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Abstract

A chemical index of a molecular graph G is the sum of weights w(u, v) over all
pairs of vertices u and v in G. It is the Wiener index W (G) if w(u, v) is the distance
of u and v, the Randić index R(G) if w(u, v) = [d(u)d(v)]−1/2 for u adjacent to
v and 0 otherwise, and the harmonic index H(G) if w(u, v) = 2/[d(u) + d(v)] for
u adjacent to v and 0 otherwise, where d(v) denotes the degree of v. In 1988,
Fajtlowicz conjectured that W (G) ≤

(
n
2

)
R(G) for all connected graphs G of order

n. Strengthening another conjecture of Fajtlowicz as well as Caporossi and Hansen,
Deng, Tang and Zhang conjectured that H(G) ≥ r(G) for all connected graphs G
except paths of even order, where r(G) denotes the radius of G. In this paper, we
prove these conjectures for dense triangle-free graphs, and also prove that W (T ) ≤(
n
2

)
H(T ) for all trees T of order n with equality if and only if T is a star. As a

consequence, the Fajtlowicz conjecture holds for trees which was recently proven by
Cygan, Pilipczuk and Škrekovski.

1 Introduction

All graphs in this paper are simple, i.e., without loops and multiple edges. Let G = (V,E)

be a connected graph of order n = |V |. The size of G is |E|. For a vertex v of G, the

degree of v denoted by d(v) is the number of its neighbors. A graph is called regular if

its vertices are all of the same degree, and called bi-regular if its vertices have degrees

among two values. For a pair of vertices u and v of G, the distance between u and v in

G, denoted by d(u, v), is the length of a shortest path between u and v. The radius of G,
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denoted by r(G), is defined as

r(G) := min
u∈V

max
v∈V

d(u, v).

A chemical index is a topological molecular descriptor on the molecular graph of a chemical

compound. More precisely, a chemical index of G is the sum of weights w(u, v) over all

pairs of vertices u and v in G. Different weights lead to different chemical indices. In

1947, Wiener [19] introduced the first chemical index denoted by W (G), now called the

Wiener index as follows,

W (G) :=
∑

{u,v}∈V2

d(u, v),

where V2 denotes the set of all 2-element subsets of V . In 1975, Randić [17] introduced

another chemical index denoted by R(G), called the Randić index as follows,

R(G) :=
∑
uv∈E

[d(u)d(v)]−1/2.

As a variance of the Randić index, in 1987 Fajtlowicz [11] introduced the harmonic index

denoted by H(G) as follows,

H(G) :=
∑
uv∈E

2

d(u) + d(v)
.

Since the geometric mean of d(u) and d(v) cannot exceed their arithmetic mean, we have

H(G) ≤ R(G) with equality if and only if G is regular. The mean distance µ(G) of

G is defined by µ(G) := W (G)/
(
n
2

)
. It was introduced by Doyle and Graver [7] as a

measure of the “compactness” of the graph. These indices of graphs have some important

applications in mathematical chemistry and are well studied by many mathematical or

chemical researchers. Their relationships were studied in [12,25]. The Randić index were

investigated for graphs with cyclomatic number at most 3 [4, 8]. In 1988, Fajtlowicz [10]

posed the following conjectures based on the computer program Graffiti.

Conjecture 1.1 [10] For all connected graphs G, µ(G) ≤ R(G).

Conjecture 1.2 [10] For all connected graphs G, r(G) ≤ 1 +R(G).

Conjecture 1.2 was strengthened by Caporossi and Hansen [1] as follows.

Conjecture 1.3 [1] For all connected graphs G except paths of even order, r(G) ≤ R(G).
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Conjecture 1.3 was further strengthened by Deng, Tang and Zhang [6] as follows.

Conjecture 1.4 [6] For all connected graphs G except paths of even order, r(G) ≤ H(G).

Conjecture 1.1 was proven for trees by Cygan, Pilipczuk and Škrekovski [2] and for uni-

cyclic graphs by You and Liu [21]. Li and Shi [15] found that the Delorme-Favaron-

Rautenbach conjecture [5] implies Conjecture 1.1 for dense graphs of order n ≥ 15 with

minimum degree at least n/5. Strengthening the result of Cygan et al. we obtain the

following result.

Theorem 1.1 For all trees T , µ(T ) ≤ H(T ) with equality if and only if T is a star.

Conjectrue 1.2 was proven for graphs with cyclomatic number at most 3 [1, 16, 22]. Con-

jecture 1.3 was proven for trees by Caporossi and Hansen [1] and for bi-regular graphs

by You and Liu [22]. Conjecture 1.4 was proven for trees and unicyclic graphs by Deng,

Tang and Zhang [6]. In this paper, we also prove these conjectures for dense triangle-free

graphs.

Theorem 1.2 Let G be a connected triangle-free graph of order n with minimum degree

δ. Then for sufficiently large n, the following statements hold.

1. r(G) ≤ R(G) if δ ≥ n1/3 + 25n−1/3.

2. µ(G) ≤ R(G) if δ ≥ (n/2)1/3.

3. r(G) ≤ H(G) if δ ≥
√
n/2 + 7.

4. µ(G) ≤ H(G) if δ ≥
√
n/3 + 5.

The proofs of Theorems 1.1 and 1.2 will be presented in the following two sections respec-

tively.

2 Trees

The proof of Theorem 1.1 is based on an upper bound on µ(T ) by Cygan et al. [2] and a

sharp estimate on H(T ) where T is a tree with given number of leaves. We will give the

sharp bounds on H(T ) in the following subsection and finish the proof afterwards.
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2.1 Trees with given number of leaves

Let T be a tree. For a vertex v of T , denote the neighborhood of v by N(v) and thus the

degree d(v) = |N(v)|. We use T − v to denote the graph that arises from T by deleting

the vertex v of T . A leaf of T is a vertex of degree one and a pendent edge is incident to

a leaf. Let Ps = v0v1 · · · vs be a path of T with d(v1) = d(v2) = · · · = d(vs−1) = 2 (unless

s = 1). If the vertex v0 is a leaf and d(vs) ≥ 3, then we call Ps a pendent path of T and

also call that s the length of the pendent path Ps. Let Tn,k := {T : T is a tree of order n

with k leaves}. For T ∈ Tn,k, denote

Vi(T ) := {v | v ∈ V (T ), d(v) = i}, and ni(T ) := |Vi(T )|.

Denote the neighborhood of leaves by N(V1) := ∪v∈V1(T )N(v). Set E2(T ) := {uv ∈ E(T ) |

d(u) = d(v) = 2} and P(T ) := {P : P is a pendent path of length at least 2 in T}. Let Snk

denote a tree of order n created from a star K1,k by attaching a path of length n− k − 1

to a leaf of K1,k. We call T a (k, 3)-regular tree if T is a tree with k leaves and for each

vertex v ∈ V (T ) \ V1(T ), d(v) = 3 and it is clear that |V (T )| = 2k − 2. Denote by T ∗n,k
the set of T ∗n,k, where T ∗n,k is a tree of order n created from a (k, 3)-regular tree by adding

at least one new vertex on each pendent edge, and thus the total number of new vertices

is n− 2k + 2.

Our main results in this section are the following sharp estimates on H(T ) for all trees

T of order n with k leaves. Note that T is just a path if k = 2 and is a star if k = n− 1.

Therefore we may always assume that 3 ≤ k ≤ n− 2.

Theorem 2.1 Let k and n be two integers with 3 ≤ k ≤ n− 2 and T ∈ Tn,k, then

H(T ) ≥ n− k
2

+
5

3
+

2

k + 2
− 4

k + 1

with equality if and only if T ∼= Snk .

Theorem 2.2 For every T ∈ Tn,k with n ≥ 3k − 2 and k ≥ 3, we have H(T ) ≤ n
2
− k

10

with equality if and only if T ∈ T ∗n,k.

Theorem 2.2 will not be used in the proof of Theorem 1.1, but it is interesting itself, so

we include it here for completeness.

Proof of Theorem 2.1. Let f(n, k) := n−k
2

+ 5
3

+ 2
k+2
− 4

k+1
. Note that if T ∼= Snk , then

H(T ) = f(n, k) by a direct calculation. We use induction on k. First consider k = 3.
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Since n ≥ 5 and T ∈ Tn,3, P(T ) 6= ∅. Let P := v0v1 · · · vs (s ≥ 2) be a pendent path in T

with v0 ∈ V1(T ) and d(vs) = 3. Let N(vs) = {vs−1, u1, u2} and di := d(ui), i = 1, 2. Then

it is clear that 1 ≤ di ≤ 2 for i = 1, 2. Let T ′ := T − {v0, v1, ..., vs−1}, then T ′ is a path

of order n− s. Thus H(T ′) = (n− s− 3)/2 + 4/3 and

H(T ) = H(T ′) +
2

3
+

2

5
+
s− 2

2
+

2∑
i=1

(
2

3 + di
− 2

2 + di

)

= f(n, 3) + 1/3− 2
2∑
i=1

[(3 + di)(2 + di)]
−1 ≥ f(n, 3),

where the equality holds if and only if d1 = d2 = 1 and thus T ∼= Snk .

Next we assume that k ≥ 4 and the result holds for smaller values k. Let T ∈ Tn,k
such that H(T ) is as small as possible.

Claim. |P(T )| ≤ 1.

Assume to the contrary that P = v0v1 · · · vs and Q = u0u1 · · ·ul (s, l ≥ 2) are two

distinct pendent paths of T with u0, v0 ∈ V1(T ) and d(vs), d(vl) ≥ 3. Let T0 := T −

vs−1vs−2 + u0v0. Then T0 ∈ Tn,k, but

H(T0)−H(T ) =
2

1 + d(vs)
− 2

2 + d(vs)
+

1

2
− 2

3

=
2

[1 + d(vs)][2 + d(vs)]
− 1

6
≤ 1

10
− 1

6
< 0,

contradicting the choice of T . This completes the proof of the claim.

By the claim and k ≥ 4, there exists a vertex u ∈ N(V1) such that 3 ≤ t := d(u) ≤ k.

Let N(u) ∩ V1(T ) = {v1, v2, ..., vr} (r ≥ 1) and N(u) \ V1(T ) = {u1, u2, ..., ut−r}. Then

t − r ≥ 1 (as T � K1,n−1) and all di := d(ui) ≥ 2 for 1 ≤ i ≤ t − r. Let T ′ := T − v1.

Since k ≥ 4, we have T ′ ∈ Tn−1,k−1 and thus

H(T ) = H(T ′) +
2r

t+ 1
− 2(r − 1)

t
+

t−r∑
i=1

(
2

t+ di
− 2

t+ di − 1

)

≥ f(n− 1, k − 1) +
2(t− r + 1)

t(t+ 1)
− 2

t−r∑
i=1

[(t+ di)(t+ di − 1)]−1

≥ f(n− 1, k − 1) +
2(t− r + 1)

t(t+ 1)
− 2(t− r)

(t+ 2)(t+ 1)

= f(n− 1, k − 1) +
4(t− r)

t(t+ 1)(t+ 2)
+

2

t(t+ 1)

≥ f(n− 1, k − 1) +
4

k(k + 1)(k + 2)
+

2

k(k + 1)
= f(n, k),
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T ′ = Tv→(3−reg)

Figure 1: The tree T ′ is obtained from T by blowing up the vertex v.

where the equality holds if and only if H(T ′) = f(n − 1, k − 1), k = t, t − r = 1 and

d1 = 2. By the induction hypothesis, H(T ′) = f(n − 1, k − 1) if and only if T ′ ∼= Sn−1
k−1 .

Note that Sn−1
k−1 has a unique vertex of degree greater than 2, and hence the equality holds

if and only if T ∼= Snk . �

In order to prove Theorem 2.2, we need three kinds of operations on a tree T introduced

by Zhang, Lu and Tian [23].

1. If uv is an edge of T and T ′ is obtained from T by contracting uv, i.e., identifying

the two vertices u and v in T −uv, we say that T ′ is obtained from T by contraction

and denote T ′ = Tuv. Clearly Tuv is still a tree with one vertex less than T .

2. Let N(v) = X ∪ Y such that X ∩ Y = ∅, |X| = x ≥ 1 and |Y | = y ≥ 1, where

v ∈ V (T ). If T ′ is obtained from T by splitting the vertex v into two new vertices

u and w, linking u and w, and linking u to all vertices in X and w to all vertices in

Y , we say that T ′ is obtained from T by splitting and denote T ′ = Tv→(x,y). Thus

Tv→(x,y)) is still a tree with one more vertex than T .

3. If v ∈ V (T ) with d(v) = s > 3 and T ′ is obtained from T by replacing the vertex

v by a (s, 3)-regular tree T0 such that each vertex in N(v) and each leaf of T0

are identified one by one, we say that T ′ is obtained from T by blow-up and denote

T ′ = Tv→(3−reg), see Fig. 1 for example. Thus Tv→(3−reg) is still a tree on |V (T )|+s−3

vertices with |E(T )|+ s− 3 edges.

Lemma 2.1 [23] Let T ∈ Tn,k with maximum degree ∆ ≥ 4. If n ≥ 3k − 2 and

E2(T ) ⊂ E(P(T )), then |E2(T )| ≥ n4(T ) + 2n5(T ) + · · ·+ (∆− 3)n∆(T ).

Lemma 2.2 Let T ∈ Tn,k. If there is a vertex v ∈ V (T ) with d(v) = 2 and the degrees

of the vertices adjacent to v are both at least 2, then there is a tree T ′ ∈ Tn,k such that

H(T ′) ≥ H(T ).
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Proof. Suppose N(v) = {u,w}, where v ∈ V (T ) with d(v) = 2 and d(u), d(w) ≥ 2. Let

x be a leaf of T and y its neighbor. Let T ′ be obtained from Tuv by adding an edge to

the vertex x. Then T ′ ∈ Tn,k and

H(T )−H(T ′) =
2

2 + d(u)
+

2

2 + d(w)
+

2

1 + d(y)
− 2

d(u) + d(w)
− 2

2 + d(y)
− 2

3

=
2[d(w)− 2]

[2 + d(u)][d(u) + d(w)]
+

2

2 + d(w)
+

2

[1 + d(y)][2 + d(y)]
− 2

3

≤ d(w)/2− 1

2 + d(w)
+

2

2 + d(w)
+

1

6
− 2

3
= 0.

Therefore, H(T ′) ≥ H(T ). �

Lemma 2.3 Suppose T ∈ Tn,k, and v ∈ V (T ) with d(v) = s > 3, N(v) = {u1, u2, ..., us}

and d(u1) ≤ d(u2) ≤ · · · ≤ d(us). If |E2(T )| ≥ s − 3, then there is a tree T ′ ∈ Tn,k such

that the following statements hold.

1. If s = 4, d(u3) ≤ 3 and d(u4) ≤ 5, then H(T ) < H(T ′).

2. If s ≥ 5 and d(us−1) ≤ 3, then H(T ) < H(T ′).

3. If s ≥ 8 and d(us−1) ≤ 4, then H(T ) < H(T ′).

Proof. Let T ∗ be obtained from T by contracting s−3 edges in E2(T ) and T ′ := T ∗v→(3−reg).

It is clear that T ′ ∈ Tn,k. Let r := d(us−1), then we have

H(T )−H(T ′) =
s− 3

6
+

s∑
i=1

(
2

s+ d(ui)
− 2

3 + d(ui)

)
=

s− 3

6
+

s∑
i=1

2(3− s)
[s+ d(ui)][3 + d(ui)]

≤ s− 3

6
+

2(s− 1)(3− s)
(s+ r)(3 + r)

+
2(3− s)

[s+ d(us)][3 + d(us)]
.

If s = 4, r ≤ 3 and d(u4) ≤ 5, then H(T )−H(T ′) ≤ 1
6
− 1

7
− 1

36
< 0. Let

f(r, s) :=
s− 3

6
+

2(s− 1)(3− s)
(s+ r)(3 + r)

.

Taking partial derivatives, we have

∂f(r, s)

∂s
=

1

6
− 2

r + 3
+

2(r + 1)

(s+ r)2
,

∂2f(r, s)

∂s2
= −4(r + 1)

(s+ r)3
< 0.

Thus ∂f(r,s)
∂s

is monotonously decreasing in s. Since ∂f(3,s)
∂s

∣∣∣
s=5

< 0 and ∂f(4,s)
∂s

∣∣∣
s=8

< 0, the

following statements hold.
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• If s ≥ 5 and d(us−1) ≤ 3, then H(T )−H(T ′) < f(3, s) ≤ f(3, 5) = 0.

• If s ≥ 8 and d(us−1) ≤ 4, then H(T )−H(T ′) < f(4, s) ≤ f(4, 8) = 0.

In either case, we have H(T ) < H(T ′). �

Lemma 2.4 Let T ∈ Tn,k with E2(T ) 6= ∅ and a vertex u ∈ V (T ) be adjacnet to a leaf

v ∈ V (T ) with d(u) ≥ 3. If T ′ ∈ Tn,k is obtained from T by contracting an edge in E2(T )

and adding an edge to the leaf v, then H(T ′) > H(T ).

Proof. Let r := d(u) ≥ 3. It is easy to see that

H(T )−H(T ′) =
1

2
+

2

r + 1
− 2

3
− 2

r + 2
=

2

(r + 1)(r + 2)
− 1

6
≤ 1

10
− 1

6
< 0.

Therefore, H(T ′) > H(T ). �

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. It is easy to see that if T ∈ T ∗n,k, then H(T ) = n
2
− k

10
. Thus it

suffices to show that if T ∈ Tn,k with n ≥ 3k − 2 and k ≥ 3 such that H(T ) is as large as

possible, then T ∈ T ∗n,k.

Let T ∈ Tn,k be such a tree that maximizes H(T ). By the proof of Lemma 2.2, we

can assume, without loss of generality, that all vertices of T with degree 2 are on pendent

paths, thus E2(T ) ⊂ E(P(T )). Let ∆(T ) denote the maximum degree of T . Note that

∆(T ) ≥ 3 since k ≥ 3. We first show that ∆(T ) = 3. Assume to the contrary that

∆(T ) ≥ 4. By Lemma 2.1, we have

|E2(T )| ≥ n4(T ) + 2n5(T ) + · · ·+ (∆− 3)n∆(T ) ≥ ∆− 3 ≥ 1.

Let u0 ∈ V (T ) with d(u0) = ∆ ≥ 4 and let

Q := {P | P = u0u1 · · ·ut with d(ut) ≥ 4}.

Choose P in Q such that the length of P is as large as possible. By Lemma 2.3 (1)

and (2), we have that t ≥ 1. Let N ′(ut−1) := N(ut−1) \ {ut−2} if t ≥ 2, otherwise

N ′(ut−1) := N(ut−1). Then ut ∈ N ′(ut−1).

Claim. For each v ∈ N ′(ut−1), we have d(v) ≤ 4 and |{w | w ∈ N ′(ut−1) and d(w) =

4}| ≥ 1.
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Let v ∈ N ′(ut−1) and write N(v) = {v1, v2, ..., vs} with d(v1) ≤ d(v2) ≤ · · · ≤ d(vs).

By the choice of P , we have d(vs−1) ≤ 3 and vs = ut−1. By lemma 2.3 (2), we have

d(v) ≤ 4. Since d(ut) ≥ 4 and ut ∈ N ′(ut−1), we have d(ut) = 4, which completes the

proof of the claim.

By the claim and Lemma 2.3 (1) and (3), we have 6 ≤ d(ut−1) ≤ 7. Let r := d(ut−1)

and N(ut−1) = {w1, w2, ..., wr}. Let T ∗ be obtained by contracting one edge in E2(T ) and

T ′ := T ∗ut−1→(3,r−3). Then T ′ ∈ Tn,k, and

H(T )−H(T ′) =
1

2
− 2

r + 2
+

3∑
i=1

(
2

r + d(wi)
− 2

4 + d(wi)

)
+

r∑
j=4

(
2

r + d(wj)
− 2

r − 2 + d(wj)

)

=
1

2
− 2

r + 2
+

3∑
i=1

2(4− r)
[r + d(wi)][4 + d(wi)]

−
r∑
j=4

4

[r + d(wj)][r − 2 + d(wj)]

<
1

2
− 2

r + 2
+

3(4− r)
4(r + 4)

− 4(r − 4)

(r + 4)(r + 2)
≤ 0

for r = 6, 7, which contradicts the maximality of H(T ). Thus we have ∆(T ) = 3.

Let ni := ni(T ) for i = 1, 2, 3. By the Handshake Theorem, we have n1 + 2n2 + 3n3 =

2(n − 1) = 2(n1 + n2 + n3 − 1). Since n1 = k and n ≥ 3k − 2, we have n3 = k − 2 and

n2 ≥ k. By Lemma 2.4, all pendent paths of T are of length at least 2 and hence T ∈ T ∗n,k.

�

2.2 Proof of Theorem 1.1

Let a, b and n be three integers such that a, b ≥ 1 and n ≥ a + b + 2. A double comet

DC(n, a, b) is a tree composed of a path of order n−a−b with a leaves attached to one end

of the path and b leaves attached to the other end of the path. Thus, DC(n, a, b) ∈ Tn,a+b.

Lemma 2.5 [2,18] Let k and n be two integers with 3 ≤ k ≤ n− 2 and T ∈ Tn,k. There

exists a double comet T ′ = DC(n, a, b) for some a, b ≥ 1, a+ b = k such that

µ(T ) ≤ µ(T ′) ≤
(
n

2

)−1 [
k2(n− k)

4
+

3k2

4
+
k(n− k)2

2
+
k(n− k)

2
+

(n− k)3

6

]
.

Proof of Theorem 1.1. The inequality holds trivially for n ≤ 6, thus we assume that

n ≥ 7 and k ≥ 2. If k = 2, then T is a path and µ(T ) = n+1
3
≤ 4

3
+ n−3

2
= H(T ). If
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k = n−1, then T is a star and µ(T ) = 2−2/n = H(T ). Therefore, we can further assume

that 3 ≤ k ≤ n− 2 and thus Theorem 2.1 is applicable.

By Theorem 2.1 and Lemma 2.5, it suffices to show that

k2(n−k)+3k2+2k(n−k)2+2k(n−k)+2(n−k)3/3 < 4

(
n

2

)(
n− k

2
+

5

3
+

2

k + 2
− 4

k + 1

)
for 3 ≤ k ≤ n− 2 and n ≥ 7. In order to prove this inequality, we put l := n− k ≥ 2 and

view the difference as a function of k and l as follows,

f(k, l) := 4

(
k + l

2

)(
l

2
+

5

3
+

2

k + 2
− 4

k + 1

)
− (k2l + 3k2 + 2kl2 + 2kl + 2l3/3)

= 4(k2 + l2 + 2kl − k − l)
(

5

6
+

1

k + 2
− 2

k + 1

)
+ l3/3− 3kl − l2 − 3k2.

Let

g(k) :=
1

k + 2
− 2

k + 1
.

Then
dg

dk
=

2

(k + 1)2
− 1

(k + 2)2
> 0 for k ≥ 0,

which implies that g(k) ≥ g(3) = −3/10 for k ≥ 3. Taking partial derivative of f , we get

∂f(k, l)

∂l
= l2 +

(
14

3
+

8

k + 2
− 16

k + 1

)
l + 4

(
5

6
+

1

k + 2
− 2

k + 1

)
(2k − 1)− 3k.

For fixed k ≥ 3, the graph of ∂f
∂l

is a parabolic curve in l, and it is symmetric to the line

l = −1

2

(
14

3
+

8

k + 2
− 16

k + 1

)
= −7

3
− 4g(k) ≤ −7

3
− 4g(3) = −17

15
.

Thus ∂f
∂l

is monotonously increasing in l ≥ 0, and thus for k ≥ 3,

∂f(k, l)

∂l
≥ ∂f(k, l)

∂l

∣∣∣∣
l=0

= 4

(
5

6
+

1

k + 2
− 2

k + 1

)
(2k − 1)− 3k

≥ 4

(
5

6
− 3

10

)
(2k − 1)− 3k =

19k − 32

15
> 0.

This implies that f is also monotonously increasing in l > 0. Since f(3, 3) = 10, f(4, 3) =

84/5 and f(k, 2) = (k2 − 20)/3 ≥ f(5, 2) = 5/3 for k ≥ 5, we have f(k, l) > 0 for

3 ≤ k ≤ n− 2 and n ≥ 7. This completes the proof. �

3 Triangle-free graphs

The proof of Theorem 1.2 splits into the following two sections and is based on the

following lemma due to Erdős et al. [9] and Dankelmann and Entringer [3] respectively.

Lemma 3.1 [3, 9] Let G be a connected triangle-free graph of order n with minimum

degree δ. Then r(G) ≤ n−2
δ

+ 12 and µ(G) ≤ 2n
3δ

+ 25
3

.
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3.1 The Randić index

Lemma 3.2 [14] For each connected triangle-free graph G of order n and minimum

degree δ, we have R(G) ≥
√
δ(n− δ) with equality if and only if G is isomorphic to the

complete bipartite graph Kδ,n−δ.

Proof of Theorem 1.2 (1) and (2). Note that δ ≤ n/2 since G is triangle-free. If

δ ≥ n1/3 + 25n−1/3 and n is large enough, then by Lemmas 3.1 and 3.2 we have

R(G) ≥
√
δ(n− δ) ≥

√
(n1/3 + 25n−1/3) (n− n1/3 − 25n−1/3)

=
√
n4/3 + 24n2/3 − 50− 625n−2/3

≥ n3/2 − n−1/3 + 12 ≥ r(G).

If δ ≥ (n/2)1/3 and n is large enough, then we also have

R(G) ≥
√
δ(n− δ) ≥

√
(n/2)1/3 [n− (n/2)1/3] = 2−1/6n2/3 +O(1) ≥ µ(G).

3.2 The harmonic index

In this section, we will complete the proof of Theorem 1.2. Zhong [24] found the minimum

and maximum values of the harmonic index for simple connected graphs and trees, and

characterized the corresponding extremal graphs.

Theorem 3.1 [24] Let T be a tree of order n > 2, then

2− 2

n
≤ H(T ) ≤ n

2
− 1

6
,

where the first equality holds if and only if T is a star and the second equality holds if and

only if T is a path.

Recently, Ilić [13] gave a simplified proof of Theorem 3.1 based on the following result for

triangle-free graphs.

Theorem 3.2 [13] Let G be a triangle-free graph of order n and size m, then H(G) ≥

2m/n with equality if and only if G is a complete bipartite graph.

Wu, Tang and Deng [20] also obtained a best possible lower bound for the harmonic

index of triangle-free graphs with minimum degree two. For our purpose, we establish

the following identity for the harmonic index and apply it to extend Lemma 3.2 and the

result of Wu et al. [20] to the harmonic index of all triangle-free graphs with any given

minimum degree.
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Theorem 3.3 Let G = (V,E) be a connected graph of order n, then

H(G) =
n

2
− 1

2

∑
uv∈E

[d(u)− d(v)]2

d(u)d(v)[d(u) + d(v)]
.

Proof. This follows readily from the observation:∑
uv∈E

[
1

d(u)
+

1

d(v)

]
= n.

�

The following lemma is an easy exercise of calculus and its proof is omitted.

Lemma 3.3 Let f(x, y) := 1
x

+ 1
y
− 2

x+y
, then 0 ≤ f(x, y) ≤ f(δ,∆) for all 0 < δ ≤

x, y ≤ ∆, where f(x, y) = 0 if and only if x = y, and f(x, y) = f(δ,∆) if and only if

(x, y) = (δ,∆) or (∆, δ).

Since f(x, y) = (x−y)2

xy(x+y)
, Theorem 3.3 and Lemma 3.3 easily imply the following conse-

quence.

Corollary 3.1 Let G be a connected graph of order n and size m with maximum degree

∆ and minimum degree δ, then

n

2
− m(∆− δ)2

2∆δ(∆ + δ)
≤ H(G) ≤ n

2
,

where the first equality holds if and only if G is bi-regular and the second equality holds if

and only if G is regular.

Theorem 3.3 and Corollary 3.1 produce a very short proof of Theorem 3.1 as follows.

Proof of Theorem 3.1. The lower bound of H(T ) follows readily from Corollary 3.1

and Lemma 3.3:

H(T ) ≥ n

2
− (n− 1)(∆− δ)2

2∆δ(∆ + δ)
=
n

2
− n− 1

2
f(δ,∆) ≥ n

2
− n− 1

2
f(1, n− 1) = 2− 2

n

with equality if and only if d(v) = 1 or n− 1 for all v of T , i.e., T is a star.

For the upper bound of H(T ), we view the value f(d(u), d(v)) as the weight of the

edge uv in T , and call it a symmetric edge if f(d(u), d(v)) = 0, and asymmetric otherwise.

Theorem 3.3 and Corollary 3.1 imply that a tree has maximum harmonic index if it

simultaneously satisfies the following conditions:

• it has no asymmetric edges other than pendent edges,
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• it has a minimum number of leaves (i.e. 2),

• the weights of these pendent edges are as small as possible, i.e. equal to f(1, 2).

It is easily checked that these three conditions are obeyed by and only by a path. �

Theorem 3.4 Let G be a connected triangle-free graph of order n with minimum degree

δ, then H(G) ≥ 2δ − 2δ2/n with equality if and only if G is isomorphic to the complete

bipartite graph Kδ,n−δ.

Proof. Let m and ∆ denote the size and maximum degree of G respectively. If m ≥ δ(n−

δ), then the result follows from Theorem 3.2. Hence we may assume that m < δ(n− δ).

Since G is triangle-free, adjacent vertices have disjoint neighborhoods, which implies that

∆ ≤ n− δ. Then Corollary 3.1 and Lemma 3.3 imply

H(G) ≥ n

2
− m(∆− δ)2

2∆δ(∆ + δ)
>
n

2
− δ(n− δ)

2
f(δ, n− δ) = 2δ − 2δ2/n.

This completes the proof. �

Now we are ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2 (3) and (4). Recall that δ ≤ n/2 since G is triangle-free. If

δ ≥
√
n/2 + 7 and n is large enough, then by Lemma 3.1 and Theorem 3.4 we have

H(G) ≥ 2δ − 2δ2/n ≥
√

2n+ 14− 2
(√

n/2 + 7
)2

/n ≥
√

2n+ 13 + o(1) ≥ r(G).

If δ ≥
√
n/3 + 5 and n is large enough, then we also have

H(G) ≥ 2δ − 2δ2/n ≥ 2
√
n/3 + 10− 2

(√
n/3 + 5

)2

/n ≥ 2
√
n/3 + 28/3 + o(1) ≥ µ(G).

This completes the proof. �
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