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Abstract

The Wiener index of a connected graph is defined as the sum of distances be-
tween all unordered pairs of its vertices. A segment of a tree is a path-subtree
whose terminal vertices are branching or pendent vertices. The length of a segment
S is equal to the number of edges in S and it is denoted by lS . If a tree T has
segments S1, S2, ...,Sm, then the sequence (lS1 , lS2 , ..., lSm) is called the segment
sequence of T . In this paper, we characterize the trees which minimize the Wiener
index among all trees of given order with prescribed segment sequence.

1 Introduction

All graphs considered in this paper are simple, connected graphs. Let G be a graph

with vertex set V (G) and edge set E(G). A vertex of degree one of a tree is called a

pendent vertex. A vertex of a tree T with degree 3 or greater is called a branching vertex

of T . As usual, Sn and Pn denote, respectively, the star and path on n vertices. The

distance between vertices u and v of G is denoted by dG(u, v). For other terminologies and

notations not defined here we refer the readers to [4]. The Wiener index of a connected

graph G is defined as

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) .
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The Wiener index belongs to the oldest graph-based structure descriptors (topological

indices). It was first introduced by Wiener [22] and has been extensively studied in many

articles. Chemists are often interested in the Wiener index of trees which represent

acyclic molecular structures. Since every atom has a certain valency, researchers are also

interested in trees with degree restrictions and having maximal or minimal Wiener index

[6–8, 10–13, 19].

The degree deg(v) of a vertex v in G is the number of edges of G incident with v.

If a graph G has vertices v1, v2, ...,vn, then the sequence (deg(v1), deg(v2), ..., deg(vn)) is

called a degree sequence of G. It is well known that a sequence (d1, d2, ..., dn) of positive

integers is a degree sequence of an n−vertex tree if and only if

d1 + d2 + ... + dn = 2(n− 1) .

The extremal questions of maximizing or minimizing various topological indices among

trees with a given degree sequence have been widely studied, see [1] for the spectral radius,

[9, 16–18, 20, 21, 23, 24] for the Wiener index, [16] for the terminal Wiener index and

[15] for the second Zagreb index and Wiener polarity index.

The aim of this paper is to introduce a new graphical sequence which encodes the

structure of trees and investigate how this sequence influences the Wiener index of trees.

Recall that a segment of a tree T [4, p. 219] is a path-subtree S whose terminal

vertices are branching or pendent vertices of T (i.e., every internal vertex v of S has

dT (v) = 2). The length of a segment S is equal to the number of edges in S and it is

denoted by lS. Dobrynin, Entringer and Gutman (see Section 5 of [4]) summarized many

applications of this concept to the calculation of the Wiener index of trees. If a tree T has

segments S1, S2, ...,Sm, then the sequence (lS1 , lS2 , ..., lSm) is called the segment sequence

of T . It is known that [4, p. 229] a sequence (t1, t2, ..., tm) (m ≥ 3) of positive integers is

a segment sequence of an n−vertex tree if and only if

t1 + t2 + ... + tm + 1 = n . (1)

Given a sequence (l1, l2, ..., lm) of positive integers, denote by Sl1,l2,...,lm the set of all

trees with the segment sequence (l1, l2, ..., lm), and by S(l1, l2, ..., lm) the tree obtained

from m disjoint paths Pl1 , Pl2 , ..., Plm by adding a new vertex u and joining u to each of

the vertices w1, w2, ..., wm, where wi is a terminal vertex of the path Pli for i = 1, 2, ...,m.

Clearly, S(l1, l2, ..., lm) ∈ Sl1,l2,...,lm . Note that the path Pl1 is the unique element in Sl1
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and the set Sl1,l2 is empty. So in the following we only consider the class Sl1,l2,...,lm with

m ≥ 3. In Figure 1, all trees in S2,1,1,1,1 are depicted.
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S(2, 1, 1, 1, 1) T1 T2

Fig. 1 The trees in S2,1,1,1,1

As mentioned above, the problem of maximizing and minimizing the Wiener index

of trees with prescribed degree sequence were studied a lot. The segment sequence is a

natural characteristic of the structure of a tree. Given a tree T , one can easily get its

segment sequence. So it is natural to consider the analogous problem for the trees with

prescribed segment sequence.

Problem A. Characterize the trees which maximize and minimize the Wiener index

among all trees with prescribed segment sequence.

In this paper, we give a partial solution of the above problem by proving the following

theorem.

Theorem 1. For any tree T ∈ Sl1,l2,...,lm , m ≥ 3, it holds that

W (T ) ≥ W (S(l1, l2, ..., lm) ,

with equality if and only if T = S(l1, l2, ..., lm).

2 Proof of the main result and discussion

If all internal vertices and all edges of a segment S are deleted from a tree T , we have two

nontrivial connected components. Denote by n1(S) and n2(S) the number of vertices of

these components.

Lemma 2 ([4, p.220]). Let T be a tree on n vertices. Then

W (T ) =
∑
S

n1(S)n2(S)lS +
1

6

∑
S

lS(lS − 1)(3n− 2lS + 1) ,

where the summations go over all segments S of T .

-83-



With the aid of the lemma above, we shall prove a simple lemma which will help to

prove our main result.

For a segment S of a tree T , if one terminal vertex of S is a pendent vertex, then S

is called a pendent segment of T . Otherwise, it is called a nonpendent segment of T .

Given a tree T ∈ Sl1,l2,...,lm , m ≥ 3, if T contains a nonpendent segment S0, then

T must comprise the structure as shown in Figure 2, where u and v are two terminal

vertices of S0, T1 and T2 are two subtrees of T linked by the segment S0. Let T ′ be

the tree obtained from T by contracting the segment S0 and adding a pendent segment

S ′0 to the vertex u(=v) with lS′
0

= lS0 (see Figure 2). Clearly, T ′ ∈ Sl1,l2,...,lm . Such a

transformation will be called a starlike-operation of T .

&%
'$

&%
'$

&%
'$

&%
'$s scc c s
c
c
c
c

T1 u v T2 T1 u T2

S0

S ′0...

...

T T ′lS0 = lS′
0

=⇒

Fig. 2 Two trees T and T ′ in Sl1,l2,...,lm .

Lemma 3. Let T and T ′ be two trees whose structures are specified above. Then

W (T )−W (T ′) = (n1 − 1)(n2 − 1)lS0 > 0 ,

where n1 = |V (T1)| and n2 = |V (T2)| .

Proof. Set n = l1 + l2 + ... + lm + 1, according to (1), |V (T )| = |V (T ′)| = n. Let

A = {S0, S1, ..., Sm−1} be the set of segments of T , where S0 is the nonpendent seg-

ment depicted in Figure 2. We may assume that the segment Si in T becomes the

corresponding segment S ′i in T ′ under the starlike-operation, i = 0, 1, ...,m − 1. Then

B = {S ′0, S ′1, ..., S ′m−1} is the set of segments of T ′, and

lSi
= lS′

i
for each i ∈ {0, 1, ...,m− 1}. (2)

By Lemma 2,

W (T ) =
∑
S∈A

n1(S)n2(S)lS +
1

6

∑
S∈A

lS(lS − 1)(3n− 2lS + 1) , (3)
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and,

W (T ′) =
∑
S′∈B

n1(S
′)n2(S

′)lS′ +
1

6

∑
S′∈B

lS′(lS′ − 1)(3n− 2lS′ + 1) . (4)

It is easily checked that n1(Si)n2(Si) = n1(S
′
i)n2(S

′
i) for each i ∈ {1, 2, ...,m− 1},

n1(S0)n2(S0)lS0 = n1n2lS0 ,

and

n1(S
′
0)n2(S

′
0)lS′

0
= (n1 + n2 − 1)lS0 .

Thus, by (2)∑
S∈A

n1(S)n2(S)lS −
∑
S′∈B

n1(S
′)n2(S

′)lS′ = n1n2lS0 − (n1 + n2 − 1)lS0

= (n1 − 1)(n2 − 1)lS0 , (5)

and further,

1

6

∑
S∈A

lS(lS − 1)(3n− 2lS + 1) =
1

6

∑
S′∈B

lS′(lS′ − 1)(3n− 2lS′ + 1) . (6)

Combining (3), (4), (5) and (6), we arrive at

W (T )−W (T ′) = (n1 − 1)(n2 − 1)lS0 > 0 (since n1 ≥ 3, n2 ≥ 3) ,

as required. �

Remark. A special case for lS0 = 1 of Lemma 3 was found by Dong and Guo (see

Theorem 2.5 of [5]).

Proof of Theorem 1. For a T ∈ Sl1,l2,...,lm , if T 6= S(l1, l2, ..., lm), then T must have

some nonpendent segments, thus T can be transformed into the tree S(l1, l2, ..., lm) by

carrying out the starlike-operarton repeatedly. By Lemma 3, we have

W (T ) > W (S(l1, l2, ..., lm)) .

This completes the proof of Theorem 1. �

In regard to maximizing and minimizing the Wiener index of trees with prescribed

degree sequence, it has been proved that the minimum is attained by the greedy trees

[20, 23]. The maximization problem can be reduced to the study of caterpillars [17], but

a complete solution is still open [9, 16, 24]. Theorem 1 gives a complete solution to the

minimization problem in Problem A, but the solution to the maximization problem seems

to be difficult.
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Fig. 3 A quasi caterpillar R

Recall a tree is called a caterpillar if the removal of all pendent vertices results in a

path. We further define that a tree is a quasi caterpillar if the removal of all pendent

vertices and all vertices of degree two that lie in the pendent segments of the tree results

in a path, see Figure 3 for an example. Numerical testing of trees with a small number of

segments revealed that the trees with the maximum Wiener index among all trees with

prescribed segment sequence are quasi caterpillars. So, it might be worthwhile to consider

the following problem, which might provide a clue to the solution of the maximization

problem in Problem A.

Problem B. Let Tmax be the tree with the maximum Wiener index among all trees

with prescribed segment sequence, does Tmax have to be a quasi caterpillar?

Recently, the first author of the present paper [14] characterized the trees which mini-

mize and maximize the first Zagreb index among all trees with fixed number of segments,

respectively. Borovićanin [2] characterized the trees which minimize and maximize the

second Zagreb index among all trees with fixed number of segments, respectively. So

it is natural to consider the analogous extremal problem for the Wiener index. In the

following, we shall give a partial solution of this problem.
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ST (17, 6)

Fig. 4 The tree ST (17, 6)
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Let ST (n,m) be an n−vertex tree obtained from m disjoint paths (each has dn−1
m
e or

bn−1
m
c vertices) by attaching one endvertex of each path to a new vertex a. The vertex a

is called the center of ST (n,m), see Figure 4 for an example. Note that ST (n, 2) = Pn

and ST (n, n− 1) = Sn. Burns and Entringer [3] obtained the following result ( see also

Theorem 31 of [4]).

Theorem 4 ([3]). Let T be a tree on n vertices with k pendent vertices, then

W (T ) ≥ W (ST (n, k)) ,

with equality if and only if T = ST (n, k).

Denote by STn,k the set of all n−vertex trees with exactly k segments. Note that

the path Pn is the unique element in STn,1, the star Sn is the unique element in STn,n−1

and the set STn,2 is empty. So in the following we only consider the class STn,k with

3 ≤ k ≤ n− 2.

Now we can state the following.

Theorem 5. For any tree T ∈ STn,k, where 3 ≤ k ≤ n− 2, it holds that

W (T ) ≥ W (ST (n, k)) ,

with equality if and only if T = ST (n, k).

Proof. In view of Theorem 1, a tree that minimizes the Wiener index in STn,k has to be

the form S(l1, l2, ..., lk), where l1, l2, ..., lk are positive integers with l1+ l2+ ...+ lk +1 = n.

But this means that it has k pendent vertices, so the statement of Theorem 5 follows

directly from Theorem 4. 2

c c c c c cc s s s s s s cc c c c... .. ..
... ... ...1 dk−1

4
e1 2 x 1bk−1

4
c

O(n, k)

x = n− k − 1

c
c c c c c cc s s s s s s cc c c c... .. ..

... ... ...1 bk−2
4
c1 2 x 1dk−2

4
e

E(n, k)

x = n− k − 1

Fig. 5 Two trees O(n, k) and E(n, k)

Let O(n, k) and E(n, k) be the trees depicted in Figure 5. Clearly, O(n, k) ∈ STn,k,

E(n, k) ∈ STn,k, O(n, k) and E(n, k) are chemical trees (trees with maximum degrees at

most 4). Numerical testing of trees in STn,k with small values of n and k revealed that
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O(n, k) uniquely attains the maximum value of the Wiener index for odd k and E(n, k)

uniquely attains the maximum value of the Wiener index for even k. So it might be

worthwhile to consider the following problem.

Problem C. Among all trees in STn,k, does O(n, k) (resp. E(n, k)) attain the maximum

value of the Wiener index for odd (resp. even) k?

It should be mentioned that in [14], it is proved that among all trees in STn,k, the

trees with the same degree sequence as O(n, k) (resp. E(n, k)) attain the minimum value

of the first Zagreb index for odd (resp. even) k.

Acknowledgment : The author would like to thank an anonymous referee whose sugges-

tions helped to improve this paper.
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