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Abstract

Upper bounds for energy and minimum dominating energy of graph are estab-
lished. Also upper and lower bounds for minimum dominating eigenvalues of a
given graph are determined.

1 Introduction

Let G = (V,E), V = {1, 2, . . . , n}, be a simple graph with n vertices, m edges, and the

sequence of vertex degrees d1 ≥ d2 ≥ · · · ≥ dn > 0, di = d(i), i = 1, 2, . . . , n. If i-th and

j-th vertices of graph G are adjacent, we denote it as i ∼ j. Well known properties of

the sequence of vertex degrees are (see [4])

n∑
i=1

di = 2m and
n∑

i=1

d2i = M1

where M1 is the first Zagreb index [10].

The adjacency matrix, A = (aij), of graph G is defined as

aij =

 1, if i ∼ j

0, otherwise.
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The eigenvalues of adjacency matrix A, λ1 ≥ λ2 ≥ . . . ≥ λn, represent ordinary eigenval-

ues of graph G. Well known properties of these are [4]

n∑
i=1

λi = 0 and
n∑

i=1

λ2i =
n∑

i=1

di = 2m.

Denote by |λ∗1| ≥ |λ∗2| ≥ · · · ≥ |λ∗n|, λ1 = |λ∗1|, a non increasing sequence of absolute

values of the eigenvalues of G. The graph invariant called energy, E(G), of G is defined

to be the sum of the absolute values of the eigenvalues of G [7] (see also [6,8–10,16]), i.e.

E(G) =
n∑

i=1

|λi| =
n∑

i=1

|λ∗i | .

A subset D of V is called a dominating set of G if every vertex of V −D is adjacent

to some vertex in D. Any dominating set with minimum cardinality is called a minimum

dominating set. Let D, |D| = k, be a minimum dominating set of a graph G. The

minimum dominating adjacency matrix of G, AD = (aDij ), is the n× n matrix defined by

aDij =


1, if i ∼ j

1, if i = j, i ∈ D

0, otherwise.

The minimum dominating eigenvalues of the graph G, γ1 ≥ γ2 ≥ · · · ≥ γn are eigenvalues

of AD. The following equalities are valid for γi, i = 1, 2, . . . , n [23]

n∑
i=1

γi = k and
n∑

i=1

γ2i = 2m+ k .

Let |γ∗1 | ≥ |γ∗2 | ≥ · · · ≥ |γ∗n|, γ1 = |γ∗1 |, be a non increasing sequence of absolute values

of the minimum dominating eigenvalues of G. The minimum dominating energy of graph

G, ED(G) = ED, is defined as [23,24]

ED =
n∑

i=1

|γi| =
n∑

i=1

|γ∗i | .

In this paper we consider upper bounds for graph invariants E and ED, as well as

upper and lower bounds for the minimum dominating eigenvalues.

2 Preliminaries

In the text that follows we recall some inequalities that establish upper bounds for graph

invariants E and ED, that are of interest for our work.
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In [19] the following inequality for graph energy E was proven

E ≤
√

2mn . (1)

For ED the following inequalities were proven in [23]

ED ≤
√
n(2m+ k) (2)

and

ED ≤
2m+ k

n
+

√√√√(n− 1)

[
(2m+ k)−

(
2m+ k

n

)2
]
. (3)

3 Main results

In the following theorem we prove an inequality that is stronger than (1).

Theorem 1. Let G be a simple graph with n, n ≥ 2, vertices and m edges. Then

E ≤
√

2mn− n

2
(|λ∗1| − |λ∗n|)2. (4)

Equality holds if and only if G ∼= Kn or G ∼= n
2
K2 if n is even.

Proof. From the Lagrange’s identity (see for example [22]),

0 ≤ 2mn− E2 = n
n∑

i=1

|λ∗i |2 −

(
n∑

i=1

|λ∗i |

)2

=
∑

1≤i<j≤n

(|λ∗i | − |λ∗j |)2

the following inequality can be obtained

0 ≤ 2mn− E2 ≥
n−1∑
i=2

(
(|λ∗1| − |λ∗i |)2 + (|λ∗i | − |λ∗n|)2

)
+ (|λ∗1| − |λ∗n|)2 .

On the other hand, according to the Jennsen’s inequality (see [21]), from the above

inequality it follows that

0 ≤ 2mn− E2 ≥ n− 2

2
(|λ∗1| − |λ∗n|)

2 + (|λ∗1| − |λ∗n|)
2 =

n

2
(|λ∗1| − |λ∗n|)

2 . (5)

After rearranging the above inequality, the inequality (4) is obtained. Equality in (5)

holds if and only if |λ∗1| = |λ∗2| = · · · = |λ∗n|, so the equality in (4) holds if and only if G

is an empty graph, G ∼= Kn, or G is a union of n
2
K2 graphs, i.e., G ∼= n

2
K2, if n is even.
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Remark 2. Since (|λ∗1| − |λ∗n|) ≥ 0, the inequality (4) is stronger than (1). Note that

lower bounds analogous to (4) were proven in [5] and [20].

By a similar procedure as that for the proof of Theorem 1, the following result can

be proven for the invariant ED.

Theorem 3. Let G be a simple graph with n vertices and m edges and let D, |D| = k be

a minimum dominating set of G. Then

ED ≤
√
n(2m+ k)− n

2
(|γ∗1 | − |γ∗n|)2 . (6)

Equality holds if and only if G ∼= Kn or G ∼= n
2
K2 if n is even.

Remark 4. Since |γ∗1 | − |γ∗n| ≥ 0, the inequality (6) is stronger than (2).

Theorem 5. Let G be a simple graph with n, n ≥ 2, vertices and m edges. Then, for

each real R with the property λ1 ≥ R ≥
√

2mn, the following inequality is valid

E ≤ R +
√

(n− 1)(2m−R2) . (7)

Proof. In [18] a class of real polynomials Pn(x) = xn+a1x
n−1+a2x

n−2+b3x
n−3+ · · ·+bn,

denoted as Pn(a1, a2), where a1 and a2 are fixed real numbers, was considered. For the

roots x1 ≥ x2 ≥ . . . ≥ xn of an arbitrary polynomial Pn(x) from this class, the following

values were introduced

x̄ =
1

n

n∑
i=1

xi and ∆ = n
n∑

i=1

x2i −

(
n∑

i=1

xi

)2

. (8)

Then upper and lower bounds for the polynomial roots, xi, i = 1, 2, . . . , n, were deter-

mined in terms of the introduced values

x̄+
1

n

√
∆

n− 1
≤ x1 ≤ x̄+

1

n

√
(n− 1)∆

x̄− 1

n

√
i− 1

n− i+ 1
∆ ≤ xi ≤ x̄+

1

n

√
n− i
i

∆, 2 ≤ i ≤ n− 1

x̄− 1

n

√
(n− 1)∆ ≤ xn ≤ x̄− 1

n

√
∆

n− 1
.

(9)
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Consider now the polynomial

Pn(x) =
n∏

i=1

(x− |λ∗i |) = xn + a1x
n−1 + a2x

n−2 + b3x
n−3 + · · ·+ bn .

Since

a1 = −
n∑

i=1

|λ∗i | = −E

and

a2 =
1

2

( n∑
i=1

|λ∗i |

)2

−
n∑

i=1

|λ∗i |2
 =

1

2
E2 −m

the above polynomial belongs to a class of real polynomials Pn(−E, 1
2
E2 −m). Bearing

in mind (8), we have that

x̄ =
1

n

n∑
i=1

|λ∗i | =
E

n
(10)

and

∆ = n
n∑

i=1

|λ∗i |2 −

(
n∑

i=1

|λ∗i |

)2

= 2mn− E2 . (11)

For x1 = λ1 = |λ∗1|, according to (10), (11), and the right–hand side of the first inequality

in (9), we get

λ1 ≤
E

n
+

1

n

√
(n− 1)(2mn− E2) . (12)

Now, for each real R with the property λ1 ≥ R ≥
√

2m
n

, from (12) it follows that

R ≤ E

n
+

1

n

√
(n− 1)(2mn− E2) .

After rearranging the above inequality, the inequality (7) is obtained.

Remark 6. By the appropriate choice of parameter R, from the inequality (7) various

inequalities from the literature for the graph energy E can be obtained (see for example

[1, 11–15,17,25–27]). We will illustrate this through three examples.

1) Let R = 2m
n

. Since λ1 ≥ 2m
n
≥
√

2m
n

(see [3] and [14]), the conditions of Theorem 5

are satisfied. For R = 2m
n

the inequality (7) becomes

E ≤ 2m

n
+

1

n

√
2m(n− 1)(n2 − 2m) .

This inequality was proven in [14] (see also [15]).
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2) Let R =
√

M1

n
. Since λ1 ≥

√
M1

n
≥ 2m

n
≥
√

2m
n

(see [27]), the conditions of Theorem

5 are satisfied. Now from (7), the following inequality can be obtained

E ≤
√
M1

n
+

√
(n− 1)

(
2m− M1

n

)
.

This inequality was proven in [27].

3) Let R =
√∑n

i=1 t
2
i∑n

i=1 d
2
i
, where ti is a 2-degree of vertex i. Since (see [25, 26])

λ1 ≥

√∑n
i=1 t

2
i∑n

i=1 d
2
i

≥
√
M1

n
≥ 2m

n
≥
√

2m

n

the conditions of Theorem 5 are satisfied. From the inequality (7) we get

E ≤

√∑n
i=1 t

2
i∑n

i=1 d
2
i

+

√
(n− 1)

(
2m−

∑n
i=1 t

2
i∑n

i=1 d
2
i

)
.

This inequality was proven in [27] (see also [1, 11–13,17,25]).

Remark 7. Let

ϕn(x) =
n∏

i=1

(x− λi) = xn + a1x
n−1 + a2x

n−2 + b3x
n−3 + · · ·+ bn

be the characteristic polynomial of a graph G. Since

a1 = −
n∑

i=1

λi = 0

and

a2 =
1

2

( n∑
i=1

λi

)2

−
n∑

i=1

λ2i

 = −m

the polynomial ϕn(x) belongs to a class of real polynomials Pn(0,−m). From the equalities

x̄ =
1

n

n∑
i=1

λi = 0

and

∆ = n
n∑

i=1

λ2i −

(
n∑

i=1

λi

)2

= 2mn

-310-



and (9), we obtain that for the eigenvalues λi , i = 1, 2, . . . , n, the following is valid

0 <

√
2m

n(n− 1)
≤ λ1 ≤

√
2m(n− 1)

n

−

√
2(i− 1)m

n(n− i+ 1)
≤ λi ≤

√
2m(n− i)

in
, 2 ≤ i ≤ n− 1

−
√

2m(n− 1)

n
≤ λn ≤ −

√
2m

n(n− 1)
< 0 .

With the exception of the left–hand side part of the first and the right–hand side part

of the last inequality, the above inequalities were proven in [2].

Let

fn(x) =
n∏

i=1

(x− γi) = xn + a1x
n−1 + a2x

n−2 + b3x
n−3 + · · ·+ bn

be the characteristic polynomial of minimum dominating adjacency matrix AD of G.

Since a1 = −k and a2 =
(
k
2

)
−m, it belongs to a class of real polynomials Pn(−k,

(
k
2

)
−m).

Based on the equalities

x̄ =
1

n

n∑
i=1

γi =
k

n

and

∆ = n
n∑

i=1

γ2i −

(
n∑

i=1

γi

)2

= 2mn+ k(n− k)

and inequality (9), we establish the following result.

Theorem 8. Let G be a simple graph with n, n ≥ 2, vertices and m edges and let D,

|D| = k, be its minimum dominating set. Then

k

n
+

1

n

√
2mn+ k(n− k)

n− 1
≤ γ1 ≤

k

n
+

1

n

√
(n− 1)(2mn+ k(n− k))

k

n
− 1

n

√
i− 1

n− i+ 1
(2mn+ k(n− k)) ≤ γi ≤

k

n
+

1

n

√
n− i
i

(2mn+ k(n− k))

for 2 ≤ i ≤ n− 1, and

k

n
− 1

n

√
(n− 1)(2mn+ k(n− k)) ≤ γn ≤

k

n
− 1

n

√
2mn+ k(n− k)

n− 1
.
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Consider the polynomial

ψn(x) =
n∏

i=1

(x− |γ∗i |)2 = xn + a1x
n−1 + a2x

n−2 + b3x
n−3 + · · ·+ bn .

Since

a1 = −
n∑

i=1

|γ∗i | = −ED

and

a2 =
1

2

( n∑
i=1

|γ∗i |

)2

−
n∑

i=1

|γ∗i |2
 =

1

2

[
E2

D − (2m+ k)
]

the polynomial ψn(x) belongs to a class of real polynomials Pn(−ED,
1
2
(E2

D − (2m+ k)).

By the same procedure as with Theorem 5, the following result can be proven.

Theorem 9. Let G be a graph with n, n ≥ 2, vertices and m edges and let D, |D| = k,

be its minimum dominating set. Then for each T with the property γ1 ≥ T ≥
√

2m+k
n

,

the following is valid

ED ≤ T +
√

(n− 1)(2m+ k − T 2) . (13)

Remark 10. By an appropriate choice of the parameter T , from (13) some well known

inequalities for the invariant ED could be obtained. Thus, for example, for T =
√

2m+k
n

,

from (13) the inequality (2) is obtained. For T = 2m+k
n

, from (13) the inequality (3) is

obtained.
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[21] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Anal-

ysis , Kluwer, Dordecht, 1993.
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