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Abstract

Let W = {wy,ws,...,wy—1} be a sequence of positive numbers. Denote by 7T (n, W)
the set of all weighted trees of order n with weight sequence 1. We show that a weighted
tree that has maximal energy in 7 (n, W), is a weighted path. For n < 6, we determine
the unique path having maximal energy in 7 (n,W). For n > 7, we give a conjecture on
the structure and distribution of weights of the unique maximum-energy tree in 7 (n, W).
Some results supporting this conjecture are obtained.
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1 Introduction

In this paper we consider trees on n vertices, to each edge of which a positive weight
is assigned. The sequence of weights of the edges in a weighted tree is referred to as
its weight sequence. Let W = {wy,wa, ..., w,—1} be a sequence of positive numbers.
Denote by T (n, W) the set of all weighted trees of order n with weight sequence W.

In general, the energy of a weighted graph G of order n is defined as

n

E(G) =3I

i=1
where A\, Ao, ..., A\, are the (real) eigenvalues of the (nonnegative, symmetric) adja-
cency matrix A of G. More information on (weighted) graph energy can be found
in [2-6,10,12,15,17,21].

In [3], Brualdi et al. investigated the extremal energy of a class of integral weighted
graphs. Let 7 (n,m) be the set of all weighted trees of order n with the fixed total
weight sum m. They stated the following conjecture pertaining to the maximal energy

of all integral weighted trees with fixed weight:

Conjecture 1. [3, Conjecture 10] Let n > 5 and m > n. The path with weight
sequence {m —n + 2,1,...,1}, where the weight of one of the pendent edges equals

m —n+ 2, is the unique integral weighted tree in T (n,m) with mazimal energy.

Let B(n, W) = max{&(T) : T € T(n,W)} be the maximal energy of a tree in
T (n,W). Motivated by the above conjecture, in this paper we consider the following

problem:

Problem 2. For a given weight sequence W, determine the tree(s) in T (n, W) whose
energy achieves B(n, W).

We show that in 7 (n, W), a weighted tree with maximal energy is a weighted
path. Further, for small order n (< 6), we determine the unique path having maximal
energy in T (n, W). For larger order n, we give a conjecture on the structure and the
distribution of weights of the unique tree in 7 (n, W). Finally, some results supporting

this conjecture are obtained.
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2 Preliminary results

We first introduce some terminology and notation. Let G = (V(G), E(GQ)) be a
graph. For Vi = {v1,vs,...,us} CV(G) and E; = {ey, eq,...,ex} C E(G), denote by
G\ E; the graph obtained from G by deleting all edges of Ey and by G\V; the graph
obtained from G by removing all vertices of V; together with all incident edges. For
convenience, we sometimes write G\eies ... e and G\v1vs . .. vs instead of G\ E; and
G\ V1, respectively. Denote by P, = ujejusy...u,_1€,-1u, the path on n vertices,
where u; and u;,; are the two endvertices of the edge e;. For convenience, we some-
times denote by P = ujwjuswous . .. Up—1Wy—_1U, Or P = wjwy...w,_; a weighted
path on n vertices, where w; denotes the weight of the edge e; for i =1,2,...,n— 1.
We refer to Cvetkovié et al. [5] for terminology and notation not defined here.

A graph is said to be elementary if it is isomorphic either to P or to a cycle. The
weight of P is defined as the square of the weight of its unique edge. The weight of
a cycle is the product of the weights of all its edges.

A graph 7 is called a Sachs graph if each component of  is an elementary
graph [8,9,14]. The weight of a Sachs graph ¢, denoted by # (), is the product
of the weights of all elementary subgraphs contained in .77

Denote by ¢(G, \) the characteristic polynomial of a graph G, defined as

n

o(G,\) = det [)\ I, — A(G)] — Zak(c) Ak (1)

k=0
where A(G) is the adjacency matrix of G and I,, the identity matrix of order n. The
following well known result determines all coefficients of the characteristic polynomial

of a weighted graph in terms of its Sachs subgraphs [1,5,7,19,20].

Theorem 3. Let G be a weighted graph on n vertices with adjacency matriz A(G)

and characteristic polynomial ¢(G,\) = f: ar(G) \"F. Then

ai(G) =Y (=) 2 ()

where the summation is over all Sachs subgraphs 7€ of G having i vertices, and where
p(H) and c(F#) are, respectively, the number of components and the number of cycles

contained in .
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Similarly, we have the following recursions for the characteristic polynomial of a

weighted graph [11].

Theorem 4. Let G be a weighted graph and e = uv be a cut edge of G. Denote by
w(e) the weight of the edge e. Then

B(G, ) = d(G\e, A) — w(e) $(G\uv, ) .

From the Coulson integral formula for the energy (see [4,15-17] and the references
cited therein), it can be shown [10] that if G is a weighted bipartite graph with

characteristic polynomial as in Eq. (1), then

LT Ln/2)
£(G) =~ / A2In I;b%vk dX

where by = |ay] .

Tt follows that in the case of weighted trees, £(T') is a strict monotonically increas-
ing function of the numbers by; , i = 1,2,...,|n/2]. Thus, in analogy to comparing
the energies of two non-weighted trees [10,22,23], we introduce a quasi-ordering rela-

tion < for weighted trees (see also [13,18]):

Definition 5. Let T and Ty be two weighted trees of order n. If bo(T1) < bay(T3)
for all kwith 0 < k < |n/2], then we write Ty < Ty. Furthermore, if Ty < Ty and
there exists at least one index k such that bo(Th) < bogx(Ts), then we write Ty < Th.

If bor(T1) = bog(T3) for all k, then we write Ty ~ Ty .

Note that there are non-isomorphic weighted graphs 77 and T with 77 ~ T,
which implies that in the general case < is a quasi-ordering, but not a partial ordering.
According to the integral formula above, we have for two weighted trees 7} and

T, of order n that

T, = S(Tl) < S(Tg) and T <T, = S(Tl) < 8(T2) (2)
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3 Main results

An immediate consequence of Theorem 4 is:

Corollary 6. Let G be a weighted bipartite graph with a cut edge ¢ = uv. Suppose
that the weight of the edge e is w.. Then

b(G) = b(G\e) + w? by,_o(G\uv)
where b, = |ax|, as defined as above.

Applying Corollary 6, we can deduce that a weighted tree with maximal energy
in 7(n, W) is a weighted path.

Theorem 7. Forn > 2, let W = {wy,ws,...,w,—1} be a sequence of positive num-

bers. Let T be a weighted tree with mazimal energy in T (n, W). Then, T is a weighted
path.

Proof. We prove the theorem by induction on n. Obviously, the result holds for
n = 2,3. Let n > 4 and suppose that the result is true for trees of orders less than
n. For any n > 4, suppose that u; is a pendent vertex of 7" and ujus = e; has weight

we. Then using Corollary 6, we have
bk(T) = bk(T\u]) -+ wf bk,Q(T\’thz) .

Let Wi be the weight sequence of W\w, and W; the weight sequence obtained
from W by removal of the weights of all edges incident with uy. Then by the induction
assumption, the trees achieving I@(n —1,W;) and ]E(n — 2, W5) are paths or union of
paths. Moreover, in order to maximize E(n —2,W3), T\ujus has to have n— 3 edges.

Consequently, both of T\u; and T\ujus are paths and hence the result follows. [

In view of Theorem 7, in order to determine the tree(s) having energy E(n, W), we
focus on discussing the weight distribution of the path P, . For convenience, denote

by P(n, W) the set of all weighted paths of order n with weight sequence W.

Lemma 8. Forn > 4, let P’ = wjejuges . .. Up_165_1u, € P(n,W). Let the weight
of the edge e; be denoted by w; fori=1,2,...,n—1. If (P') = B(n, W), then (a)

wy > we, and (b) wy_1 > Wy_o .
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Proof. (a) Let P” be the weighted path obtained from P’ by exchanging the edges

e; and ey, that is, P” = wujesuseius...u, 1€, 1u,. Then by the hypothesis that

E(P") = E(n,W), we have
E(P") < E(P). 3)
From Corollary 6,
b(P)) = b(P\e1) + w? by_o( P \uyuy)
be(P"\e1€2) + w3 by_a(P\urusug) + w] by—a(P"\e1€2)

and

bk(PN) = bk(PI,\EQ) + ’UJ; bk,g(P”\uluz)
= b(P"\eiea) + wi b_o( P"\usugus) + w3 b_o(P"\e1es) .

Assume to the contrary that wy; < ws. Note that P\ujusuz = P"\ujusus, P'\eres =

P"\ejez, and that P"\ujuqus is a proper subgraph of P\ejes. Then
bk(Pl) — bk(P”) = (wf — w%) [bk,Q(P(\Clez) — bk,g(P'\uluzu;;)] S 0

and there exists at least one index k such that by(P") — bi(P”) < 0 as P\ejes con-
tains at least one edge. Thus P’ < P”, a contradiction to conditions (2) and (3).
Consequently, the result (a) follows.

The proof of (b) is analogous. O

Lemma 9. Forn > 5, let P/ = ujejugesugesuy . .. Up—16n—1u, € P(n,W). Let the
weight of the edge e; be denoted by w; fori = 1,2,...,n — 1. If E(P") = E(n, W),

then (a) wy > ws, and (b) wy_1 > wy_3 .

Proof. (a) Let P” be the weighted path obtained from P’ by exchanging the edges e;
and e, that is, P” = ujesugsesuzeqy . . . Uy_1€,_1u,. Then

E(P") < E(P). (4)
By Corollary 6,

bk(P,) bk(P/\el) + /LU% bk_Q(Pl\ul’LLg)

be(P'\eye3) + wg br—o (P \uguzuy)

+

w? by_o(P\uyugus) + wi w3 by_s(P\ugusuzuy)
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and

b(P") = u(P"\e) + w} bia(P"\uyun)
= b(P"\eser) + w? by_a( P"\upusuy)

+ wg br_o( P"\uyusus) + w? wg br—a(P"\uyuguzuy) .

Assume to the contrary that wy < ws. Note that P'\ujusus = P"\ujusus and
P'\uguszuy = P"\uguzuy, and that P"\ususus is the union of the isolated vertex ug

and a proper subgraph of P"\ujusus. Then
bk(P/) - bk(P//> = (wi — ﬂ)%) [bk,Q(PH\U2U3U4) - bkfz(P”\uﬂLng)} <0

and there exists at least one integer k such that b,(P’") — b, (P”) < 0. Thus P’ < P”,
a contradiction to condition (4). Consequently, the result (a) follows.

The proof of (b) is analogous. O

For small order n, applying Lemmas 8 and 9, we can determine the paths having

maximal energy among the weighted paths in P(n, W).

Theorem 10. For n < 6, let W = {w,wa,...,wa_1} be a sequence of positive
numbers such that wy > wy > -+ > wy_1, and let P = ujequzes ... Up_1€4_1U, €

P(n, W) be the path having energy B(n, W). Suppose w(e)) > w(en_1). Then for

w; if either ¢ < [%31] and i is odd, or i > [%31] and n — i is even,

Wp41—; Ootherwise.

Proof. Bearing in mind Lemma 8 and the hypothesis that w(e;) > w(e,—1), the result
follows for n < 4.
For n = 5, from Lemmas 8 and 9, we have that the desired path is either P, =

wiwzwawy or Py = wywywsws. By a direct calculation, we have

bz(Pl) = bg(Pz)

2, 2 2.2 2,2
by(P) = wiwj+ wiws+ wiw;

2, 2 2.2 2.2
by(P) = wiw;+ wws+ wiw;



-274-

from which we conclude that P, = P;. Then P, is the desired path and the result
follows.

For n = 6, since w(e1) > w(es), we first show that w(e2) < w(es). Let P’
be the weighted path obtained from P by exchanging the edges e; and es, that is,

P’ = ujesusesusesusesuseug. Then
E(P) <E(P). (5)
By Corollary 6,

b(P) = bp(P\e1) +w(er)? bp_a(P\uyus)
= b(P\eres) + w(65)2 bg—2(P\e1usug)

+ w(er)? by_o(P\ujuges) + w(er)? wles)? by_a( P\urugusug)

and
be(P') = bi(P'\es) + w(es)? be_o(P\usug)
= bp(P\eser) +w(er)? bp_o( P'\esusug)
+ wles)? br_o(P\uguser) + wley)* wles)? by_s(P\uugusug)
Hence,
bk(P) - bk(P,) = (’UJ(€5)2 — w(el)Q) [bk,Q(P\61U5U6) — bk,Q(P\U1U265)].
So, we have

bo(P) —by(P) = 0
by(P) —by(P") = (71}(65)2 - 10(61)2) [(71)(62)2 + 11)(63)2) - (?1)(63)2 + 11)(64)2)]
bs(P) —bg(P') = 0

Since E(P’) < E(P), we have that by(P) —bs(P’) > 0. From w(e;) > w(es), it follows
that w(ez) < w(ey).

Taking into account Lemmas 8 and 9, we get that the desired path is P, =
WIWaWsW3We , OF Py = wywswawswsy , or Py = wywswswaws . Direct calculation yields

that

ba(P1) = ba(Pa) = ba(P3)
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by(P) = w?wi+w?wi4 wiwd+wied +wlwk+wdw?
by(P) = wiw?+wiwi+w?w?+wiel+ww +wiw
by(Ps) = w? w% +wiw? +wiw? + w?) wl + w? w3 + wg wl
bo(P1) = wiwiwi
be(P2) = w? wi wg
bg(P3) = w% w§ w%

which implies P = P, > P;. Then Pj is the desired path and the result follows. [

For general case n > 7, we cannot solve the problem; but we think that the

following conjecture is true.

Conjecture 11. For n > 3, let W = {ws,ws,...,w,—1} be a sequence of positive
numbers such that wy > wy > --+ > w,_1. Let P = ujejuses... Uy 165 1U, €

P(n, W) be the path having energy B(n, W). Suppose w(e;) > w(en_1). Then for

w; if either ¢ < [“71] and i is odd, or i > [%31] and n — i is even,

Wp41—; Otherwise.

Though we cannot prove the conjecture, we get the following results to support

n—2

Theorem 12. Forn > 3, let W = {,79,...,9} be a sequence of positive numbers

such that x > y. Then, up to isomorphism, P = x% ...y is the unique path having
enerqy I@I(m w).

Theorem 12 can be considered as a generalized version of Theorem 11 from Ref. [3],
and therefore its proof is omitted.

n—3

Theorem 13. Forn >3, let W = {2,y,%, ..., 2} be a sequence of positive numbers
n—3

such that x > y > z. Then, up to isomorphism, P = x%Z...2y is the unique path

having energy E(n, W).
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Proof. By Theorem 10, the result follows for n < 6. Therefore, suppose n > 7.
Denote by P* = ujejusesus . . . uy_1€,_1u, the path having energy E(n W). Since
there are exactly two edges in P* whose weights are not z, we suppose that w(e;) # z
and w(ej4) # zfor 1 <i<n—2,1<t<n-—2. Then it is sufficient to show that
t=n—2.
If t > 2 and t # n — 2, then there exists a pendent edge, say e, having weight z.
Without loss of generality, suppose w(e;y;) = . Then w(e;) = y. Applying Corollary

6 to the edge e;+, we have
bi(P*) = bp(P*\eist) + % by—o (P \UigsUigrs1) -

Let P** be the weighted path obtained from P* by exchanging the edges e; and e;.
Then,
be(P™) = bp(P™\€iyt) + % bpa (P \Uip Uit -

One can show that both P*\e;1; and P**\e;;; contain a component which is a
itt—2

weighted path belonging to P(i+t, W1), where Wy = {y, ﬁ} Applying Theorem
12, we have P*\e;+; < P**\e;+. Similarly, we have P*\w;rtirir1 < P \UisiWises1 -
Consequently, P* < P**, which yields a contradiction.

If t = 1, then there exists a pendent edge, say e;, having weight z. Without loss
of generality, suppose w(e;+1) = =. Then w(e;) = y. Applying Corollary 6 to the

edge e;11, we have
b(P*) = be(P*\eiy1) + 2% b (P*\tig1uig2) -

Let P** be the weighted path obtained from P* by exchanging the edges e; and e; .
Then,
bk(P**) = bk(P**\GH,l) + 1‘2 bk,g(P**\uH]qu) .

One can show that P*\e;11 ~ P**\e;+1, and both P*\u;y1uipo and P™*\u;11uito

contain a component, denoted respectively by P} and P;*, having i vertices. However,
i1 i—2

P = %Z..72 and P € P(i,W;), where W, = {y,%,...,2}. Hence, P} < P/*.
Consequently, P* < P**, which also yields a contradiction.

The result thus follows. |



Theorem 14. Forn >3, let W,,_1 = {%,...,2,y} be a sequence of positive numbers
n—:

such that x > y. Then, up to isomorphism, Pn =xyT...T is the unique path having

energy B(n, W,_1).

Proof. We prove Theorem 14 by induction on n. From Theorem 10, the result follows
for n < 6. Suppose that the result is true for smaller n. For n > 7, denote the path
having energy ]E(n, W) by P* = ujejugeaus . .. Up_1€,_1u, . By Lemma 8, w(e;) =
w(e,—1) = . Since P* has exactly one edge having weight y, we suppose that

w(en_2) = z. Applying Corollary 6, we have
bk(P*) = bk(P*\enfl) + .TZ bk,Q(P*\un,lun,z) .

Then, P*\e,—1 € P(n,W,_s) and P*\u,_1u,—s € P(n,W,_3). By the induction
assumption, P*\e,_1 =< ﬁ’,,,,l with equality holding if and only if P*\e, ; = ﬁn,l.
In addition, P*\u,—1tp—2 < P, with equality holding if and only if P*\u,_1u,—2 =

P,_5. Hence, the result follows. O
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