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Abstract

We revise some bounds found in [2] and give a new general upper bound for the
multiplicative degree-Kirchhoff index.

1 Introduction

A finite simple undirected graph G = (V,E) with |V | = n and |E| = m is the basic

model for a chemical molecule, where the vertices represent the atoms and the edges in E

represent the chemical bonds. Among the descriptors used in Mathematical Chemistry to

study these models, one that has received a great deal of attention since its introduction

by Klein and Randić in [1] is the Kirchhoff index, defined as

R(G) =
∑
i<j

Rij, (1)

where Rij is the effective resistance between vertices i and j computed with Ohm’s law

when the edges of the graph are supposed to have unit resistances. Two related descriptors
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that incorporate the degrees (number of neighbors) di, 1 ≤ i ≤ n, of the vertices, are the

additive degree-Kirchhoff index, introduced by Gutman et al. in [3] and defined as

R+(G) =
∑
i<j

(di + dj)Rij, (2)

and the multiplicative degree-Kirchhoff index, introduced by Chen and Zhang in [4] and

defined as

R∗(G) =
∑
i<j

didjRij. (3)

Theorem 2 in [2] claims:

Let G be a connected graph on n > 2 vertices and m edges. Then

R∗(G) ≥ 2m

(
n− 2 +

1

n

)
; (4)

R∗(G) ≥ 2m

(
∆

∆ + 1
+

(n− 2)2

n− 1− 1
∆

)
; (5)

R∗(G) ≥ 2m

(
χ

χ+ 1
+

(n− 2)2

n− 1− 1
χ

)
; (6)

where ∆ and χ are the largest degree and the chromatic number of G, respectively.

It must be noted that claim (4) is a weaker result than our proposition 2 in [6], where

using electrical principles we prove that for any G,

R∗(G) ≥ 2m

(
n− 2 +

1

∆ + 1

)
.

It must be noted also that claims (5) and (6) are variants of our lower bounds in [7]

of the form

R(G) ≥ n

d1

[
1

1 + β
+

(n− 2)2

n− 1− β

]
,

for the Kirchhoff index R(G), which is our formula (11), and also (17), (18), (19), etc.

in [7], and

R∗(G) ≥ 2m

[
1

1 + β
+

(n− 2)2

n− 1− β

]
,

for the degree-Kirchhoff index, for instance, our formula (30) in [7]. All these inequalities

are found with specific bounds for eigenvalues associated to the graph, using majorization
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techniques. Feng et al. do not contribute in their theorem 2 any new ideas which are not

given implicitly or explicitly in our results.

In fact, stronger and more general lower bounds than those in [2] and in [7], for some

families of descriptors, were given in [8].

2 A general upper bound

In [5] it was shown that for any n-vertex G, R∗(G) ≤ 1
6
n5 and it was conjectured that

the (1/3, 1/3, 1/3)-barbell graph which consists of two copies of the complete graph Kn/3

attached at the endpoints of a linear graph on n/3 vertices attains the largest value of

R∗(G) among all n-vertex graphs, which is of the order 2
243
n5. We get closer to the

conjecture with the following upper bound whose proof is inspired in that of an upper

bound for the additive degree-Kirchhoff index found in [9].

Proposition 1 For an n-vertex G we have

R∗(G) ≤ (n− 1)4 for n ≤ 48,

and

R∗(G) ≤ n5 + 50n3 − 164n2 + 165n− 52

54
, for n ≥ 49.

Proof. We first remark that Rij ≤ d(i, j), where d(i, j) is the distance in the graph

between the vertices i and j, and the equality holds when there is only one path from i

to j. Now we decompose the descriptor into three sums:

R∗(G) =
∑

i<j:d(i,j)=1

didjRij +
∑

i<j:d(i,j)=2

didjRij +
∑

i<j:d(i,j)≥3

didjRij. (7)

We apply Foster’s formula in the first summand in order to obtain∑
i<j:d(i,j)=1

didjRij ≤ (n− 1)2
∑

i<j:d(i,j)=1

Rij = (n− 1)3. (8)

For the second summand we argue that∑
i<j:d(i,j)=2

didjRij ≤ 2(n− 1)2
∑

i<j:d(i,j)=2

1. (9)

Finally, for vertices at distance 3 or larger we argue that the largest path between i and

j can be at most of length d(i, j) ≤ n + 1 − di − dj. Indeed, the largest possible path
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between i and j is built with all the vertices in the graph except di− 1 neighbors of i and

dj − 1 neighbors of j, for a total of n− (di − 1)− (dj − 1) = n− di − dj + 2 vertices, and

the path built with those many vertices has length (n− di− dj + 2)− 1 = n+ 1− di− dj.

We cannot use di − 1 neighbors of i and dj − 1 neighbors of j in the path because if we

did the path could be shortened and would not have largest length.

Next we observe that the only critical point of the two variable function

F (x, y) = xy(n+ 1− x− y),

in the region 1 ≤ x ≤ n− 1, 1 ≤ y ≤ n− 1, corresponds to x = y = n+1
3

, where there is a

maximum. Therefore we have∑
i<j:d(i,j)≥3

didjRij ≤
∑

i<j:d(i,j)≥3

didj(n+ 1− di − dj) ≤
∑

i<j:d(i,j)≥3

(n+ 1)3

27
,

so that ∑
i<j:d(i,j)≥3

didjRij ≤
(n+ 1)3

27

∑
i<j:d(i,j)≥3

1. (10)

Since the number of pairs of vertices at distances 2 or larger is bounded by

(
n

2

)
− (n−1),

the sum of (9) and (10) can be bounded thus

2(n− 1)2
∑

i<j:d(i,j)=2

1 +
(n+ 1)3

27

∑
i<j:d(i,j)≥3

1 ≤ (n+ 1)3

27

∑
i<j:d(i,j)≥2

1

≤ (n+ 1)3

27

(n− 1)(n− 2)

2
for n ≥ 49, (11)

and

≤ (n− 1)3(n− 2) for n ≤ 48. (12)

Inserting (8) and either (11) or (12) into (7) we obtain

R∗(G) ≤ n5 + 50n3 − 164n2 + 165n− 52

54
, for n ≥ 49

and

R∗(G) ≤ (n− 1)4 for n ≤ 48,

which gives the exact value of R∗(G) for n = 2.
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[1] D. J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81–95.

[2] L. Feng, G. Yu, W. Liu, Further results regarding the degree Kirchhoff index of

graphs, Miskolc Math. Notes 15 (2014) 97-108.

[3] I. Gutman, L. Feng, G. Yu, Degree resistance distance of unicyclic graphs, Trans.

Comb. 1 (2012) 27–40.

[4] H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum,

Discr. Appl. Math. 155 (2007) 654–661.

[5] J. L. Palacios, J. M. Renom, Broder and Karlin’s formula for hitting times and the

Kirchhoff index, Int. J. Quantum Chem. 111 (2011) 35–39.

[6] J. L. Palacios, J. M. Renom, Another look at the degree–Kirchhoff index, Int. J.

Quantum Chem. 111 (2011) 3453–3455.

[7] M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, Bounds for the Kirchhoff index

via majorization techniques, J. Math. Chem. 51 (2013) 569–587.

[8] M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, Bounding the sum of powers of

normalized Laplacian eigenvalues of graphs through majorization methods, MATCH

Commun. Math. Comput. Chem. 70 (2013) 707–716.

[9] Y. Yang, D. Klein, A note on the Kirchhoff and additive–Kirchhoff indices of graphs,

in preparation.

-231-


