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Abstract

Let G be a simple graph of order n. Let A(G) and S(G) be the adjacency and Seidel matrix

of G, respectively. Suppose that λ1, . . . , λn be the eigenvalues of A(G) and θ1, . . . , θn be the

eigenvalues of S(G). The Seidel energy and the energy ofG is defined as E(S(G)) = |θ1|+· · ·+|θn|
and E(G) = |λ1|+ · · ·+ |λn|, respectively. Willem Haemers in [W. H. Haemers, Seidel switching

and graph energy, MATCH Commun. Math. Comput. Chem. 68 (2012) 653–659] conjectured

that E(S(G)) ≥ E(S(Kn)) = 2n − 2, where Kn is the complete graph of order n. Let A and

B be two matrices with real entries. In this paper we give a technique for comparing the sum

of powers of the absolute eigenvalues of the matrices A − B and A + B. As an application we

prove that if G is a p− regular graph with no eigenvalue in the interval (−1, 0) and p 6= n−1
2 ,

then for every 0 ≤ α ≤ 2, |θ1|α + · · · + |θn|α ≥ (n − 1)α + (n − 1) while for every 2 ≤ α ≤ 4,

|θ1|α + · · · + |θn|α ≤ (n − 1)α + (n − 1). This implies that the Haemers conjecture is valid for

every p− regular graph G with no eigenvalue in the interval (−1, 0) and p 6= n−1
2 , where n is

the order of G. As an another application we obtain similar inequalities related to E(S(G)) and

E(G). For every graph G, we conjectured that E(S(G)) ≥ E(G). We proved that this conjecture

is valid if G is a p− regular graph of order n, p 6= n−1
2 and G has no eigenvalue in the interval

(−1, 0). Moreover we show that Haemers conjecture implies our conjecture.

1 Introduction

Throughout this paper we will consider only simple graphs. Let G = (V,E) be a simple

graph. By V (G) and E(G) we denote the set of all vertices and edges of G, respectively.
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Let u, v ∈ V (G). By e = uv we mean the edge of G with end points u and v. The

order of G denotes the number of vertices of G. Let G and H be two graphs. The

Cartesian product of G and H which is denoted by G × H is the graph with vertex set

{(u, v) : u ∈ V (G) and v ∈ V(H)} such that (u, v) and (u′, v′) are adjacent if and only if

u = u′ and vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G). The complete graph, the cycle, and the

path of order n, are denoted by Kn , Cn , and Pn, respectively. For every vertex v ∈ V (G),

the degree of v is the number of edges incident with v and is denoted by degG(v). For

simplicity we write deg(v) instead of degG(v). A k− regular graph is a graph such that

its vertices have degree k. By ∆(G) we mean the maximum degree of vertices of G. For

every graph G, by G we denote the complement graph of G.

Let Mn(R) and SMn(R) be the set of all n × n matrices and symmetric matrices

with real entries, respectively. It is well known that all eigenvalues of every symmetric

matrix are real. For every matrix C ∈ SMn(R), by Spec(C) we mean the multi-set of all

eigenvalues of C. By D = diag(d1, . . . , dn) we mean the diagonal n× n matrix D = [dij]

such that dii = di, for every 1 ≤ i ≤ n. We denote the n× n matrices diag(1, . . . , 1) and

[1] (that is all entries is 1) by I and J , respectively.

Suppose that {v1, . . . , vn} is the set of vertices of G. The adjacency matrix of G,

A(G) = [aij] is an n × n matrix, where aij = 1 if vi and vj are adjacent and aij = 0,

otherwise. Thus A(G) is a symmetric matrix with zeros on the diagonal and all the

eigenvalues of A are real. By the eigenvalues of G we mean those of its adjacency matrix.

Also by Spec(G) we mean Spec(A(G)). We say that G is integral if every its eigenvalue is

integral. The energy of a matrix A ∈Mn(C), where Mn(C) is the set of all n×n matrices

with complex entries, denoted by E(A), is defined as the sum of the absolute values of

all eigenvalues of A. The energy of a graph G, denoted by E(G), is that of its adjacency

matrix. In the other words, E(G) = E(A(G)). The energy of a graph was defined by Ivan

Gutman in 1978. See [5–7] for more details about the energy of graphs.

Let G be a simple graph with vertex set {v1, . . . , vn}. The Seidel matrix of G which

is denoted by S(G) = [sij] is a n × n matrix in which s11 = · · · = snn = 0. Also for

i 6= j, sij = −1 if vi and vj are adjacent, and sij = 1 otherwise. In the other words,

S(G) = A(G) − A(G). In [8], Haemers defined the Seidel energy of G, E(S(G)), as

the sum of absolute value of the eigenvalues of S(G). As an example the Seidel matrix

of the complete graph Kn is I − J . Thus Spec(S(Kn)) = {1 − n, 1, . . . , 1︸ ︷︷ ︸
n−1

}. Therefore
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E(S(Kn)) = 2n − 2. In [8] it was conjectured that among all graphs of order n, the

complete graph Kn has the minimum Seidel energy. Motivated by this conjecture we

investigate the sum of powers of the eigenvalues of Seidel matrix of graphs. One of the

result of this investigation implies the Haemers conjecture for some regular graphs.

The structure of this paper is the following. In the next section we investigate the

parameter Λα(C) for some matrices C. In section 3 we investigate the Seidel energy and

prove that Haemers conjecture is true for some regular graphs. In section 4 we obtain

some relations about the Seidel energy and energy of graphs. In the last section we study

graphs that have small eigenvalues.

2 The eigenvalues of the conjugate matrices

In this section we state a technique for comparing the sum of powers of eigenvalues of

matrices. One can apply this method to obtain some inequities related to the energies of

graphs such as energy, Seidel energy, Laplacian energy and signless Laplacian. For more

details about Laplacian energy and signless Laplacian see [1, 2].

Let C = [cij] ∈ Mn(R). We recall that tr(C) =
∑n

i=1 cii. We use trCk instead of

tr(Ck). We note that tr(C) =
∑n

i=1 λi, where λ1, . . . , λn are all eigenvalues of C. For every

matrix C ∈ SMn(R), we define Λα(C) as Λα(C) =
∑

λ |λ|α, where the summation taken

over all non-zero eigenvalues of C. It is obvious that Λα(C) = Λα
2
(C2) and 1

tα
Λα(C) =

Λα(1
t
C), for every t > 0. Let A and B be two elements of SMn(R). Consider the matrices

A− B and A + B. We say that A− B and A + B are conjugate with respect to the pair

(A,B). In this section we intend to compare Λα(A − B) and Λα(A + B) for some real

number α (since A−B and A+B are symmetric, all their eigenvalues are real). We note

that, for every real number α ≥ 0 and for every x, |x| ≤ 1, the binomial series
∑∞

k=0

(
α
k

)
xk

converges to (1 + x)α (see [3, p. 419]). More precisely,

(1 + x)α =
∞∑
k=0

(
α

k

)
xk , for every x, |x| ≤ 1 , α ≥ 0 . (1)

As an example, let G be a simple graph of order n and size m. Let A = A(G). Then

Λ1(A) = E(G) (the energy of G) and Λ2(A) = 2m.

Lemma 1. Let D ∈ SMn(R) and Spec(D) = {µ1, . . . , µn}. Let

` ≥ max

{
|µ1|√

2
, . . . ,

|µn|√
2

}
.
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Then

Λα(D) = `α
∞∑
k=0

(
α/2

k

)
tr

(
1

`2
D2 − I

)k
. (2)

Proof. First we prove the assertion for any matrix C ∈ SMn(R) such that all its eigen-

values lie in the interval [−
√

2,
√

2] (in the other words ` = 1). Let C ∈ SMn(R) and

Spec(C) = {λ1, . . . , λn} such that |λ2i − 1| ≤ 1, for 1 ≤ i ≤ n. We have

Λα(C2) = (λ21)
α + · · ·+ (λ2n)α = (1 + λ21 − 1)α + · · ·+ (1 + λ2n − 1)α .

Using Eq. (1) we can write

Λα(C2) =
∞∑
k=0

(
α

k

)
(λ21 − 1)k + · · ·+

∞∑
k=0

(
α

k

)
(λ2n − 1)k =

∞∑
k=0

(
α

k

) n∑
i=1

(λ2i − 1)k .

Thus we obtain that

Λα(C2) =
∞∑
k=0

(
α

k

)
tr(C2 − I)k (3)

where I is the n× n diagonal matrix diag(1, . . . , 1).

Now, we prove the Lemma for the matrix D. We note that for every t > 0, Λα(D) =

tαΛα/2

(
1
t2
D2
)
. Putting C = 1

`
D in Eq. (3) completes the proof.

Remark 2. Let D,E ∈ SMn(R). Eq. (2) shows that for comparing Λα(D) and Λα(E) it

is convenient to compare tr( 1
`2
D2−I)k and tr( 1

`2
E2−I)k (equivalently comparing tr(D2−

`2I)k and tr(E2 − `2I)k).

Now, we state the main result of this section.

Theorem 3. Let SMn(R) be as mentioned above. Let D,E ∈ SMn(R). Suppose that

Spec(D) = {λ1, . . . , λn} and Spec(E) = {µ1, . . . , µn}. Let

`0 = max

{
|λ1|√

2
, . . . ,

|λn|√
2
,
|µ1|√

2
, . . . ,

|µn|√
2

}
.

Suppose that for some ` ≥ `0 we have:

i) If k ≥ 3 is odd, then tr(D2 − `2I)k ≥ tr(E2 − `2I)k.

ii) If k ≥ 0 is even, then tr(D2 − `2I)k ≤ tr(E2 − `2I)k.

Then the following hold:

1) If 0 ≤ α ≤ 2 and tr(D2 − `2I) ≥ tr(E2 − `2I), then Λα(D) ≥ Λα(E).
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2) If 2 ≤ α ≤ 4 and tr(E2 − `2I) ≥ tr(D2 − `2I), then Λα(E) ≥ Λα(D).

Proof. It is easy to check that if 0 ≤ β ≤ 1 and k ≥ 1, then the sign of
(
β
k

)
is (−1)k+1.

On the other hand if 1 ≤ β ≤ 2 and k ≥ 2, then the sign of
(
β
k

)
is (−1)k. Using Eq. (2)

for the matrices D and E completes the proof.

Remark 4. Let a1, . . . , an be some real numbers. It is well known that

lim
α→0+

(
|a1|α + · · ·+ |an|α

n

)1/α

= |a1 · · · an|1/n .

Let X, Y ∈ SMn(R). Suppose that Spec(X) = {x1, . . . , xn} and Spec(Y ) = {y1, . . . , yn}.

Assume that Λα(X) ≥ Λα(Y ) for every α, α0 ≥ α > 0. Using the above equality we obtain

that |x1 · · · xn| ≥ |y1 · · · yn|.

Theorem 3 shows that for comparing Λα(D) and Λα(E) it is sufficient to compare

tr(D2 − `2I)k and tr(E2 − `2I)k. In general it is difficult to indicate the sign of tr(D2 −

`2I)k − tr(E2 − `2I)k for every k. In sequel we intend to investigate the sign of tr(D2 −

`2I)k− tr(E2− `2I)k for the matrices A−B and A+B (a conjugate pair with respect to

(A,B)).

Let A,B ∈ SMn(R). Let ` be a positive large number (as mentioned in Theorem 3).

We have

tr
(
(A+B)2 − `2I

)k − tr((A−B)2 − `2I
)k

= tr(A2 +B2 + AB +BA− `2I)k

− tr(A2 +B2 − AB −BA− `2I)k .

Let X = A2 +B2 − `2I and Y = AB +BA. Then

tr
(
(A+B)2 − `2I

)k − tr((A−B)2 − `2I
)k

= tr(X + Y )k − tr(X − Y )k .

We have

tr(X + Y )k − tr(X − Y )k = 2
∑

Xi∈{X,Y }

tr(X1 · · ·Xk) (4)

where in the summation the number of Y is odd. Now, suppose that AB = BA. It is

well known that every symmetric matrix is upper triangulable. Since A,B ∈ SMn(R)

and AB = BA, then A and B are simultaneously upper triangulable. In the other worlds,

there exists an invertible matrix P ∈ Mn(R) such that P−1AP and P−1BP are upper
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triangular. Moreover we can say that there exists an invertible matrix P ∈ Mn(R) such

that P−1AP, P−1BP,P−1XP and P−1Y P are upper triangular. Note that if C = [cij]

and D = [dij] are two upper triangular n×n matrices, then tr(CD) = c11d11+· · ·+cnndnn.

Since tr(X+Y )k−tr(X−Y )k = trP−1(X+Y )kP−P−1tr(X−Y )kP , tr(X+Y )k−tr(X−

Y )k = tr(P−1XP +P−1Y P )k − tr(P−1XP −P−1Y P )k. Therefore if P−1XP = [xij] and

P−1Y P = [yij], then by Eq. (4) one obtains that

tr(X + Y )k − tr(X − Y )k = 2
∑
s is odd

(
k

s

) n∑
i=1

xk−sii ysii . (5)

Suppose that P−1AP = [aij] and P−1BP = [bij]. Thus Spec(A) = {a11, . . . , ann} and

Spec(B) = {b11, . . . , bnn}. Therefore xii = a2ii + b2ii − `2 and yii = 2aiibii for 1 ≤ i ≤ n.

Using Eq. (5) we obtain

tr
(
(A+B)2 − `2I

)k − tr((A−B)2 − `2I
)k

= 2
∑
s is odd

(
k

s

) n∑
i=1

(a2ii + b2ii − `2)k−s (2aii bii)
s . (6)

3 The Seidel energy of graphs and Haemers

conjecture

Let G be a simple graph with vertex set {v1, . . . , vn}. As we mentioned in the introduction,

the Seidel matrix of G, S(G) = [sij], is a n×n matrix in which s11 = · · · = snn = 0. Also

for i 6= j, sij = −1 if vi and vj are adjacent, and sij = 1 otherwise. Let Spec(S(G)) =

{θ1, . . . , θn}. In [8] Haemers defined the Seidel energy of G as E(S(G)) =
∑n

i=1 |θi|.

Since S(Kn) = I − J , Spec(S(Kn)) = {1 − n, 1, . . . , 1︸ ︷︷ ︸
n−1

}. Therefore E(S(Kn)) = 2n − 2.

Haemers conjectured that among all simple graphs of order n, the complete graph Kn has

the minimum Siedel energy.

Conjecture 5. [8] For every graph G of order n, E(S(G)) ≥ E(S(Kn)) = 2n− 2.

In this section not only we prove that for some families of regular graph the conjecture

is true but also we obtain a stronger result. Let G be a graph. We can write S(G) =

A(G)−A(G). On the other hand −S(Kn) = A(Kn) = A(G) +A(G). In the other words
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S(G) and S(Kn) are conjugate with respect to (A(G), A(G)). This motivated us to apply

the mentioned method in section 2 and investigate Λα(S(G)) and Λα(S(Kn)). We note

that λ ∈ Spec(S(G)) if and only if −λ ∈ Spec(S(G)). Thus Λα(S(G)) = Λα(S(G)).

Remark 6. It is well known that if λ is an eigenvalue of a graph G, then |λ| ≤ ∆(G),

where ∆(G) is the maximum degree of vertices of G.

Now, we state the main theorem of this section.

Theorem 7. Let G be a p− regular graph of order n with no eigenvalue in the interval

(−1, 0). Let p 6= n−1
2

. Then the following hold:

i) If 0 ≤ α ≤ 2, then Λα(S(G)) ≥ Λα(S(Kn)) = (n− 1)α + (n− 1).

ii) If 2 ≤ α ≤ 4, then Λα(S(G)) ≤ Λα(S(Kn)) = (n− 1)α + (n− 1).

Proof. Let A and A be the adjacency matrix of G and G, respectively. Since G is regular,

AA = AA. Thus there exists an invertible matrix P ∈ Mn(R) such that P−1AP and

P−1AP are upper triangular. Let P−1AP = [λij] and P−1AP = [µij]. Thus Spec(A) =

{λ11, . . . , λnn} and Spec(A) = {µ11, . . . , µnn}. Since P−1AP +P−1AP = P−1(A+A)P =

P−1(J − I)P , thus Spec(P−1(J − I)P ) = {λ11 + µ11, . . . , λnn + µnn}. On the other hand

Spec(P−1(J − I)P ) = Spec(J − I) = {n − 1,−1, . . . ,−1︸ ︷︷ ︸
n−1

}. Therefore we may assume

that λ11 + µ11 = n − 1 and λii + µii = −1, for i = 2, . . . , n. By Remark 6, λ11 ≤ p

and µ11 ≤ n − p − 1. Thus the equality λ11 + µ11 = n − 1 implies that λ11 = p and

µ11 = n − p − 1. Also we obtain µii = −1 − λii, for i = 2, . . . , n. In Theorem 3, let

D = A−A, E = A+A and ` =
√
p2 + (n− p− 1)2. Since P−1DP = P−1AP −P−1AP ,

Spec(D) = {λ11 − µ11, . . . , λnn − µnn}. Similarly, Spec(E) = {λ11 + µ11, . . . , λnn + µnn}.

For every λ ∈ Spec(D) ∪ Spec(E), |λ| ≤ p + (n − 1 − p) = n − 1. It is easy to see that

` ≥ n−1√
2
≥ |λ|√

2
. Note that λ2ii +µ2

ii ≤ p2 + (n− 1− p)2 = `2. Since tr(D2− `2I)k− tr(E2−

`2I)k = tr((A− A)2 − `2I)k − tr((A+ A)2 − `2I)k, by Eq. (6) we obtain that

tr(D2 − `2I)k − tr(E2 − `2I)k = 2
∑
s is odd

(
k

s

) n∑
i=1

(λ2ii + µ2
ii − `2)k−s(−2λii µii)

s . (7)

Since `2 = λ211 + µ2
11, we can write

tr(D2 − `2I)k − tr(E2 − `2I)k = 2
∑
s is odd

(
k

s

) n∑
i=2

(λ2ii + µ2
ii − `2)k−s(−2λii µii)

s . (8)
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Now, we indicate the sign of tr(D2−`2I)k−tr(E2−`2I)k, for natural number k . First note

that for every 1 ≤ i ≤ n, λ2ii +µ2
ii− `2 ≤ 0. On the other hand, since G has no eigenvalue

in the interval (−1, 0) and µii = −1−λii, thus λiiµii ≤ 0, for 2 ≤ i ≤ n. Therefore, if k is

even, then tr(E2 − `2I)k ≥ tr(D2 − `2I)k and tr(D2 − `2I)k ≥ tr(E2 − `2I)k, otherwise.

Since tr(AA) = tr(AA) = 0, tr(D2 − `2I) = tr(E2 − `2I). Using Theorem 3, completes

the proof.

For some similar results as Theorem 7 related to Laplacian and signless Laplacian

eigenvalues of graphs see [1, 2]. Putting α = 1 in the Theorem 7 we obtain the following

result.

Corollary 8. Let G be a p− regular graph of order n and p 6= n−1
2

. If G has no eigenvalue

in the interval (−1, 0), then the Haemers conjecture is true. In particular, if G is integral

the conjecture is valid.

Remark 9. Let G be a p− regular graph of order n. Suppose that Spec(G) = {λ1, . . . , λn}

and Spec(G) = {µ1, . . . , µn}. As we state in the proof of Theorem 7, λ1 = p,µ1 = n−p−1

and µi = −1− λi, for 2 ≤ i ≤ n. Since S(G) = A(G)− A(G), Spec(S(G)) = {n− 2p−

1,−2λ2− 1, . . . ,−2λn− 1}. This shows that 0 ∈ Spec(S(G)) if and only if p = n−1
2

(note

that if λ ∈ Spec(G) and λ is rational, then λ is integral). Thus if p 6= n−1
2

, we can define

Λα(S(G)), for any α.

Remark 10. One can easily see that for every graph G of order n, Λ2(S(G)) = Λ2(S(Kn))

= (n− 1)2 + (n− 1) = n(n− 1).

4 The Seidel energy and the energy of graphs

In this section we investigate about the relation between the Seidel energy and the energy

of graphs. We think that for every graph the Seidel energy is greater than the energy.

More precisely we have the following conjecture.

Conjecture 11. For every graph G, E(S(G)) ≥ E(G).
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In the following theorem we show that Haemers conjecture implies the above conjec-

ture. Our key tool is a consequence of singular-value inequality which was proved by

Fan [4].

Theorem 12. [4] For every matrices A,B ∈ SMn(R),

E(A+B) ≤ E(A) + E(B) .

Theorem 13. Let G be a graph of order n. If E(S(G)) ≥ E(Kn), then E(S(G)) ≥ E(G).

Proof. If E(G) ≤ E(Kn), then the theorem follows. Now suppose that E(G) ≥ E(Kn).

Note that S(G) = −(2A(G) − A(Kn)). Thus by Theorem 12, E(S(G)) ≥ E(2A(G)) −

E(A(Kn)). On the other hand 2E(G) − E(Kn) ≥ E(G). Therefore E(S(G)) ≥ 2E(G) −

E(Kn) ≥ E(G).

Using Corollary 8 we obtain that Conjecture 11 is true for some regular graphs.

Corollary 14. Let G be a p− regular graph of order n and p 6= n−1
2

. If G has no eigen-

value in the interval (−1, 0), then E(S(G)) ≥ E(G). In particular, if G is integral, then

E(S(G)) ≥ E(G).

In sequel we want to apply the introduced method (see section 2) to compare the

Seidel energy and the energy.

Theorem 15. Let G be a p− regular graph of order n (with adjacency matrix A(G)).

Suppose that p ≤ n−2
4

. If every eigenvalue of G is non-zero, then the following hold:

i) Let 0 < t < 2 and G has no eigenvalue in the interval ( 1
t−2 ,−

1
t+2

). If 0 ≤ α ≤ 2,

then Λα(S(G)) ≥ Λα(tA(G)).

ii) Let 0 < t < 2 and G has no eigenvalue in the interval ( 1
t−2 ,−

1
t+2

). If 2 ≤ α ≤ 4,

then Λα(S(G)) ≤ Λα(tA(G)).

iii) Let t ≥
√

n−1
p

(thus t > 2) and G has no eigenvalue in the interval (− 1
t+2
, 1
t−2). If

0 ≤ α ≤ 2, then Λα(S(G)) ≤ Λα(tA(G)).

iv) Let t ≥
√

n−1
p

(thus t > 2) and G has no eigenvalue in the interval (− 1
t+2
, 1
t−2). If

2 ≤ α ≤ 4, then Λα(S(G)) ≥ Λα(tA(G)).
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Proof. Let A = A(G) and A = A(G). Since S(G) = −S(G), Λα(S(G)) = Λα(S(G)). Thus

in the proof we use S(G) instead of S(G). We can write S(G) = (1+t
2
A− 1

2
A)+(1−t

2
A− 1

2
A)

and tA = (1+t
2
A− 1

2
A)−(1−t

2
A− 1

2
A). Let X = 1+t

2
A− 1

2
A and Y = 1−t

2
A− 1

2
A. Thus S(G)

and tA are conjugate with respect to (X, Y ). LetD = S(G) = X+Y and E = tA = X−Y .

Similar to proof of Theorem 7, by Eq. (6) we obtain that

tr(D2 − `2I)k − tr(E2 − `2I)k = 2
∑
s is odd

(
k

s

) n∑
i=1

(x2ii + y2ii − `2)k−s (2xii yii)
s , (9)

where Spec(X) = {x11, . . . , xnn} and Spec(Y ) = {y11, . . . , ynn}.

Let Spec(A) = {λ1, . . . , λn} and Spec(A) = {µ1, . . . , µn}. Since AA = AA, similar to

proof of Theorem 7 one can assume that λ1 +µ1 = n−1 (thus λ1 = p and µ1 = n−1−p)

and λi + µi = −1, for i = 2, . . . , n. In addition, xii = 1+t
2
λi − 1

2
µi and yii = 1−t

2
λi − 1

2
µi,

for i = 1, . . . , n. Let ` =
√
x211 + y211.

Suppose that i ≥ 2. One can see that xiiyii =
(4−t2)λ2i+4λi+1

4
. Consider the polynomial

(4− t2)λ2i + 4λi + 1. We have the following cases:

i) If t = 2, then xiiyii = 4λi+1
4

, for i = 2, . . . , n.

ii) If t > 2, then the roots of (4 − t2)λ2i + 4λi + 1 is 1
t−2 and 1

t+2
. Thus xiiyii > 0 for

λi ∈ (− 1
t+2
, 1
t−2) and xiiyii ≤ 0, otherwise.

iii) If 0 < t < 2, then xiiyii < 0 for λi ∈ ( 1
t−2 ,−

1
t+2

) and xiiyii ≥ 0, otherwise.

One can easily see that x211 + y211 = `2 = t2+4
2
p2 + (n−1)2

2
− 2p(n − 1) and for i ≥ 2,

x2ii + y2ii =
(t2+4)λ2i+4λi+1

2
. We claim the following:

1) For 1 ≤ i ≤ n, x2ii + y2ii − `2 ≤ 0.

2) For 1 ≤ i ≤ n, `2 ≥ t2λ2i
2

. In addition `2 ≥ (n−2p−1)2
2

and `2 ≥ (2λi+1)2

2
. In the other

words for every λ ∈ Spec(D) ∪ Spec(E), ` ≥ |λ|√
2
.

3) tr(D2 − `2I) ≥ tr(E2 − `2I) for |t| ≤
√

n−1
p

and tr(D2 − `2I) ≤ tr(E2 − `2I),

otherwise.

Now, we prove the claim.

1’) Let 2 ≤ i ≤ n. Thus x2ii + y2ii − `2 = t2+4
2

(λ2i − p2) − ( (n−1)
2

2
− 2p(n − 1) − 4λi+1

2
).

Since p ≤ n−2
4

, and |λi| ≤ p, thus (n−1)2
2
− 2p(n − 1) ≥ 4p+1

2
≥ 4λi+1

2
. On the other

hand t2+4
2

(λ2i − p2) ≤ 0. So the first part of the claim is proved.
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2’) Let 1 ≤ i ≤ n. Since p ≤ n−2
4

and |λi| ≤ p, we obtain `2 ≥ t2+4
2
p2 ≥ t2

2
λ2i . To

complete the proof of this part, since n− 2p− 1 ≥ 2p+ 1 ≥ |2λi + 1|, it is sufficient

to show that `2 ≥ (n−2p−1)2
2

. Using the equality (n−2p−1)2
2

= (n−1)2−4p(n−1)+4p2

2
,

completes the proof.

3’) tr(D2 − `2I)− tr(E2 − `2I) = tr(D2 − E2) = 4tr(XY ). On the other hand XY =

1−t2
4
A2 − 1

2
AA + 1

4
A

2
. Since tr(AA) = 0, tr(A2) =

∑n
i=1 λ

2
i = 2m = np (m is the

number of edges of G) and tr(A
2
) = n(n− 1− p), we conclude that tr(D2 − `2I)−

tr(E2 − `2I) = n(n− 1− t2p). This shows that tr(D2 − `2I) ≥ tr(E2 − `2I) if and

only if |t| ≤
√

n−1
p

.

Using Eq. (9) to obtain the sign of tr(D2 − `2I)k − tr(E2 − `2I)k for even and odd k.

Now, by applying Theorem 3 the proof is complete.

As a direct consequence of the above theorem we conclude that for some families of

regular graphs the Conjecture 11 is valid. More precisely, if we put t = α = 1 in the first

part of Theorem 15, we obtain the following.

Theorem 16. Let G be a p− regular graph of order n and p ≤ n−2
4

. If G has no eigenvalue

in the interval (−1,−1
3
) and every eigenvalue of G is non-zero, then E(S(G)) ≥ E(G).

5 Graphs with small eigenvalues

In this section we study the graphs which have small eigenvalues. We say that a graph G

is small graph if G has a non-zero eigenvalue in the interval (−1, 1). It is easy to see that

if x ∈ [0, 2π], then 0 < | cosx| < 1
2

if and only if π
3
< x < 2π

3
or 4π

3
< x < 5π

3
and x 6= π

2
, 3π

2
.

Since Spec(Cn) = {2 cos(2kπ
n

), k = 0, . . . , n − 1}. Thus Cn is small if and only if there

exists a natural number k such that k 6= n
4

and n
6
< k < n

3
or k 6= 3n

4
and 4n

6
< k < 5n

6
. It

is not hard to see that for every natural number n ≥ 10 and n 6= 12, there exists a natural

number k with k 6= n
4

and n
6
< k < n

3
. This shows that Cn is small for every n ≥ 10 and

n 6= 12. It is easy to check that among all cycles with at most 12 vertices, only the cycles

C5, C7, C9, C10 and C11 are small. Therefore we proved the following.

Theorem 17. The cycle Cn is small if and only if n ≥ 5 and n 6= 6, 8 and 12.
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Similarly one can obtain the following result.

Theorem 18. The cycle Cn has an eigenvalue in the interval (−1, 0) if and only if

n ∈ {7, 10, 11} or n ≥ 13.

Small graphs appeared in the previous sections. We are interested to obtain regular

small graphs.

Remark 19. Let G1 and G2 be two graphs of order n1 and n2, respectively. Let Spec(G1)

= {λ1, . . . , λn1} and Spec(G2) = {µ1, . . . , µn2}. It is well known that the spectrum of the

Cartesian product of G1 and G2, G1 × G2, is {λi + µj, i = 1, . . . , n1, and j = 1, . . . , n2}.

On the other hand if G1 and G2 are k1 and k2− regular , respectively, then G1 × G2 is

k1 + k2− regular. Therefore if G is small, then G ×K2 is small, too. Since Cn is small

( for some n), we conclude that for every k ≥ 2, there exists an infinite family of small

k− regular graphs. Similarly, one can construct another family of small graphs by the

direct product of graphs.

We say G is integral if all eigenvalues of G are integer. The following remark shows

that there are infinite families of graphs that are not small.

Remark 20. If G is integral, then G has no eigenvalue in the interval (−1, 0). For

example C4 ×K2 × · · · ×K2 is a regular integral graph.

Problem 21. Without using any operation on graphs such as Cartesian product or direct

product, for every p ≥ 3 introduce an infinite family of p− regular small graphs.

We say that a graph G is self–complementary if G and G are isomorphic. For example

C5 is a self–complementary graph. We note that if G is a self–complementary p− regular

of order n, then p = n−1
2

and p is even. We finish the paper by the following question.

Problem 22. Find all self–complementary regular small graphs.
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