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Abstract

Let W = {w1, w2, . . . , wn−1} be a sequence of positive numbers. Denote by T (n,W )

the set of all weighted trees of order n with weight sequence W . We show that a weighted

tree that has maximal energy in T (n,W ), is a weighted path. For n ≤ 6, we determine

the unique path having maximal energy in T (n,W ). For n ≥ 7, we give a conjecture on

the structure and distribution of weights of the unique maximum–energy tree in T (n,W ).

Some results supporting this conjecture are obtained.
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1 Introduction

In this paper we consider trees on n vertices, to each edge of which a positive weight

is assigned. The sequence of weights of the edges in a weighted tree is referred to as

its weight sequence. Let W = {w1, w2, . . . , wn−1} be a sequence of positive numbers.

Denote by T (n,W ) the set of all weighted trees of order n with weight sequence W .

In general, the energy of a weighted graph G of order n is defined as

E(G) =
n∑

i=1

|λi|

where λ1, λ2, . . . , λn are the (real) eigenvalues of the (nonnegative, symmetric) adja-

cency matrix A of G. More information on (weighted) graph energy can be found

in [2–6,10,12,15,17,21].

In [3], Brualdi et al. investigated the extremal energy of a class of integral weighted

graphs. Let T (n,m) be the set of all weighted trees of order n with the fixed total

weight sum m. They stated the following conjecture pertaining to the maximal energy

of all integral weighted trees with fixed weight:

Conjecture 1. [3, Conjecture 10] Let n ≥ 5 and m ≥ n. The path with weight

sequence {m − n + 2, 1, . . . , 1}, where the weight of one of the pendent edges equals

m− n+ 2, is the unique integral weighted tree in T (n,m) with maximal energy.

Let Ê(n,W ) = max{E(T ) : T ∈ T (n,W )} be the maximal energy of a tree in

T (n,W ). Motivated by the above conjecture, in this paper we consider the following

problem:

Problem 2. For a given weight sequence W , determine the tree(s) in T (n,W ) whose

energy achieves Ê(n,W ).

We show that in T (n,W ), a weighted tree with maximal energy is a weighted

path. Further, for small order n (≤ 6), we determine the unique path having maximal

energy in T (n,W ). For larger order n, we give a conjecture on the structure and the

distribution of weights of the unique tree in T (n,W ). Finally, some results supporting

this conjecture are obtained.
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2 Preliminary results

We first introduce some terminology and notation. Let G = (V (G), E(G)) be a

graph. For V1 = {v1, v2, . . . , vs} ⊆ V (G) and E1 = {e1, e2, . . . , ek} ⊆ E(G), denote by

G\E1 the graph obtained from G by deleting all edges of E1 and by G\V1 the graph

obtained from G by removing all vertices of V1 together with all incident edges. For

convenience, we sometimes write G\e1e2 . . . ek and G\v1v2 . . . vs instead of G\E1 and

G\V1, respectively. Denote by Pn = u1e1u2 . . . un−1en−1un the path on n vertices,

where ui and ui+1 are the two endvertices of the edge ei. For convenience, we some-

times denote by P = u1w1u2w2u3 . . . un−1wn−1un or P = w1w2 . . . wn−1 a weighted

path on n vertices, where wi denotes the weight of the edge ei for i = 1, 2, . . . , n− 1.

We refer to Cvetković et al. [5] for terminology and notation not defined here.

A graph is said to be elementary if it is isomorphic either to P2 or to a cycle. The

weight of P2 is defined as the square of the weight of its unique edge. The weight of

a cycle is the product of the weights of all its edges.

A graph H is called a Sachs graph if each component of H is an elementary

graph [8, 9, 14]. The weight of a Sachs graph H , denoted by W (H ), is the product

of the weights of all elementary subgraphs contained in H .

Denote by φ(G, λ) the characteristic polynomial of a graph G, defined as

φ(G, λ) = det
[
λ In −A(G)

]
=

n∑
k=0

ak(G)λn−k (1)

where A(G) is the adjacency matrix of G and In the identity matrix of order n. The

following well known result determines all coefficients of the characteristic polynomial

of a weighted graph in terms of its Sachs subgraphs [1, 5, 7, 19, 20].

Theorem 3. Let G be a weighted graph on n vertices with adjacency matrix A(G)

and characteristic polynomial φ(G, λ) =
n∑

k=0

ak(G)λn−k. Then

ai(G) =
∑
H

(−1)p(H ) 2c(H ) W (H )

where the summation is over all Sachs subgraphs H of G having i vertices, and where

p(H ) and c(H ) are, respectively, the number of components and the number of cycles

contained in H .
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Similarly, we have the following recursions for the characteristic polynomial of a

weighted graph [11].

Theorem 4. Let G be a weighted graph and e = uv be a cut edge of G. Denote by

w(e) the weight of the edge e. Then

φ(G, λ) = φ(G\e, λ)− w(e)2 φ(G\uv, λ) .

From the Coulson integral formula for the energy (see [4,15–17] and the references

cited therein), it can be shown [10] that if G is a weighted bipartite graph with

characteristic polynomial as in Eq. (1), then

E(G) =
1

π

+∞∫
−∞

λ−2 ln

bn/2c∑
k=0

b2k λ
2k

 dλ

where bk = |ak| .

It follows that in the case of weighted trees, E(T ) is a strict monotonically increas-

ing function of the numbers b2i , i = 1, 2, . . . , bn/2c. Thus, in analogy to comparing

the energies of two non-weighted trees [10,22,23], we introduce a quasi-ordering rela-

tion � for weighted trees (see also [13,18]):

Definition 5. Let T1 and T2 be two weighted trees of order n. If b2k(T1) ≤ b2k(T2)

for all k with 0 ≤ k ≤ bn/2c, then we write T1 � T2 . Furthermore, if T1 � T2 and

there exists at least one index k such that b2k(T1) < b2k(T2), then we write T1 ≺ T2.

If b2k(T1) = b2k(T2) for all k, then we write T1 ∼ T2 .

Note that there are non-isomorphic weighted graphs T1 and T2 with T1 ∼ T2 ,

which implies that in the general case � is a quasi-ordering, but not a partial ordering.

According to the integral formula above, we have for two weighted trees T1 and

T2 of order n that

T1 � T2 =⇒ E(T1) ≤ E(T2) and T1 ≺ T2 =⇒ E(T1) < E(T2) . (2)
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3 Main results

An immediate consequence of Theorem 4 is:

Corollary 6. Let G be a weighted bipartite graph with a cut edge e = uv. Suppose

that the weight of the edge e is we. Then

bk(G) = bk(G\e) + w2
e bk−2(G\uv)

where bk = |ak|, as defined as above.

Applying Corollary 6, we can deduce that a weighted tree with maximal energy

in T (n,W ) is a weighted path.

Theorem 7. For n ≥ 2, let W = {w1, w2, . . . , wn−1} be a sequence of positive num-

bers. Let T be a weighted tree with maximal energy in T (n,W ). Then, T is a weighted

path.

Proof. We prove the theorem by induction on n. Obviously, the result holds for

n = 2, 3. Let n ≥ 4 and suppose that the result is true for trees of orders less than

n. For any n ≥ 4, suppose that u1 is a pendent vertex of T and u1u2 = e1 has weight

we. Then using Corollary 6, we have

bk(T ) = bk(T\u1) + w2
e bk−2(T\u1u2) .

Let W1 be the weight sequence of W\we and W2 the weight sequence obtained

from W by removal of the weights of all edges incident with u2. Then by the induction

assumption, the trees achieving Ê(n− 1,W1) and Ê(n− 2,W2) are paths or union of

paths. Moreover, in order to maximize Ê(n−2,W2), T\u1u2 has to have n−3 edges.

Consequently, both of T\u1 and T\u1u2 are paths and hence the result follows.

In view of Theorem 7, in order to determine the tree(s) having energy Ê(n,W ), we

focus on discussing the weight distribution of the path Pn . For convenience, denote

by P(n,W ) the set of all weighted paths of order n with weight sequence W .

Lemma 8. For n ≥ 4, let P ′ = u1e1u2e2 . . . un−1en−1un ∈ P(n,W ). Let the weight

of the edge ei be denoted by wi for i = 1, 2, . . . , n − 1. If E(P ′) = Ê(n,W ), then (a)

w1 ≥ w2, and (b) wn−1 ≥ wn−2 .
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Proof. (a) Let P ′′ be the weighted path obtained from P ′ by exchanging the edges

e1 and e2, that is, P ′′ = u1e2u2e1u3 . . . un−1en−1un. Then by the hypothesis that

E(P ′) = Ê(n,W ), we have

E(P ′′) ≤ E(P ′) . (3)

From Corollary 6,

bk(P ′) = bk(P ′\e1) + w2
1 bk−2(P

′\u1u2)

= bk(P ′\e1e2) + w2
2 bk−2(P

′\u1u2u3) + w2
1 bk−2(P

′\e1e2)
and

bk(P ′′) = bk(P ′′\e2) + w2
2 bk−2(P

′′\u1u2)

= bk(P ′′\e1e2) + w2
1 bk−2(P

′′\u1u2u3) + w2
2 bk−2(P

′′\e1e2) .

Assume to the contrary that w1 < w2. Note that P ′\u1u2u3 = P ′′\u1u2u3 , P ′\e1e2 =

P ′′\e1e2 , and that P ′\u1u2u3 is a proper subgraph of P\e1e2 . Then

bk(P ′)− bk(P ′′) = (w2
1 − w2

2)
[
bk−2(P

′\e1e2)− bk−2(P ′\u1u2u3)
]
≤ 0

and there exists at least one index k such that bk(P ′) − bk(P ′′) < 0 as P\e1e2 con-

tains at least one edge. Thus P ′ ≺ P ′′, a contradiction to conditions (2) and (3).

Consequently, the result (a) follows.

The proof of (b) is analogous.

Lemma 9. For n ≥ 5, let P ′ = u1e1u2e2u3e3u4 . . . un−1en−1un ∈ P(n,W ). Let the

weight of the edge ei be denoted by wi for i = 1, 2, . . . , n − 1. If E(P ′) = Ê(n,W ),

then (a) w1 ≥ w3, and (b) wn−1 ≥ wn−3 .

Proof. (a) Let P ′′ be the weighted path obtained from P ′ by exchanging the edges e1

and e3, that is, P ′′ = u1e3u2e2u3e1u4 . . . un−1en−1un. Then

E(P ′′) ≤ E(P ′) . (4)

By Corollary 6,

bk(P ′) = bk(P ′\e1) + w2
1 bk−2(P

′\u1u2)

= bk(P ′\e1e3) + w2
3 bk−2(P

′\u2u3u4)

+ w2
1 bk−2(P

′\u1u2u3) + w2
1 w

2
3 bk−4(P

′\u1u2u3u4)
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and

bk(P ′′) = bk(P ′′\e3) + w2
3 bk−2(P

′′\u1u2)

= bk(P ′′\e3e1) + w2
1 bk−2(P

′′\u2u3u4)

+ w2
3 bk−2(P

′′\u1u2u3) + w2
1 w

2
3 bk−4(P

′′\u1u2u3u4) .

Assume to the contrary that w1 < w3 . Note that P ′\u1u2u3 = P ′′\u1u2u3 and

P ′\u2u3u4 = P ′′\u2u3u4 , and that P ′\u2u3u4 is the union of the isolated vertex u1

and a proper subgraph of P ′\u1u2u3. Then

bk(P ′)− bk(P ′′) = (w2
3 − w2

1)
[
bk−2(P

′′\u2u3u4)− bk−2(P ′′\u1u2u3)
]
≤ 0

and there exists at least one integer k such that bk(P ′)− bk(P ′′) < 0. Thus P ′ ≺ P ′′,

a contradiction to condition (4). Consequently, the result (a) follows.

The proof of (b) is analogous.

For small order n, applying Lemmas 8 and 9, we can determine the paths having

maximal energy among the weighted paths in P(n,W ).

Theorem 10. For n ≤ 6, let W = {w1, w2, . . . , wn−1} be a sequence of positive

numbers such that w1 ≥ w2 ≥ · · · ≥ wn−1 , and let P = u1e1u2e2 . . . un−1en−1un ∈
P(n,W ) be the path having energy Ê(n,W ). Suppose w(e1) ≥ w(en−1). Then for

i = 1, 2, . . . , n− 1,

w(ei) =

 wi if either i ≤ dn−1
2
e and i is odd, or i > dn−1

2
e and n− i is even,

wn+1−i otherwise.

Proof. Bearing in mind Lemma 8 and the hypothesis that w(e1) ≥ w(en−1), the result

follows for n ≤ 4.

For n = 5, from Lemmas 8 and 9, we have that the desired path is either P1 =

w1w3w4w2 or P2 = w1w4w3w2. By a direct calculation, we have

b2(P1) = b2(P2)

b4(P1) = w2
1 w

2
4 + w2

1 w
2
2 + w2

3 w
2
2

b4(P2) = w2
1 w

2
3 + w2

1 w
2
2 + w2

4 w
2
2
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from which we conclude that P2 � P1 . Then P2 is the desired path and the result

follows.

For n = 6, since w(e1) ≥ w(e5), we first show that w(e2) ≤ w(e4). Let P ′

be the weighted path obtained from P by exchanging the edges e1 and e5, that is,

P ′ = u1e5u2e2u3e3u4e4u5e1u6. Then

E(P ′) ≤ E(P ) . (5)

By Corollary 6,

bk(P ) = bk(P\e1) + w(e1)
2 bk−2(P\u1u2)

= bk(P\e1e5) + w(e5)
2 bk−2(P\e1u5u6)

+ w(e1)
2 bk−2(P\u1u2e5) + w(e1)

2w(e5)
2 bk−4(P\u1u2u5u6)

and

bk(P ′) = bk(P ′\e5) + w(e5)
2 bk−2(P

′\u1u2)

= bk(P ′\e5e1) + w(e1)
2 bk−2(P

′\e5u5u6)

+ w(e5)
2 bk−2(P

′\u1u2e1) + w(e1)
2w(e5)

2 bk−4(P
′\u1u2u5u6)

Hence,

bk(P )− bk(P ′) =
(
w(e5)

2 − w(e1)
2
)[
bk−2(P\e1u5u6)− bk−2(P\u1u2e5)

]
.

So, we have

b2(P )− b2(P ′) = 0

b4(P )− b4(P ′) =
(
w(e5)

2 − w(e1)
2
)[(

w(e2)
2 + w(e3)

2
)
−
(
w(e3)

2 + w(e4)
2
)]

b6(P )− b6(P ′) = 0 .

Since E(P ′) ≤ E(P ), we have that b4(P )− b4(P ′) ≥ 0. From w(e1) ≥ w(e5), it follows

that w(e2) ≤ w(e4).

Taking into account Lemmas 8 and 9, we get that the desired path is P1 =

w1w4w5w3w2 , or P2 = w1w5w4w3w2 , or P3 = w1w5w3w4w2 . Direct calculation yields

that

b2(P1) = b2(P2) = b2(P3)
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b4(P1) = w2
1 w

2
5 + w2

1 w
2
3 + w2

1 w
2
2 + w2

4 w
2
3 + w2

4 w
2
2 + w2

5 w
2
2

b4(P2) = w2
1 w

2
4 + w2

1 w
2
3 + w2

1 w
2
2 + w2

5 w
2
3 + w2

5 w
2
2 + w2

4 w
2
2

b4(P3) = w2
1 w

2
3 + w2

1 w
2
4 + w2

1 w
2
2 + w2

5 w
2
4 + w2

5 w
2
2 + w2

3 w
2
2

b6(P1) = w2
1 w

2
5 w

2
2

b6(P2) = w2
1 w

2
4 w

2
2

b6(P3) = w2
1 w

2
3 w

2
2

which implies P3 � P2 � P1 . Then P3 is the desired path and the result follows.

For general case n ≥ 7, we cannot solve the problem; but we think that the

following conjecture is true.

Conjecture 11. For n ≥ 3, let W = {w1, w2, . . . , wn−1} be a sequence of positive

numbers such that w1 ≥ w2 ≥ · · · ≥ wn−1. Let P = u1e1u2e2 . . . un−1en−1un ∈
P(n,W ) be the path having energy Ê(n,W ). Suppose w(e1) ≥ w(en−1). Then for

i = 1, 2, . . . , n− 1,

w(ei) =

 wi if either i ≤ dn−1
2
e and i is odd, or i > dn−1

2
e and n− i is even,

wn+1−i otherwise.

Though we cannot prove the conjecture, we get the following results to support

it.

Theorem 12. For n ≥ 3, let W = {x,
n−2︷ ︸︸ ︷

y, . . . , y} be a sequence of positive numbers

such that x > y. Then, up to isomorphism, P = x

n−2︷ ︸︸ ︷
y . . . y is the unique path having

energy Ê(n,W ).

Theorem 12 can be considered as a generalized version of Theorem 11 from Ref. [3],

and therefore its proof is omitted.

Theorem 13. For n ≥ 3, let W = {x, y,
n−3︷ ︸︸ ︷

z, . . . , z} be a sequence of positive numbers

such that x ≥ y > z. Then, up to isomorphism, P = x

n−3︷ ︸︸ ︷
z . . . z y is the unique path

having energy Ê(n,W ).
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Proof. By Theorem 10, the result follows for n ≤ 6. Therefore, suppose n ≥ 7.

Denote by P ∗ = u1e1u2e2u3 . . . un−1en−1un the path having energy Ê(n,W ). Since

there are exactly two edges in P ∗ whose weights are not z, we suppose that w(ei) 6= z

and w(ei+t) 6= z for 1 ≤ i ≤ n − 2, 1 ≤ t ≤ n − 2. Then it is sufficient to show that

t = n− 2.

If t ≥ 2 and t 6= n− 2, then there exists a pendent edge, say e1, having weight z.

Without loss of generality, suppose w(ei+t) = x. Then w(ei) = y. Applying Corollary

6 to the edge ei+t, we have

bk(P ∗) = bk(P ∗\ei+t) + x2 bk−2(P
∗\ui+tui+t+1) .

Let P ∗∗ be the weighted path obtained from P ∗ by exchanging the edges ei and e1.

Then,

bk(P ∗∗) = bk(P ∗∗\ei+t) + x2 bk−2(P
∗∗\ui+tui+t+1) .

One can show that both P ∗\ei+t and P ∗∗\ei+t contain a component which is a

weighted path belonging to P(i+t,W1), where W1 = {y,
i+t−2︷ ︸︸ ︷
z, . . . , z}. Applying Theorem

12, we have P ∗\ei+t ≺ P ∗∗\ei+t . Similarly, we have P ∗\ui+tui+t+1 ≺ P ∗∗\ui+tui+t+1 .

Consequently, P ∗ ≺ P ∗∗, which yields a contradiction.

If t = 1, then there exists a pendent edge, say e1, having weight z. Without loss

of generality, suppose w(ei+1) = x. Then w(ei) = y. Applying Corollary 6 to the

edge ei+1 , we have

bk(P ∗) = bk(P ∗\ei+1) + x2 bk−2(P
∗\ui+1ui+2) .

Let P ∗∗ be the weighted path obtained from P ∗ by exchanging the edges ei and e1 .

Then,

bk(P ∗∗) = bk(P ∗∗\ei+1) + x2 bk−2(P
∗∗\ui+1ui+2) .

One can show that P ∗\ei+1 ∼ P ∗∗\ei+1, and both P ∗\ui+1ui+2 and P ∗∗\ui+1ui+2

contain a component, denoted respectively by P ∗1 and P ∗∗1 , having i vertices. However,

P ∗1 =
i−1︷ ︸︸ ︷

z . . . z and P ∗∗1 ∈ P(i,W1), where W1 = {y,
i−2︷ ︸︸ ︷

z, . . . , z}. Hence, P ∗1 ≺ P ∗∗1 .

Consequently, P ∗ ≺ P ∗∗, which also yields a contradiction.

The result thus follows.
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Theorem 14. For n ≥ 3, let Wn−1 = {
n−2︷ ︸︸ ︷

x, . . . , x, y} be a sequence of positive numbers

such that x > y. Then, up to isomorphism, P̂n = xy

n−3︷ ︸︸ ︷
x . . . x is the unique path having

energy Ê(n,Wn−1).

Proof. We prove Theorem 14 by induction on n. From Theorem 10, the result follows

for n ≤ 6. Suppose that the result is true for smaller n. For n ≥ 7, denote the path

having energy Ê(n,W ) by P ∗ = u1e1u2e2u3 . . . un−1en−1un . By Lemma 8, w(e1) =

w(en−1) = x. Since P ∗ has exactly one edge having weight y, we suppose that

w(en−2) = x. Applying Corollary 6, we have

bk(P ∗) = bk(P ∗\en−1) + x2 bk−2(P
∗\un−1un−2) .

Then, P ∗\en−1 ∈ P(n,Wn−2) and P ∗\un−1un−2 ∈ P(n,Wn−3). By the induction

assumption, P ∗\en−1 � P̂n−1 with equality holding if and only if P ∗\en−1 = P̂n−1 .

In addition, P ∗\un−1un−2 � P̂n−2 with equality holding if and only if P ∗\un−1un−2 =

P̂n−2 . Hence, the result follows.
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