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Abstract

Upper bounds for energy and minimum dominating energy of graph are estab-
lished. Also upper and lower bounds for minimum dominating eigenvalues of a

given graph are determined.

1 Introduction

Let G = (V,E), V ={1,2,...,n}, be a simple graph with n vertices, m edges, and the
sequence of vertex degrees dy > dy > -+ >d,, > 0,d; =d(i),7=1,2,...,n. If i-th and
j-th vertices of graph G are adjacent, we denote it as i ~ j. Well known properties of

the sequence of vertex degrees are (see [4])
Zd,- =2m and de =M,
=1 =1
where M is the first Zagreb index [10].
The adjacency matrix, A = (a;;), of graph G is defined as
1, ifing

0, otherwise.
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The eigenvalues of adjacency matrix A, Ay > Ay > ... > A, represent ordinary eigenval-

ues of graph G. Well known properties of these are [4]

z": Ai=0 and i: )\? = i:di =2m.
i=1 i=1 i=1

Denote by |Aj] > |A5] > -+ > |A5], A1 = |Aj], a non increasing sequence of absolute
values of the eigenvalues of G. The graph invariant called energy, E(G), of G is defined

to be the sum of the absolute values of the eigenvalues of G [7] (see also [6,8-10,16]), i.e.

E(G) =Y [N =Dl
i=1 i=1

A subset D of V is called a dominating set of G if every vertex of V — D is adjacent
to some vertex in D. Any dominating set with minimum cardinality is called a minimum

dominating set. Let D, |D| = k, be a minimum dominating set of a graph G. The

minimum dominating adjacency matrix of G, Ap = (af} ), is the n x n matrix defined by
1, ifi~y
a2 =<1, ifi=jieD

0, otherwise.
The minimum dominating eigenvalues of the graph G, v, > 79 > - -+ > v, are eigenvalues

of Ap. The following equalities are valid for ;, i = 1,2,...,n [23]

zn:%‘:k and zn:vf:%nwth
=1 i=1

Let |vf| > |3 = -+ > |7l 71 = |75, be a non increasing sequence of absolute values
of the minimum dominating eigenvalues of G. The minimum dominating energy of graph

G, Ep(G) = Ep, is defined as [23,24]

n n
Ep=Y"ul =Y Il
i=1 i=1

In this paper we consider upper bounds for graph invariants £ and Ep, as well as

upper and lower bounds for the minimum dominating eigenvalues.

2 Preliminaries

In the text that follows we recall some inequalities that establish upper bounds for graph

invariants £ and Ep, that are of interest for our work.
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In [19] the following inequality for graph energy E was proven
E <V2mn. (1)

For Ep the following inequalities were proven in [23]
Ep < +v/n(2m +k) (2)

and

3 Main results

In the following theorem we prove an inequality that is stronger than (1).

Theorem 1. Let G be a simple graph with n, n > 2, vertices and m edges. Then

E< \/an - g(m\ —|Ax])2 (4)

Equality holds if and only if G =2 K, or G = 5K if n is even.

Proof. From the Lagrange’s identity (see for example [22]),

n n 2
ogamn—EQ—nZAzQ—<Z|Az|) = > (NI=)
i=1

i=1 1<i<j<n
the following inequality can be obtained

n—1
0 <2mn—E >3 ((X] = A+ (A = X)) + (AT = [N )?

=2
On the other hand, according to the Jennsen’s inequality (see [21]), from the above
inequality it follows that

n —

2 * * * * n * *
o (M= D+ (X = IR0 = S (A= aD*. ()

0<2mn—FE?>>

After rearranging the above inequality, the inequality (4) is obtained. Equality in (5)
holds if and only if [A\j] = || = -+ = |A%], so the equality in (4) holds if and only if G
is an empty graph, G = K, or G is a union of 5 K graphs, ie., G = 2Ky, if n is even.
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Remark 2. Since (|A\j| — |\;|) > 0, the inequality (4) is stronger than (1). Note that

lower bounds analogous to (4) were proven in [5] and [20].

By a similar procedure as that for the proof of Theorem 1, the following result can

be proven for the invariant Ep.

Theorem 3. Let G be a simple graph with n vertices and m edges and let D, |D| =k be

a minimum dominating set of G. Then

n
B < \fatem + 1)~ 2ol - il ©)
Equality holds if and only if G 2 K,, or G = 3Ky if n is even.

Remark 4. Since |vi| — || > 0, the inequality (6) is stronger than (2).

Theorem 5. Let G be a simple graph with n, n > 2, vertices and m edges. Then, for

each real R with the property Ay > R > v/2mn, the following inequality is valid

E<R++/(n—1)(2m— R?). (7)

Proof. In [18] a class of real polynomials P,(z) = 2"+ a1 2" +ayr" 2 +bza" 3+ - - +b,,
denoted as P, (a1, as), where a; and ay are fixed real numbers, was considered. For the
roots &1 > g > ... > x, of an arbitrary polynomial P,(x) from this class, the following

values were introduced

2
B 1 n n n

I:;ZII and A:an?f Zacl . (8)
=1 =1 i=1

Then upper and lower bounds for the polynomial roots, z;, i = 1,2,...,n, were deter-

mined in terms of the introduced values

1 A 1
T+ — <z <Z+—y(n—1)A
nyn—1 n
1 -1 —1
T — Z, <z <T+-— n_ZA, 2<i<n-1 9)
nyn—1+1 n i
1 1 A
T——y/(n-1)A<z,<z-——
n nVyn-—1
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Consider now the polynomial

n

P,(z) = H(z — M) =2+ ez apr™ by 4 by,
i=1
Since
a=-Y [N|=-E
i=1
and

n 2 n
e [(Em) S -1

the above polynomial belongs to a class of real polynomials P,(—E, %EZ — m). Bearing

in mind (8), we have that

and

n n 2
A=nd |NP- (ZA;‘) = 2mn — E2. (11)
i=1 =1

For 21 = A1 = |}, according to (10), (11), and the right-hand side of the first inequality
in (9), we get

E 1
M < =4 —y/(n—1)(2mn — E?). (12)
non

Now, for each real R with the property A\; > R > 27’", from (12) it follows that

E 1
R<—+— —1)(2mn — E?).
<=+ ln=DEmn - B

After rearranging the above inequality, the inequality (7) is obtained. |

Remark 6. By the appropriate choice of parameter R, from the inequality (7) various
inequalities from the literature for the graph energy E can be obtained (see for example

[1,11-15,17,25-27] ). We will illustrate this through three examples.

1) Let R =2 Since \y > 22 >, /2% (see [3] and [14]), the conditions of Theorem 5

are satisfied. For R = 22 the inequality (7) becomes

E<—+ \/Zmz—l n? —2m).

This inequality was proven in [14] (see also [15]).
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2) Let R = (/2. Since \y > /2 > 2 >\ /20 (ge¢ [27]), the conditions of Theorem
5 are satisfied. Now from (7), the following inequality can be obtained

M M
E<\/1+\/(n—1) (Qm——l).
n n

This inequality was proven in [27).

3) Let R = P , where t; is a 2-degree of vertex i. Since (see [25,26])

Zn d2
2
11t7 > @> 2ﬂ
5 = =4/
Sor . d n n

the conditions of Theorem 5 are satisfied. From the inequality (7) we get

n t2
E< 217 -1 2/72111
\/Z’L 1 1 \/n )(TTI Zz ldf)

This inequality was proven in [27] (see also [1,11-13,17,25]).

Remark 7. Let

n

on(z) = H(I — ) = 2"+ ar™ T Fagr" T F by by,
i=1

be the characteristic polynomial of a graph G. Since

i=1
and
n 2 n
2*% <Z/\) _Z/\l? =-m
i=1

the polynomial @, (x) belongs to a class of real polynomials P, (0, —m). From the equalities

and
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and (9), we obtain that for the eigenvalues \;, i =1,2,...,n, the following is valid

/2 nfl
nfl
20 —1)m <)< /2mn—z 9<i<n_1
nn—i+1) = "7
2m (nfl
- < n < =
- - anfl

With the exception of the left-hand side part of the first and the right-hand side part

of the last inequality, the above inequalities were proven in [2].

Let

folz) = H(:I; — ) = 2"+ ay " A agr" T A bsa" P -+ by
i=1
be the characteristic polynomial of minimum dominating adjacency matrix Ap of G.
Since a; = —k and ay = (%) —m, it belongs to a class of real polynomials P, (—k, (’;) —m).

Based on the equalities

and

—nZﬂ/ - <Z%) =2mn+ k(n — k)

i=1

and inequality (9), we establish the following result.

Theorem 8. Let G be a simple graph with n, n > 2, vertices and m edges and let D,

|D| = k, be its minimum dominating set. Then

k 1 2mn+k’,(nfk’) k 1
— 4 ) ——= < <-4 - ) — mn + Kk(n — K
. . — T o n\/(w 1)(2mn k(w k))

L l\/L(an—&-k(n—k)) <y < k + l\/n;Z(an—s—k(n— k))

n nVyn—i+1 n o on
for 2<i<n-—1, and

k ko1
f—f\/n—l J2mn+k(n—k) <v, < ———

n n n

2mn + k(n — k)
n—1 ’
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Consider the polynomial

n

Yn(z) = H(x —D* =" aa" Tt A agr™ 4 bsa 4 by,

i=1

Since
n
-y Inl=-E
i=1

and

2*% (Z%) Z|%|2 7;ED (2m+k)}

the polynomial ¢,,(z) belongs to a class of real polynomials P,(—Ep, 3(Ep — (2m + k)).

By the same procedure as with Theorem 5, the following result can be proven.

Theorem 9. Let G be a graph with n, n > 2, vertices and m edges and let D, |D| =k,
be its minimum dominating set. Then for each T with the property v1 > T > %,

the following is valid

Ep<T++/(n—-1)2m+k—-T2). (13)

Remark 10. By an appropriate choice of the parameter T, from (13) some well known
inequalities for the invariant Ep could be obtained. Thus, for example, for T = ,/% s
from (13) the inequality (2) is obtained. For T = 2ZE | from (13) the inequality (3) is

obtained.
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