) were proven in [5] and [20].

By a similar procedure as that for the proof of Theorem 1, the following result can be proven for the invariant E_D .

Theorem 3. Let G be a simple graph with n vertices and m edges and let D, |D| = k be a minimum dominating set of G. Then

$$E_D \le \sqrt{n(2m+k) - \frac{n}{2}(|\gamma_1^*| - |\gamma_n^*|)^2}.$$
(6)

Equality holds if and only if $G \cong \overline{K}_n$ or $G \cong \frac{n}{2}K_2$ if n is even.

Remark 4. Since $|\gamma_1^*| - |\gamma_n^*| \ge 0$, the inequality (6) is stronger than (2).

Theorem 5. Let G be a simple graph with n, $n \ge 2$, vertices and m edges. Then, for each real R with the property $\lambda_1 \ge R \ge \sqrt{2mn}$, the following inequality is valid

$$E \le R + \sqrt{(n-1)(2m-R^2)}$$
. (7)

Proof. In [18] a class of real polynomials $P_n(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + b_3 x^{n-3} + \dots + b_n$, denoted as $\mathcal{P}_n(a_1, a_2)$, where a_1 and a_2 are fixed real numbers, was considered. For the roots $x_1 \ge x_2 \ge \dots \ge x_n$ of an arbitrary polynomial $P_n(x)$ from this class, the following values were introduced

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and $\Delta = n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2$. (8)

Then upper and lower bounds for the polynomial roots, x_i , i = 1, 2, ..., n, were determined in terms of the introduced values

$$\bar{x} + \frac{1}{n}\sqrt{\frac{\Delta}{n-1}} \le x_1 \le \bar{x} + \frac{1}{n}\sqrt{(n-1)\Delta}$$

$$\bar{x} - \frac{1}{n}\sqrt{\frac{i-1}{n-i+1}\Delta} \le x_i \le \bar{x} + \frac{1}{n}\sqrt{\frac{n-i}{i}\Delta}, \quad 2 \le i \le n-1$$

$$\bar{x} - \frac{1}{n}\sqrt{(n-1)\Delta} \le x_n \le \bar{x} - \frac{1}{n}\sqrt{\frac{\Delta}{n-1}}.$$
(9)

Consider now the polynomial

$$P_n(x) = \prod_{i=1}^n (x - |\lambda_i^*|) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + b_3 x^{n-3} + \dots + b_n.$$

Since

$$a_1 = -\sum_{i=1}^n |\lambda_i^*| = -E$$

and

$$a_{2} = \frac{1}{2} \left[\left(\sum_{i=1}^{n} |\lambda_{i}^{*}| \right)^{2} - \sum_{i=1}^{n} |\lambda_{i}^{*}|^{2} \right] = \frac{1}{2} E^{2} - m$$

the above polynomial belongs to a class of real polynomials $\mathcal{P}_n(-E, \frac{1}{2}E^2 - m)$. Bearing in mind (8), we have that

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} |\lambda_i^*| = \frac{E}{n}$$
(10)

and

$$\Delta = n \sum_{i=1}^{n} |\lambda_i^*|^2 - \left(\sum_{i=1}^{n} |\lambda_i^*|\right)^2 = 2mn - E^2.$$
(11)

For $x_1 = \lambda_1 = |\lambda_1^*|$, according to (10), (11), and the right-hand side of the first inequality in (9), we get

$$\lambda_1 \le \frac{E}{n} + \frac{1}{n}\sqrt{(n-1)(2mn-E^2)}$$
. (12)

Now, for each real R with the property $\lambda_1 \ge R \ge \sqrt{\frac{2m}{n}}$, from (12) it follows that

$$R \le \frac{E}{n} + \frac{1}{n}\sqrt{(n-1)(2mn-E^2)}$$
.

After rearranging the above inequality, the inequality (7) is obtained.

Remark 6. By the appropriate choice of parameter R, from the inequality (7) various inequalities from the literature for the graph energy E can be obtained (see for example [1, 11-15, 17, 25-27]). We will illustrate this through three examples.

1) Let $R = \frac{2m}{n}$. Since $\lambda_1 \ge \frac{2m}{n} \ge \sqrt{\frac{2m}{n}}$ (see [3] and [14]), the conditions of Theorem 5 are satisfied. For $R = \frac{2m}{n}$ the inequality (7) becomes

$$E \le \frac{2m}{n} + \frac{1}{n}\sqrt{2m(n-1)(n^2 - 2m)}$$
.

This inequality was proven in [14] (see also [15]).

2) Let $R = \sqrt{\frac{M_1}{n}}$. Since $\lambda_1 \ge \sqrt{\frac{M_1}{n}} \ge \frac{2m}{n} \ge \sqrt{\frac{2m}{n}}$ (see [27]), the conditions of Theorem 5 are satisfied. Now from (7), the following inequality can be obtained

$$E \le \sqrt{\frac{M_1}{n}} + \sqrt{(n-1)\left(2m - \frac{M_1}{n}\right)}$$

This inequality was proven in [27].

3) Let $R = \sqrt{\frac{\sum_{i=1}^{n} t_i^2}{\sum_{i=1}^{n} d_i^2}}$, where t_i is a 2-degree of vertex *i*. Since (see [25, 26])

$$\lambda_1 \ge \sqrt{\frac{\sum_{i=1}^n t_i^2}{\sum_{i=1}^n d_i^2}} \ge \sqrt{\frac{M_1}{n}} \ge \frac{2m}{n} \ge \sqrt{\frac{2m}{n}}$$

the conditions of Theorem 5 are satisfied. From the inequality (7) we get

$$E \le \sqrt{\frac{\sum_{i=1}^{n} t_i^2}{\sum_{i=1}^{n} d_i^2}} + \sqrt{(n-1)\left(2m - \frac{\sum_{i=1}^{n} t_i^2}{\sum_{i=1}^{n} d_i^2}\right)}$$

This inequality was proven in [27] (see also [1, 11-13, 17, 25]).

Remark 7. Let

$$\varphi_n(x) = \prod_{i=1}^n (x - \lambda_i) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + b_3 x^{n-3} + \dots + b_n$$

be the characteristic polynomial of a graph G. Since

$$a_1 = -\sum_{i=1}^n \lambda_i = 0$$

and

$$a_2 = \frac{1}{2} \left[\left(\sum_{i=1}^n \lambda_i \right)^2 - \sum_{i=1}^n \lambda_i^2 \right] = -m$$

the polynomial $\varphi_n(x)$ belongs to a class of real polynomials $\mathcal{P}_n(0, -m)$. From the equalities

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} \lambda_i = 0$$

and

$$\Delta = n \sum_{i=1}^{n} \lambda_i^2 - \left(\sum_{i=1}^{n} \lambda_i\right)^2 = 2mn$$

and (9), we obtain that for the eigenvalues λ_i , i = 1, 2, ..., n, the following is valid

$$0 < \sqrt{\frac{2m}{n(n-1)}} \le \lambda_1 \le \sqrt{\frac{2m(n-1)}{n}}$$
$$-\sqrt{\frac{2(i-1)m}{n(n-i+1)}} \le \lambda_i \le \sqrt{\frac{2m(n-i)}{in}}, \quad 2 \le i \le n-1$$
$$-\sqrt{\frac{2m(n-1)}{n}} \le \lambda_n \le -\sqrt{\frac{2m}{n(n-1)}} < 0.$$

With the exception of the left-hand side part of the first and the right-hand side part of the last inequality, the above inequalities were proven in [2].

Let

$$f_n(x) = \prod_{i=1}^n (x - \gamma_i) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + b_3 x^{n-3} + \dots + b_n$$

be the characteristic polynomial of minimum dominating adjacency matrix A_D of G. Since $a_1 = -k$ and $a_2 = {k \choose 2} - m$, it belongs to a class of real polynomials $\mathcal{P}_n(-k, {k \choose 2} - m)$. Based on the equalities

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} \gamma_i = \frac{k}{n}$$

and

$$\Delta = n \sum_{i=1}^{n} \gamma_i^2 - \left(\sum_{i=1}^{n} \gamma_i\right)^2 = 2mn + k(n-k)$$

and inequality (9), we establish the following result.

Theorem 8. Let G be a simple graph with $n, n \ge 2$, vertices and m edges and let D, |D| = k, be its minimum dominating set. Then

$$\frac{k}{n} + \frac{1}{n}\sqrt{\frac{2mn + k(n-k)}{n-1}} \le \gamma_1 \le \frac{k}{n} + \frac{1}{n}\sqrt{(n-1)(2mn + k(n-k))}$$
$$\frac{k}{n} - \frac{1}{n}\sqrt{\frac{i-1}{n-i+1}(2mn + k(n-k))} \le \gamma_i \le \frac{k}{n} + \frac{1}{n}\sqrt{\frac{n-i}{i}(2mn + k(n-k))}$$
for $2 \le i \le n-1$, and
$$\frac{k}{n} - \frac{1}{n}\sqrt{(n-1)(2mn + k(n-k))} \le \gamma_n \le \frac{k}{n} - \frac{1}{n}\sqrt{\frac{2mn + k(n-k)}{n-1}}.$$

Consider the polynomial

$$\psi_n(x) = \prod_{i=1}^n (x - |\gamma_i^*|)^2 = x^n + a_1 x^{n-1} + a_2 x^{n-2} + b_3 x^{n-3} + \dots + b_n \,.$$

Since

$$a_1 = -\sum_{i=1}^n |\gamma_i^*| = -E_D$$

and

$$a_2 = \frac{1}{2} \left[\left(\sum_{i=1}^n |\gamma_i^*| \right)^2 - \sum_{i=1}^n |\gamma_i^*|^2 \right] = \frac{1}{2} \left[E_D^2 - (2m+k) \right]$$

the polynomial $\psi_n(x)$ belongs to a class of real polynomials $\mathcal{P}_n(-E_D, \frac{1}{2}(E_D^2 - (2m+k)))$. By the same procedure as with Theorem 5, the following result can be proven.

Theorem 9. Let G be a graph with $n, n \ge 2$, vertices and m edges and let D, |D| = k, be its minimum dominating set. Then for each T with the property $\gamma_1 \ge T \ge \sqrt{\frac{2m+k}{n}}$, the following is valid

$$E_D \le T + \sqrt{(n-1)(2m+k-T^2)}.$$
(13)

Remark 10. By an appropriate choice of the parameter T, from (13) some well known inequalities for the invariant E_D could be obtained. Thus, for example, for $T = \sqrt{\frac{2m+k}{n}}$, from (13) the inequality (2) is obtained. For $T = \frac{2m+k}{n}$, from (13) the inequality (3) is obtained.

References

- S. B. Bozkurt, D. Bozkurt, Sharp bounds for energy and Randić energy, MATCH Commun. Math. Comput. Chem. 70 (2013) 669–680.
- [2] R. C. Brigham, R. D. Dutton, Bounds of the graph spectra, J. Comb. Theory 37 (1984) 228–234.
- [3] L. Collatz, V. Sinogowitz, Spektren endlicher Graphen, Abh. Math. Sem. Univ. Hamburg 21 (1957) 63–67.
- [4] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, Academic Press, New York, 1980.

- [5] G. H. Fath–Tabar, R. Ashrafi, Some remarks on Laplacian eigenvalues and Laplacian energy of graphs, *Math. Commun.* 5 (2010) 443–451.
- [6] I.Gutman, Total π-electron energy of benzenoid hydrocarbons, *Topics Curr. Chem.* 162 (1992) 29–63.
- [7] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forhungszetrum Graz 103 (1978) 1–22.
- [8] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Lame, A. Wassermann (Eds.), *Algebraic Combinators and Applications*, Springer, Berlin, 2001, pp. 196–211.
- [9] I. Gutman, Comparative studies of graph energies, Bul. Acad. Serbe Sci. Arts 144 (2012) 1–17.
- [10] I. Gutman, N. Trinajstić, Graph theory and molecular orbits. Total π-electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972) 535–538.
- [11] M. Hofmester, Spectral radius and degree sequences, Math. Nachr. 139 (1988) 37–44.
- [12] Y. Hou, Z. Tang, C. Woo, On the spectral radius, k-degree and the upper bound of energy in a graph, MATCH Commun. Math. Comput. Chem. 57 (2007) 341–350.
- [13] S. Hu, A sharp bound of the spectral radius of simple graphs, Appl. Anal. Discr. Math. 3 (2009) 379–385.
- [14] J. H. Koolen, V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001) 213–216.
- [15] J. H. Koolen, V. Moulton, I. Gutman, Improving the McClelland inequality for total π-electron energy, Chem. Phys. Lett/ 320 (2000) 213–216.
- [16] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
- [17] H. Liu, M. Lu, F. Tian, Some upper bounds for the energy of graphs, J. Math. Chem. 41 (2007) 45–57.
- [18] A. Lupas, Inequalities for the roots of a class of polynomials, Publ. Elektrotehn. Fak. Ser. Math. Fiz. 594 (1977) 79–85.
- [19] B. J. McClelland, Properties of the latent roots of a matrix: the estimation of πelectron energy, J. Chem. Phys. 54 (1971) 640–643.
- [20] I. Ž. Milovanović, E. I. Milovanović, A. Zakić, A short note on graph energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 179–182.

- [21] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, *Classical and New Inequalities in Anal*ysis, Kluwer, Dordecht, 1993.
- [22] D. S. Mitrinović, P. M. Vasić, Analytic Inequalities, Springer, Berlin, 1970.
- [23] M. R. Rajesh Kanna, B. N. Dhartmendra, G. Sridhara, The minimum dominating energy of a graph, *Int. J. Pure Appl. Math.* 85 (2013) 707–718.
- [24] G. Sridhara, M. R. Rajesh Kanna, B. N. Dhartmendra, Milovanović bounds for minimum dominating energy of a graph, *Malaya J. Mat.* 3 (2015) 211–215.
- [25] A. Yu, M. Lu, F. Tian, On the spectral radius of graphs, *Lin. Algebra Appl.* 387 (2004) 41–49.
- [26] A. Yu, M. Lu, F. Tian, New upper bounds for the energy of graphs, MATCH Commun. Math. Comput. Chem. 53 (2005) 441–448.
- [27] B. Zhou, Energy of a graph, MATCH Commun. Math. Comput. Chem. 51 (2004) 111–118.