On Maximal Energy of Trees with Fixed Weight Sequence

Shicai Gong ${ }^{1, *, \dagger}$, Xueliang Li $^{2, \ddagger}$, Ivan Gutman ${ }^{3,4}$, Guanghui Xu ${ }^{1, \S}$, Yuxiang Tang ${ }^{1}$, Zhongmei Qin ${ }^{2}$, Kang Yang ${ }^{2}$
${ }^{1}$ School of Science, Zhejiang University of Science and Technology, Hangzhou, 311300, P. R. China
scgong@zafu.edu.cn, ghxu@zafu.edu.cn, yt238@uowmail.edu.au
${ }^{2}$ Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, P. R. China
lxl@nankai.edu.cn, qinzhongmei90@163.com, yangkang@mail.nankai.edu.cn
${ }^{3}$ Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia
gutman@kg.ac.rs
${ }^{4}$ State University of Novi Pazar, Novi Pazar, Serbia

(Received May 12, 2015)

Abstract

Let $W=\left\{w_{1}, w_{2}, \ldots, w_{n-1}\right\}$ be a sequence of positive numbers. Denote by $\mathcal{T}(n, W)$ the set of all weighted trees of order n with weight sequence W. We show that a weighted tree that has maximal energy in $\mathcal{T}(n, W)$, is a weighted path. For $n \leq 6$, we determine the unique path having maximal energy in $\mathcal{T}(n, W)$. For $n \geq 7$, we give a conjecture on the structure and distribution of weights of the unique maximum-energy tree in $\mathcal{T}(n, W)$. Some results supporting this conjecture are obtained.

[^0]
1 Introduction

In this paper we consider trees on n vertices, to each edge of which a positive weight is assigned. The sequence of weights of the edges in a weighted tree is referred to as its weight sequence. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{n-1}\right\}$ be a sequence of positive numbers. Denote by $\mathcal{T}(n, W)$ the set of all weighted trees of order n with weight sequence W.

In general, the energy of a weighted graph G of order n is defined as

$$
\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the (real) eigenvalues of the (nonnegative, symmetric) adjacency matrix \mathbf{A} of G. More information on (weighted) graph energy can be found in $[2-6,10,12,15,17,21]$.

In [3], Brualdi et al. investigated the extremal energy of a class of integral weighted graphs. Let $\mathcal{T}(n, m)$ be the set of all weighted trees of order n with the fixed total weight sum m. They stated the following conjecture pertaining to the maximal energy of all integral weighted trees with fixed weight:

Conjecture 1. [3, Conjecture 10] Let $n \geq 5$ and $m \geq n$. The path with weight sequence $\{m-n+2,1, \ldots, 1\}$, where the weight of one of the pendent edges equals $m-n+2$, is the unique integral weighted tree in $\mathcal{T}(n, m)$ with maximal energy.

Let $\hat{\mathbb{E}}(n, W)=\max \{\mathcal{E}(T): T \in \mathcal{T}(n, W)\}$ be the maximal energy of a tree in $\mathcal{T}(n, W)$. Motivated by the above conjecture, in this paper we consider the following problem:

Problem 2. For a given weight sequence W, determine the tree(s) in $\mathcal{T}(n, W)$ whose energy achieves $\hat{\mathbb{E}}(n, W)$.

We show that in $\mathcal{T}(n, W)$, a weighted tree with maximal energy is a weighted path. Further, for small order $n(\leq 6)$, we determine the unique path having maximal energy in $\mathcal{T}(n, W)$. For larger order n, we give a conjecture on the structure and the distribution of weights of the unique tree in $\mathcal{T}(n, W)$. Finally, some results supporting this conjecture are obtained.

2 Preliminary results

We first introduce some terminology and notation. Let $G=(V(G), E(G))$ be a graph. For $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\} \subseteq V(G)$ and $E_{1}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\} \subseteq E(G)$, denote by $G \backslash E_{1}$ the graph obtained from G by deleting all edges of E_{1} and by $G \backslash V_{1}$ the graph obtained from G by removing all vertices of V_{1} together with all incident edges. For convenience, we sometimes write $G \backslash e_{1} e_{2} \ldots e_{k}$ and $G \backslash v_{1} v_{2} \ldots v_{s}$ instead of $G \backslash E_{1}$ and $G \backslash V_{1}$, respectively. Denote by $P_{n}=u_{1} e_{1} u_{2} \ldots u_{n-1} e_{n-1} u_{n}$ the path on n vertices, where u_{i} and u_{i+1} are the two endvertices of the edge e_{i}. For convenience, we sometimes denote by $P=u_{1} w_{1} u_{2} w_{2} u_{3} \ldots u_{n-1} w_{n-1} u_{n}$ or $P=w_{1} w_{2} \ldots w_{n-1}$ a weighted path on n vertices, where w_{i} denotes the weight of the edge e_{i} for $i=1,2, \ldots, n-1$. We refer to Cvetković et al. [5] for terminology and notation not defined here.

A graph is said to be elementary if it is isomorphic either to P_{2} or to a cycle. The weight of P_{2} is defined as the square of the weight of its unique edge. The weight of a cycle is the product of the weights of all its edges.

A graph \mathscr{H} is called a Sachs graph if each component of \mathscr{H} is an elementary graph $[8,9,14]$. The weight of a Sachs graph \mathscr{H}, denoted by $\mathscr{W}(\mathscr{H})$, is the product of the weights of all elementary subgraphs contained in \mathscr{H}.

Denote by $\phi(G, \lambda)$ the characteristic polynomial of a graph G, defined as

$$
\begin{equation*}
\phi(G, \lambda)=\operatorname{det}\left[\lambda \mathbf{I}_{n}-\mathbf{A}(G)\right]=\sum_{k=0}^{n} a_{k}(G) \lambda^{n-k} \tag{1}
\end{equation*}
$$

where $\mathbf{A}(G)$ is the adjacency matrix of G and \mathbf{I}_{n} the identity matrix of order n. The following well known result determines all coefficients of the characteristic polynomial of a weighted graph in terms of its Sachs subgraphs [1,5,7,19, 20].

Theorem 3. Let G be a weighted graph on n vertices with adjacency matrix $\mathbf{A}(G)$ and characteristic polynomial $\phi(G, \lambda)=\sum_{k=0}^{n} a_{k}(G) \lambda^{n-k}$. Then

$$
a_{i}(G)=\sum_{\mathscr{H}}(-1)^{p(\mathscr{H})} 2^{c(\mathscr{H})} \mathscr{W}(\mathscr{H})
$$

where the summation is over all Sachs subgraphs \mathscr{H} of G having i vertices, and where $p(\mathscr{H})$ and $c(\mathscr{H})$ are, respectively, the number of components and the number of cycles contained in \mathscr{H}.

Similarly, we have the following recursions for the characteristic polynomial of a weighted graph [11].

Theorem 4. Let G be a weighted graph and $e=u v$ be a cut edge of G. Denote by $w(e)$ the weight of the edge e. Then

$$
\phi(G, \lambda)=\phi(G \backslash e, \lambda)-w(e)^{2} \phi(G \backslash u v, \lambda) .
$$

From the Coulson integral formula for the energy (see $[4,15-17]$ and the references cited therein), it can be shown [10] that if G is a weighted bipartite graph with characteristic polynomial as in Eq. (1), then

$$
\mathcal{E}(G)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \lambda^{-2} \ln \left(\sum_{k=0}^{\lfloor n / 2\rfloor} b_{2 k} \lambda^{2 k}\right) d \lambda
$$

where $b_{k}=\left|a_{k}\right|$.
It follows that in the case of weighted trees, $\mathcal{E}(T)$ is a strict monotonically increasing function of the numbers $b_{2 i}, i=1,2, \ldots,\lfloor n / 2\rfloor$. Thus, in analogy to comparing the energies of two non-weighted trees [$10,22,23]$, we introduce a quasi-ordering relation \preceq for weighted trees (see also $[13,18]$):

Definition 5. Let T_{1} and T_{2} be two weighted trees of order n. If $b_{2 k}\left(T_{1}\right) \leq b_{2 k}\left(T_{2}\right)$ for all k with $0 \leq k \leq\lfloor n / 2\rfloor$, then we write $T_{1} \preceq T_{2}$. Furthermore, if $T_{1} \preceq T_{2}$ and there exists at least one index k such that $b_{2 k}\left(T_{1}\right)<b_{2 k}\left(T_{2}\right)$, then we write $T_{1} \prec T_{2}$. If $b_{2 k}\left(T_{1}\right)=b_{2 k}\left(T_{2}\right)$ for all k, then we write $T_{1} \sim T_{2}$.

Note that there are non-isomorphic weighted graphs T_{1} and T_{2} with $T_{1} \sim T_{2}$, which implies that in the general case \preceq is a quasi-ordering, but not a partial ordering.

According to the integral formula above, we have for two weighted trees T_{1} and T_{2} of order n that

$$
\begin{equation*}
T_{1} \preceq T_{2} \Longrightarrow \mathcal{E}\left(T_{1}\right) \leq \mathcal{E}\left(T_{2}\right) \quad \text { and } \quad T_{1} \prec T_{2} \Longrightarrow \mathcal{E}\left(T_{1}\right)<\mathcal{E}\left(T_{2}\right) \tag{2}
\end{equation*}
$$

3 Main results

An immediate consequence of Theorem 4 is:
Corollary 6. Let G be a weighted bipartite graph with a cut edge $e=u v$. Suppose that the weight of the edge e is w_{e}. Then

$$
b_{k}(G)=b_{k}(G \backslash e)+w_{e}^{2} b_{k-2}(G \backslash u v)
$$

where $b_{k}=\left|a_{k}\right|$, as defined as above.
Applying Corollary 6, we can deduce that a weighted tree with maximal energy in $\mathcal{T}(n, W)$ is a weighted path.

Theorem 7. For $n \geq 2$, let $W=\left\{w_{1}, w_{2}, \ldots, w_{n-1}\right\}$ be a sequence of positive numbers. Let T be a weighted tree with maximal energy in $\mathcal{T}(n, W)$. Then, T is a weighted path.

Proof. We prove the theorem by induction on n. Obviously, the result holds for $n=2,3$. Let $n \geq 4$ and suppose that the result is true for trees of orders less than n. For any $n \geq 4$, suppose that u_{1} is a pendent vertex of T and $u_{1} u_{2}=e_{1}$ has weight w_{e}. Then using Corollary 6 , we have

$$
b_{k}(T)=b_{k}\left(T \backslash u_{1}\right)+w_{e}^{2} b_{k-2}\left(T \backslash u_{1} u_{2}\right) .
$$

Let W_{1} be the weight sequence of $W \backslash w_{e}$ and W_{2} the weight sequence obtained from W by removal of the weights of all edges incident with u_{2}. Then by the induction assumption, the trees achieving $\hat{\mathbb{E}}\left(n-1, W_{1}\right)$ and $\hat{\mathbb{E}}\left(n-2, W_{2}\right)$ are paths or union of paths. Moreover, in order to maximize $\hat{\mathbb{E}}\left(n-2, W_{2}\right), T \backslash u_{1} u_{2}$ has to have $n-3$ edges. Consequently, both of $T \backslash u_{1}$ and $T \backslash u_{1} u_{2}$ are paths and hence the result follows.

In view of Theorem 7, in order to determine the tree(s) having energy $\hat{\mathbb{E}}(n, W)$, we focus on discussing the weight distribution of the path P_{n}. For convenience, denote by $\mathcal{P}(n, W)$ the set of all weighted paths of order n with weight sequence W.

Lemma 8. For $n \geq 4$, let $P^{\prime}=u_{1} e_{1} u_{2} e_{2} \ldots u_{n-1} e_{n-1} u_{n} \in \mathcal{P}(n, W)$. Let the weight of the edge e_{i} be denoted by w_{i} for $i=1,2, \ldots, n-1$. If $\mathcal{E}\left(P^{\prime}\right)=\hat{\mathbb{E}}(n, W)$, then (a) $w_{1} \geq w_{2}$, and (b) $w_{n-1} \geq w_{n-2}$.

Proof. (a) Let $P^{\prime \prime}$ be the weighted path obtained from P^{\prime} by exchanging the edges e_{1} and e_{2}, that is, $P^{\prime \prime}=u_{1} e_{2} u_{2} e_{1} u_{3} \ldots u_{n-1} e_{n-1} u_{n}$. Then by the hypothesis that $\mathcal{E}\left(P^{\prime}\right)=\hat{\mathbb{E}}(n, W)$, we have

$$
\begin{equation*}
\mathcal{E}\left(P^{\prime \prime}\right) \leq \mathcal{E}\left(P^{\prime}\right) \tag{3}
\end{equation*}
$$

From Corollary 6,

$$
\begin{aligned}
b_{k}\left(P^{\prime}\right) & =b_{k}\left(P^{\prime} \backslash e_{1}\right)+w_{1}^{2} b_{k-2}\left(P^{\prime} \backslash u_{1} u_{2}\right) \\
& =b_{k}\left(P^{\prime} \backslash e_{1} e_{2}\right)+w_{2}^{2} b_{k-2}\left(P^{\prime} \backslash u_{1} u_{2} u_{3}\right)+w_{1}^{2} b_{k-2}\left(P^{\prime} \backslash e_{1} e_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
b_{k}\left(P^{\prime \prime}\right) & =b_{k}\left(P^{\prime \prime} \backslash e_{2}\right)+w_{2}^{2} b_{k-2}\left(P^{\prime \prime} \backslash u_{1} u_{2}\right) \\
& =b_{k}\left(P^{\prime \prime} \backslash e_{1} e_{2}\right)+w_{1}^{2} b_{k-2}\left(P^{\prime \prime} \backslash u_{1} u_{2} u_{3}\right)+w_{2}^{2} b_{k-2}\left(P^{\prime \prime} \backslash e_{1} e_{2}\right)
\end{aligned}
$$

Assume to the contrary that $w_{1}<w_{2}$. Note that $P^{\prime} \backslash u_{1} u_{2} u_{3}=P^{\prime \prime} \backslash u_{1} u_{2} u_{3}, P^{\prime} \backslash e_{1} e_{2}=$ $P^{\prime \prime} \backslash e_{1} e_{2}$, and that $P^{\prime} \backslash u_{1} u_{2} u_{3}$ is a proper subgraph of $P \backslash e_{1} e_{2}$. Then

$$
b_{k}\left(P^{\prime}\right)-b_{k}\left(P^{\prime \prime}\right)=\left(w_{1}^{2}-w_{2}^{2}\right)\left[b_{k-2}\left(P^{\prime} \backslash e_{1} e_{2}\right)-b_{k-2}\left(P^{\prime} \backslash u_{1} u_{2} u_{3}\right)\right] \leq 0
$$

and there exists at least one index k such that $b_{k}\left(P^{\prime}\right)-b_{k}\left(P^{\prime \prime}\right)<0$ as $P \backslash e_{1} e_{2}$ contains at least one edge. Thus $P^{\prime} \prec P^{\prime \prime}$, a contradiction to conditions (2) and (3). Consequently, the result (a) follows.

The proof of (b) is analogous.

Lemma 9. For $n \geq 5$, let $P^{\prime}=u_{1} e_{1} u_{2} e_{2} u_{3} e_{3} u_{4} \ldots u_{n-1} e_{n-1} u_{n} \in \mathcal{P}(n, W)$. Let the weight of the edge e_{i} be denoted by w_{i} for $i=1,2, \ldots, n-1$. If $\mathcal{E}\left(P^{\prime}\right)=\hat{\mathbb{E}}(n, W)$, then (a) $w_{1} \geq w_{3}$, and (b) $w_{n-1} \geq w_{n-3}$.

Proof. (a) Let $P^{\prime \prime}$ be the weighted path obtained from P^{\prime} by exchanging the edges e_{1} and e_{3}, that is, $P^{\prime \prime}=u_{1} e_{3} u_{2} e_{2} u_{3} e_{1} u_{4} \ldots u_{n-1} e_{n-1} u_{n}$. Then

$$
\begin{equation*}
\mathcal{E}\left(P^{\prime \prime}\right) \leq \mathcal{E}\left(P^{\prime}\right) \tag{4}
\end{equation*}
$$

By Corollary 6,

$$
\begin{aligned}
b_{k}\left(P^{\prime}\right) & =b_{k}\left(P^{\prime} \backslash e_{1}\right)+w_{1}^{2} b_{k-2}\left(P^{\prime} \backslash u_{1} u_{2}\right) \\
& =b_{k}\left(P^{\prime} \backslash e_{1} e_{3}\right)+w_{3}^{2} b_{k-2}\left(P^{\prime} \backslash u_{2} u_{3} u_{4}\right) \\
& +w_{1}^{2} b_{k-2}\left(P^{\prime} \backslash u_{1} u_{2} u_{3}\right)+w_{1}^{2} w_{3}^{2} b_{k-4}\left(P^{\prime} \backslash u_{1} u_{2} u_{3} u_{4}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
b_{k}\left(P^{\prime \prime}\right) & =b_{k}\left(P^{\prime \prime} \backslash e_{3}\right)+w_{3}^{2} b_{k-2}\left(P^{\prime \prime} \backslash u_{1} u_{2}\right) \\
& =b_{k}\left(P^{\prime \prime} \backslash e_{3} e_{1}\right)+w_{1}^{2} b_{k-2}\left(P^{\prime \prime} \backslash u_{2} u_{3} u_{4}\right) \\
& +w_{3}^{2} b_{k-2}\left(P^{\prime \prime} \backslash u_{1} u_{2} u_{3}\right)+w_{1}^{2} w_{3}^{2} b_{k-4}\left(P^{\prime \prime} \backslash u_{1} u_{2} u_{3} u_{4}\right)
\end{aligned}
$$

Assume to the contrary that $w_{1}<w_{3}$. Note that $P^{\prime} \backslash u_{1} u_{2} u_{3}=P^{\prime \prime} \backslash u_{1} u_{2} u_{3}$ and $P^{\prime} \backslash u_{2} u_{3} u_{4}=P^{\prime \prime} \backslash u_{2} u_{3} u_{4}$, and that $P^{\prime} \backslash u_{2} u_{3} u_{4}$ is the union of the isolated vertex u_{1} and a proper subgraph of $P^{\prime} \backslash u_{1} u_{2} u_{3}$. Then

$$
b_{k}\left(P^{\prime}\right)-b_{k}\left(P^{\prime \prime}\right)=\left(w_{3}^{2}-w_{1}^{2}\right)\left[b_{k-2}\left(P^{\prime \prime} \backslash u_{2} u_{3} u_{4}\right)-b_{k-2}\left(P^{\prime \prime} \backslash u_{1} u_{2} u_{3}\right)\right] \leq 0
$$

and there exists at least one integer k such that $b_{k}\left(P^{\prime}\right)-b_{k}\left(P^{\prime \prime}\right)<0$. Thus $P^{\prime} \prec P^{\prime \prime}$, a contradiction to condition (4). Consequently, the result (a) follows.

The proof of (b) is analogous.

For small order n, applying Lemmas 8 and 9 , we can determine the paths having maximal energy among the weighted paths in $\mathcal{P}(n, W)$.

Theorem 10. For $n \leq 6$, let $W=\left\{w_{1}, w_{2}, \ldots, w_{n-1}\right\}$ be a sequence of positive numbers such that $w_{1} \geq w_{2} \geq \cdots \geq w_{n-1}$, and let $P=u_{1} e_{1} u_{2} e_{2} \ldots u_{n-1} e_{n-1} u_{n} \in$ $\mathcal{P}(n, W)$ be the path having energy $\hat{\mathbb{E}}(n, W)$. Suppose $w\left(e_{1}\right) \geq w\left(e_{n-1}\right)$. Then for $i=1,2, \ldots, n-1$,
$w\left(e_{i}\right)= \begin{cases}w_{i} & \text { if either } i \leq\left\lceil\frac{n-1}{2}\right\rceil \text { and } i \text { is odd, or } i>\left\lceil\frac{n-1}{2}\right\rceil \text { and } n-i \text { is even, } \\ w_{n+1-i} & \text { otherwise. }\end{cases}$

Proof. Bearing in mind Lemma 8 and the hypothesis that $w\left(e_{1}\right) \geq w\left(e_{n-1}\right)$, the result follows for $n \leq 4$.

For $n=5$, from Lemmas 8 and 9 , we have that the desired path is either $P_{1}=$ $w_{1} w_{3} w_{4} w_{2}$ or $P_{2}=w_{1} w_{4} w_{3} w_{2}$. By a direct calculation, we have

$$
\begin{aligned}
& b_{2}\left(P_{1}\right)=b_{2}\left(P_{2}\right) \\
& b_{4}\left(P_{1}\right)=w_{1}^{2} w_{4}^{2}+w_{1}^{2} w_{2}^{2}+w_{3}^{2} w_{2}^{2} \\
& b_{4}\left(P_{2}\right)=w_{1}^{2} w_{3}^{2}+w_{1}^{2} w_{2}^{2}+w_{4}^{2} w_{2}^{2}
\end{aligned}
$$

from which we conclude that $P_{2} \succeq P_{1}$. Then P_{2} is the desired path and the result follows.

For $n=6$, since $w\left(e_{1}\right) \geq w\left(e_{5}\right)$, we first show that $w\left(e_{2}\right) \leq w\left(e_{4}\right)$. Let P^{\prime} be the weighted path obtained from P by exchanging the edges e_{1} and e_{5}, that is, $P^{\prime}=u_{1} e_{5} u_{2} e_{2} u_{3} e_{3} u_{4} e_{4} u_{5} e_{1} u_{6}$. Then

$$
\begin{equation*}
\mathcal{E}\left(P^{\prime}\right) \leq \mathcal{E}(P) \tag{5}
\end{equation*}
$$

By Corollary 6,

$$
\begin{aligned}
b_{k}(P) & =b_{k}\left(P \backslash e_{1}\right)+w\left(e_{1}\right)^{2} b_{k-2}\left(P \backslash u_{1} u_{2}\right) \\
& =b_{k}\left(P \backslash e_{1} e_{5}\right)+w\left(e_{5}\right)^{2} b_{k-2}\left(P \backslash e_{1} u_{5} u_{6}\right) \\
& +w\left(e_{1}\right)^{2} b_{k-2}\left(P \backslash u_{1} u_{2} e_{5}\right)+w\left(e_{1}\right)^{2} w\left(e_{5}\right)^{2} b_{k-4}\left(P \backslash u_{1} u_{2} u_{5} u_{6}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
b_{k}\left(P^{\prime}\right) & =b_{k}\left(P^{\prime} \backslash e_{5}\right)+w\left(e_{5}\right)^{2} b_{k-2}\left(P^{\prime} \backslash u_{1} u_{2}\right) \\
& =b_{k}\left(P^{\prime} \backslash e_{5} e_{1}\right)+w\left(e_{1}\right)^{2} b_{k-2}\left(P^{\prime} \backslash e_{5} u_{5} u_{6}\right) \\
& +w\left(e_{5}\right)^{2} b_{k-2}\left(P^{\prime} \backslash u_{1} u_{2} e_{1}\right)+w\left(e_{1}\right)^{2} w\left(e_{5}\right)^{2} b_{k-4}\left(P^{\prime} \backslash u_{1} u_{2} u_{5} u_{6}\right)
\end{aligned}
$$

Hence,

$$
b_{k}(P)-b_{k}\left(P^{\prime}\right)=\left(w\left(e_{5}\right)^{2}-w\left(e_{1}\right)^{2}\right)\left[b_{k-2}\left(P \backslash e_{1} u_{5} u_{6}\right)-b_{k-2}\left(P \backslash u_{1} u_{2} e_{5}\right)\right]
$$

So, we have

$$
\begin{aligned}
& b_{2}(P)-b_{2}\left(P^{\prime}\right)=0 \\
& b_{4}(P)-b_{4}\left(P^{\prime}\right)=\left(w\left(e_{5}\right)^{2}-w\left(e_{1}\right)^{2}\right)\left[\left(w\left(e_{2}\right)^{2}+w\left(e_{3}\right)^{2}\right)-\left(w\left(e_{3}\right)^{2}+w\left(e_{4}\right)^{2}\right)\right] \\
& b_{6}(P)-b_{6}\left(P^{\prime}\right)=0
\end{aligned}
$$

Since $\mathcal{E}\left(P^{\prime}\right) \leq \mathcal{E}(P)$, we have that $b_{4}(P)-b_{4}\left(P^{\prime}\right) \geq 0$. From $w\left(e_{1}\right) \geq w\left(e_{5}\right)$, it follows that $w\left(e_{2}\right) \leq w\left(e_{4}\right)$.

Taking into account Lemmas 8 and 9 , we get that the desired path is $P_{1}=$ $w_{1} w_{4} w_{5} w_{3} w_{2}$, or $P_{2}=w_{1} w_{5} w_{4} w_{3} w_{2}$, or $P_{3}=w_{1} w_{5} w_{3} w_{4} w_{2}$. Direct calculation yields that

$$
b_{2}\left(P_{1}\right)=b_{2}\left(P_{2}\right)=b_{2}\left(P_{3}\right)
$$

$$
\begin{aligned}
& b_{4}\left(P_{1}\right)=w_{1}^{2} w_{5}^{2}+w_{1}^{2} w_{3}^{2}+w_{1}^{2} w_{2}^{2}+w_{4}^{2} w_{3}^{2}+w_{4}^{2} w_{2}^{2}+w_{5}^{2} w_{2}^{2} \\
& b_{4}\left(P_{2}\right)=w_{1}^{2} w_{4}^{2}+w_{1}^{2} w_{3}^{2}+w_{1}^{2} w_{2}^{2}+w_{5}^{2} w_{3}^{2}+w_{5}^{2} w_{2}^{2}+w_{4}^{2} w_{2}^{2} \\
& b_{4}\left(P_{3}\right)=w_{1}^{2} w_{3}^{2}+w_{1}^{2} w_{4}^{2}+w_{1}^{2} w_{2}^{2}+w_{5}^{2} w_{4}^{2}+w_{5}^{2} w_{2}^{2}+w_{3}^{2} w_{2}^{2} \\
& b_{6}\left(P_{1}\right)=w_{1}^{2} w_{5}^{2} w_{2}^{2} \\
& b_{6}\left(P_{2}\right)=w_{1}^{2} w_{4}^{2} w_{2}^{2} \\
& b_{6}\left(P_{3}\right)=w_{1}^{2} w_{3}^{2} w_{2}^{2}
\end{aligned}
$$

which implies $P_{3} \succeq P_{2} \succeq P_{1}$. Then P_{3} is the desired path and the result follows.
For general case $n \geq 7$, we cannot solve the problem; but we think that the following conjecture is true.

Conjecture 11. For $n \geq 3$, let $W=\left\{w_{1}, w_{2}, \ldots, w_{n-1}\right\}$ be a sequence of positive numbers such that $w_{1} \geq w_{2} \geq \cdots \geq w_{n-1}$. Let $P=u_{1} e_{1} u_{2} e_{2} \ldots u_{n-1} e_{n-1} u_{n} \in$ $\mathcal{P}(n, W)$ be the path having energy $\hat{\mathbb{E}}(n, W)$. Suppose $w\left(e_{1}\right) \geq w\left(e_{n-1}\right)$. Then for $i=1,2, \ldots, n-1$,
$w\left(e_{i}\right)= \begin{cases}w_{i} & \text { if either } i \leq\left\lceil\frac{n-1}{2}\right\rceil \text { and } i \text { is odd, or } i>\left\lceil\frac{n-1}{2}\right\rceil \text { and } n-i \text { is even, } \\ w_{n+1-i} & \text { otherwise. }\end{cases}$
Though we cannot prove the conjecture, we get the following results to support it.

Theorem 12. For $n \geq 3$, let $W=\{x, \overbrace{y, \ldots, y}^{n-2}\}$ be a sequence of positive numbers such that $x>y$. Then, up to isomorphism, $P=x \overbrace{y \ldots y}^{n-2}$ is the unique path having energy $\hat{\mathbb{E}}(n, W)$.

Theorem 12 can be considered as a generalized version of Theorem 11 from Ref. [3], and therefore its proof is omitted.

Theorem 13. For $n \geq 3$, let $W=\{x, y, \overbrace{z, \ldots, z}^{n-3}\}$ be a sequence of positive numbers such that $x \geq y>z$. Then, up to isomorphism, $P=x \overbrace{z \ldots z}^{n-3} y$ is the unique path having energy $\hat{\mathbb{E}}(n, W)$.

Proof. By Theorem 10, the result follows for $n \leq 6$. Therefore, suppose $n \geq 7$.
Denote by $P^{*}=u_{1} e_{1} u_{2} e_{2} u_{3} \ldots u_{n-1} e_{n-1} u_{n}$ the path having energy $\hat{\mathbb{E}}(n, W)$. Since there are exactly two edges in P^{*} whose weights are not z, we suppose that $w\left(e_{i}\right) \neq z$ and $w\left(e_{i+t}\right) \neq z$ for $1 \leq i \leq n-2,1 \leq t \leq n-2$. Then it is sufficient to show that $t=n-2$.

If $t \geq 2$ and $t \neq n-2$, then there exists a pendent edge, say e_{1}, having weight z. Without loss of generality, suppose $w\left(e_{i+t}\right)=x$. Then $w\left(e_{i}\right)=y$. Applying Corollary 6 to the edge e_{i+t}, we have

$$
b_{k}\left(P^{*}\right)=b_{k}\left(P^{*} \backslash e_{i+t}\right)+x^{2} b_{k-2}\left(P^{*} \backslash u_{i+t} u_{i+t+1}\right)
$$

Let $P^{* *}$ be the weighted path obtained from P^{*} by exchanging the edges e_{i} and e_{1}. Then,

$$
b_{k}\left(P^{* *}\right)=b_{k}\left(P^{* *} \backslash e_{i+t}\right)+x^{2} b_{k-2}\left(P^{* *} \backslash u_{i+t} u_{i+t+1}\right) .
$$

One can show that both $P^{*} \backslash e_{i+t}$ and $P^{* *} \backslash e_{i+t}$ contain a component which is a weighted path belonging to $\mathcal{P}\left(i+t, W_{1}\right)$, where $W_{1}=\{y, \overbrace{z, \ldots, z}^{i+t-2}\}$. Applying Theorem 12, we have $P^{*} \backslash e_{i+t} \prec P^{* *} \backslash e_{i+t}$. Similarly, we have $P^{*} \backslash u_{i+t} u_{i+t+1} \prec P^{* *} \backslash u_{i+t} u_{i+t+1}$. Consequently, $P^{*} \prec P^{* *}$, which yields a contradiction.

If $t=1$, then there exists a pendent edge, say e_{1}, having weight z. Without loss of generality, suppose $w\left(e_{i+1}\right)=x$. Then $w\left(e_{i}\right)=y$. Applying Corollary 6 to the edge e_{i+1}, we have

$$
b_{k}\left(P^{*}\right)=b_{k}\left(P^{*} \backslash e_{i+1}\right)+x^{2} b_{k-2}\left(P^{*} \backslash u_{i+1} u_{i+2}\right) .
$$

Let $P^{* *}$ be the weighted path obtained from P^{*} by exchanging the edges e_{i} and e_{1}. Then,

$$
b_{k}\left(P^{* *}\right)=b_{k}\left(P^{* *} \backslash e_{i+1}\right)+x^{2} b_{k-2}\left(P^{* *} \backslash u_{i+1} u_{i+2}\right) .
$$

One can show that $P^{*} \backslash e_{i+1} \sim P^{* *} \backslash e_{i+1}$, and both $P^{*} \backslash u_{i+1} u_{i+2}$ and $P^{* *} \backslash u_{i+1} u_{i+2}$ contain a component, denoted respectively by P_{1}^{*} and $P_{1}^{* *}$, having i vertices. However, $P_{1}^{*}=\overbrace{z \ldots z}^{i-1}$ and $P_{1}^{* *} \in \mathcal{P}\left(i, W_{1}\right)$, where $W_{1}=\{y, \overbrace{z, \ldots, z}^{i-2}\}$. Hence, $P_{1}^{*} \prec P_{1}^{* *}$. Consequently, $P^{*} \prec P^{* *}$, which also yields a contradiction.

The result thus follows.

Theorem 14. For $n \geq 3$, let $W_{n-1}=\{\overbrace{x, \ldots, x}^{n-2}, y\}$ be a sequence of positive numbers such that $x>y$. Then, up to isomorphism, $\hat{P}_{n}=x y \overbrace{x \ldots x}^{n-3}$ is the unique path having energy $\hat{\mathbb{E}}\left(n, W_{n-1}\right)$.

Proof. We prove Theorem 14 by induction on n. From Theorem 10, the result follows for $n \leq 6$. Suppose that the result is true for smaller n. For $n \geq 7$, denote the path having energy $\hat{\mathbb{E}}(n, W)$ by $P^{*}=u_{1} e_{1} u_{2} e_{2} u_{3} \ldots u_{n-1} e_{n-1} u_{n}$. By Lemma $8, w\left(e_{1}\right)=$ $w\left(e_{n-1}\right)=x$. Since P^{*} has exactly one edge having weight y, we suppose that $w\left(e_{n-2}\right)=x$. Applying Corollary 6, we have

$$
b_{k}\left(P^{*}\right)=b_{k}\left(P^{*} \backslash e_{n-1}\right)+x^{2} b_{k-2}\left(P^{*} \backslash u_{n-1} u_{n-2}\right) .
$$

Then, $P^{*} \backslash e_{n-1} \in \mathcal{P}\left(n, W_{n-2}\right)$ and $P^{*} \backslash u_{n-1} u_{n-2} \in \mathcal{P}\left(n, W_{n-3}\right)$. By the induction assumption, $P^{*} \backslash e_{n-1} \preceq \hat{P}_{n-1}$ with equality holding if and only if $P^{*} \backslash e_{n-1}=\hat{P}_{n-1}$. In addition, $P^{*} \backslash u_{n-1} u_{n-2} \preceq \hat{P}_{n-2}$ with equality holding if and only if $P^{*} \backslash u_{n-1} u_{n-2}=$ \hat{P}_{n-2}. Hence, the result follows.

References

[1] J. Aihara, General rules for constructing Hückel molecular orbital characteristic polynomials, J. Am. Chem. Soc. 98 (1976) 6840-6844.
[2] S. Akbari, E. Ghorbani, M. R. Oboudi, Edge addition, singular values and energy of graphs and matrices, Lin. Algebra Appl. 430 (2009) 2192-2199.
[3] R. A. Brualdi, J. Y. Shao, S. C. Gong, C. Q. Xu, G. H. Xu, On the extremal energy of integral weighted trees, Lin. Multilin. Algebra 60 (2012) 1255-1264.
[4] C. A. Coulson, On the calculation of the energy in unsaturated hydrocarbon molecules, Proc. Cambridge Phil. Soc. 36 (1940) 201-203.
[5] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980.
[6] D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge Univ. Press, Cambridge, 2010.
[7] S. C. Gong, G. H. Xu, The characteristic polynomial and the matchings polynomial of a weighted oriented graph, Lin. Algebra Appl. 436 (2012) 3597-3607.
[8] A. Graovac, I. Gutman, N. Trinajstic, Topological Approach to the Chemistry of Conjugated Molecules, Springer, Berlin, 1977.
[9] A. Graovac, I. Gutman, N. Trinajstić, T. Živković, Graph theory and molecular orbitals. Application of Sachs theorem, Theor. Chim. Acta 26 (1972) 67-78.
[10] I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theor. Chim. Acta 45 (1977) 79-87.
[11] I. Gutman, Generalizations of a recurrence relation for the characteristic polynomials of trees, Publ. Inst. Math. (Beograd) 21 (1977) 75-80.
[12] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz. 103 (1978) 1-22.
[13] I. Gutman, Partial ordering of forests according to their characteristic polynomials, in: A. Hajnal, V. T. Sós (Eds.), Combinatorics, North-Holland, Amsterdam, 1978, pp. 429-436.
[14] I. Gutman, Rectifying a misbelief: Frank Harary's role in the discovery of the coefficient-theorem in chemical graph theory, J. Math. Chem. 16 (1994) 73-78.
[15] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Lau, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer, Berlin, 2001, pp. 196-211.
[16] I. Gutman, M. Mateljević, Note on the Coulson integral formula, J. Math. Chem. 39 (2006) 259-266.
[17] I. Gutman, J. Y. Shao, The energy change of weighted graphs, Lin. Algebra Appl. 435 (2011) 2425-2431.
[18] I. Gutman, F. Zhang, On a quasiordering of bipartite graphs, Publ. Inst. Math. (Beograd) 40 (1986) 11-15.
[19] R. B. Mallion, A. J. Schwenk, N. Trinajstić, A graphical study of heteroconjugated molecules, Croat. Chem. Acta 46 (1974) 171-182.
[20] R. B. Mallion, N. Trinajstić, A. J. Schwenk, Graph theory in chemistry - Generalization of Sachs' formula, Z. Naturforsch. 29a (1974) 1481-1484.
[21] J. Y. Shao, F. Gong, Z. B. Du, The extremal energies of weighted trees and forests with fixed total weight sum, MATCH Commun. Math. Comput. Chem. 66 (2011) 879-890.
[22] F. Zhang, Two theorems of comparison of bipartite graphs by their energy, Kexue Tongbao 28 (1983) 726-730.
[23] F. Zhang, Z. Lai, Three theorems of comparison of trees by their energy, Sci. Explor. 3 (1983) 12-19.

[^0]: *Corresponding author
 ${ }^{\dagger}$ Supported by the Zhejiang Provincial Natural Science Foundation of China, (No. LY12A01016)
 ${ }^{\ddagger}$ Supported by the National Natural Science Foundation of China, (No. 11371205)
 ${ }^{\text {§ }}$ Supported by the National Natural Science Foundation of China, (No. 11171373)

