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Abstract

In this paper, we give some relations between the Kirchhoff and degree–Kirchhoff
index of a connected graph, and obtain some formulas for these indices. Using these
results, we obtain expressions and bounds for Kirchhoff indices of some composite
graphs, which extend some work of Yang and Klein. We give formulas for the
Kirchhoff index, Laplacian–energy–like invariant and Laplacian Estrada index of
the line graph of a semiregular graph, and obtain a formula for the Kirchhoff index
of the t-para-line graph of a regular graph.

1 Introduction

All graphs in this paper are simple and undirected, and all connected graphs in this paper

have at least two vertices. Let V (G) and E(G) denote the vertex set and the edge set of a

graph G, respectively. The resistance distance is a distance function on graphs introduced

by Klein and Randić [20]. For two vertices i, j in a connected graph G, the resistance

distance between i and j, denoted by rij(G), is defined to be the effective resistance

between them when unit resistors are placed on every edge of G. The Kirchhoff index of

G, denoted by Kf(G), is the sum of resistance distances between all pairs of vertices of

G, i.e.,

Kf(G) =
∑

{i,j}⊆V (G)

rij(G) .
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In [5], Chen and Zhang defined the multiplicative degree–Kirchhoff index as

Kf ∗(G) =
∑

{i,j}⊆V (G)

didjrij(G) ,

where di denotes the degree of the vertex i. In [15], Gutman et al. defined the additive

degree–Kirchhoff index as

Kf+(G) =
∑

{i,j}⊆V (G)

(di + dj)rij(G) .

The Kirchhoff index and degree–Kirchhoff index are investigated extensively in mathe-

matical and chemical literatures [3,9,10,12,23,30-32,35-38]. It is of interest to study the

Kirchhoff index of graph operations, such as corona [35], join [35], line graph [14,30], total

graph [33], subdivision [14,26,31], triangulation [28,32], semi total point graph [7] etc.

Fig.1. The graphs P3 � P2 and P3�P2
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Edge corona is a graph operation introduced by Hou and Shiu [18]. For two disjoint

graphs G1 and G2, the edge corona G1�G2 is the graph obtained by taking one copy of G1

and |E(G1)| copies of G2, and then joining two end-vertices of the i-th edge of G1 to every

vertex in the i-th copy of G2 (i = 1, . . . , |E(G1)|). Let G1�G2 denote the graph obtained

from G1 �G2 by deleting all edges belong to E(G1). For example, the graphs P3 �P2 and

P3�P2 (Pn is the path of order n) are shown in Fig.1. If G2 = K1 is an isolated vertex, then

G1 �K1 is the triangulation [32] of G1, and G1�K1 is the subdivision [31] of G1. Kirchhoff

indices of the subdivision and triangulation of a graph are studied in [14,26,28,31,32].

The para-line graph of a graph G, denoted by C(G), is defined as the line graph of the

subdivision graph G�K1 [24,25,30]. Para-line graphs are also called clique-inserted graphs

in [34]. Kirchhoff index of the para-line graph of a regular graph is studied in [24,30]. We

define the line graph of G�Kt as the t-para-line graph of G, where Kt the complement of

the complete graph Kt. Clearly, C(G) is the 1-para-line graph of G.

For a graph G, let AG denote the adjacency matrix of G, and let DG denote the

diagonal matrix of vertex degrees of G. The matrices LG = DG−AG and QG = DG +AG
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are called the Laplacian matrix and signless Laplacian matrix of G, respectively. Let

µ1(G) > µ2(G) > · · · > µn(G) = 0 (n = |V (G)|) denote the eigenvalues of LG. Liu and

Liu [22] defined the Laplacian–energy–like invariant of G as

LEL(G) =
n∑
i=1

√
µi(G) .

The LEL is an energy like invariant [17]. In [11], the Laplacian Estrada index of G was

defined as

LEE(G) =
n∑
i=1

eµi(G) .

The Kirchhoff index, LEL and LEE of the line graph of a regular graph are studied

in [6, 11,14,22,27,30].

This paper is organized as follows. In Section 2, some auxiliary lemmas are given. In

Section 3, we give some relations between the Kirchhoff and degree–Kirchhoff index of

a connected graph, and obtain some formulas for these indices. In Section 4, we obtain

expressions and bounds for Kirchhoff indices of G1�G2 and G1 � G2, which extend some

results in [31, 32]. In Section 5, we give formulas for the Kirchhoff index, LEL and LEE

of the line graph of a semiregular graph, and obtain a formula for the Kirchhoff index of

the t-para-line graph of a regular graph.

2 Preliminaries

The {1}-inverse of a matrix M is a matrix X such that MXM = M . If M is singular,

then it has infinite {1}-inverses [2, 4, 26]. We use M (1) to denote any {1}-inverse of M ,

and let (M)ij denote the (i, j)-entry of M . For a square matrix M , the group inverse of

M , denoted by M#, is the unique matrix X such that MXM = M, XMX = X and

MX = XM . If M is real symmetric, then M# exists and M# is a symmetric {1}-inverse

of M . Actually, M# is equal to the Moore-Penrose inverse of M if M is real symmetric [4].

Lemma 2.1. [2, 4] Let G be a connected graph. Then

rij(G) = (L
(1)
G )ii + (L

(1)
G )jj − (L

(1)
G )ij − (L

(1)
G )ji = (L#

G)ii + (L#
G)jj − 2(L#

G)ij .

Lemma 2.2. [13, 31] Let G be a connected graph of order n. Then∑
uv∈E(G)

ruv(G) = n− 1 .
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For a square matrix M , let tr(M) denote the trace of M . Let j = (1, 1, . . . , 1)> denote

an all-ones column vector.

Lemma 2.3. [26] Let G be a connected graph of order n. Then

Kf(G) = ntr(L
(1)
G )− j>L

(1)
G j = ntr(L#

G) .

Lemma 2.4. [16, 38] Let G be a connected graph of order n. Then

Kf(G) = n

n−1∑
i=1

1

µi(G)
.

For a connected graph G with n vertices and m edges, its normalized Laplacian matrix

is LG = D
− 1

2
G LGD

− 1
2

G . Chen and Zhang [5] proved that Kf ∗(G) = 2m
∑n−1

i=1
1
λi

, where

λ1, . . . , λn−1 are nonzero eigenvalues of LG. We can obtain the following lemma from [37,

Proposition 4].

Lemma 2.5. Let G be a connected graph with n vertices and m edges, and let ∆ and δ

be the maximum and minimum degree of G, respectively. Then

2mδ

n
Kf(G) 6 Kf ∗(G) 6

2m∆

n
Kf(G) ,

equalities in both sides hold if and only if G is regular.

Lemma 2.6. [4] Let S be a real symmetric matrix such that Sj = 0. Then S#j =

0, j>S# = 0.

Lemma 2.7. [21] Let A ∈ Rn×n be a symmetric matrix with one positive eigenvalue and

n− 1 negative eigenvalues. For a positive vector x ∈ Rn and an arbitrary vector y ∈ Rn,

we have

(x>Ay)2 > (x>Ax)(y>Ay) ,

with equality if and only if y = λx for some constant λ.

Lemma 2.8. [26] Let M =

(
A B
B> C

)
be a real symmetric matrix, and A is nonsingu-

lar. Then N =

(
A−1 + A−1BS#B>A−1 −A−1BS#

−S#B>A−1 S#

)
is a symmetric {1}-inverse of M ,

where S = C −B>A−1B.
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3 Kirchhoff and degree–Kirchhoff index of a graph

For a connected graph G of order n, the resistance matrix of G is defined as RG =

(rij(G))n×n (see [1, 29]).

Theorem 3.1. Let G be a connected graph. Then

Kf+(G) > 2
√
Kf(G)Kf ∗(G) ,

with equality if and only if G is regular.

Proof. Let j = (1, 1, . . . , 1)>, π = (d1, . . . , dn)>, where d1, . . . , dn is the degree sequence of

G. Then

j>RGj =
n∑

i,j=1

rij(G) = 2Kf(G), π>RGπ =
n∑

i,j=1

didjrij(G) = 2Kf ∗(G) ,

j>RGπ =
n∑

i,j=1

djrij(G) =
∑

{i,j}⊆V (G)

(di + dj)rij(G) = Kf+(G) .

It is known [29] that RG has one positive eigenvalue and n− 1 negative eigenvalues. By

Lemma 2.7, we have

(Kf+(G))2 > 4Kf(G)Kf ∗(G) ,

with equality if and only if G is regular.

Theorem 3.2. Let G be a connected graph with n vertices and m edges. Then

Kf ∗(G) = 2mtr(DGL
(1)
G )− π>L(1)

G π = 2mtr(DGL
#
G)− π>L#

Gπ ,

Kf+(G) = ntr(DGL
#
G) +

2m

n
Kf(G) ,

where DG is the diagonal matrix of vertex degrees of G, π = (d1, . . . , dn)> is the column

vector of the degree sequence of G.

Proof. By Lemma 2.1, we have

Kf ∗(G) =
1

2

n∑
i,j=1

didj[(L
(1)
G )ii + (L

(1)
G )jj − (L

(1)
G )ij − (L

(1)
G )ji]

=
1

2

n∑
i=1

di

n∑
j=1

(dj(L
(1)
G )ii + dj(L

(1)
G )jj)−

n∑
i,j=1

didj(L
(1)
G )ij

=
1

2

n∑
i=1

di[2m(L
(1)
G )ii + tr(DGL

(1)
G )]− π>L(1)

G π

= 2mtr(DGL
(1)
G )− π>L(1)

G π .
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Since L#
G is a {1}-inverse of LG, we also have Kf ∗(G) = 2mtr(DGL

#
G) − π>L#

Gπ. By

Lemma 2.1, we get

Kf+(G) =
1

2

n∑
i,j=1

(di + dj)[(L
#
G)ii + (L#

G)jj − 2(L#
G)ij]

=
1

2

n∑
i,j=1

(di + dj)[(L
#
G)ii + (L#

G)jj]−
n∑

i,j=1

(di + dj)(L
#
G)ij .

Since L#
G is real symmetric and LGj = 0, by Lemma 2.6, all row sums and column sums

of L#
G are zero. Hence

∑n
i,j=1(di + dj)(L

#
G)ij = 0 and

Kf+(G) =
1

2

n∑
i,j=1

(di + dj)[(L
#
G)ii + (L#

G)jj] = ntr(DGL
#
G) + 2mtr(L#

G) .

By Lemma 2.3, we have Kf+(G) = ntr(DGL
#
G) + 2m

n
Kf(G).

Let ∆(G) and δ(G) denote the maximum and minimum degree of graph G, respec-

tively.

Corollary 3.3. Let G be a connected graph with n vertices and m edges. Then

(δ(G) +
2m

n
)Kf(G) 6 Kf+(G) 6 (∆(G) +

2m

n
)Kf(G) ,

equalities in both sides hold if and only if G is regular.

Proof. By Theorem 3.2, we have Kf+(G) = ntr(DGL
#
G) + 2m

n
Kf(G). From [19, Propo-

sition 2.2], we know that all diagonal entries of L#
G are positive. By Lemma 2.3, we

have

(δ(G) +
2m

n
)Kf(G) 6 Kf+(G) 6 (∆(G) +

2m

n
)Kf(G) ,

equalities in both sides hold if and only if G is regular.

LetG be a connected graph, and its Laplacian matrix is partitioned as LG =

(
L1 L2

L>2 L3

)
(L1 is square). Since the Schur complement S = L3 − L>2 L−11 L2 is symmetric, S# exists

and is symmetric.

Theorem 3.4. Let LG =

(
L1 L2

L>2 L3

)
(L1 is square) be the Laplacian matrix of a connected

graph G of order n, and let S = L3 − L>2 L−11 L2, T = L−11 + L−11 L2S
#L>2 L

−1
1 . Then

Kf(G) = ntr(T ) + ntr(S#)− j>T j .
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Proof. Let N =

(
T −L−11 L2S

#

−S#L>2 L
−1
1 S#

)
. From Lemma 2.8, we know that N is a

symmetric {1}-inverse of LG. By Lemma 2.3, we get

Kf(G) = ntr(N)− j>N j = ntr(T ) + ntr(S#)− j>T j− j>S#j + 2j>L−11 L2S
#j.

By LGj = 0, we get L1j + L2j = 0, L>2 j + L3j = 0. Hence Sj = L3j − L>2 L
−1
1 L2j =

L3j + L>2 L
−1
1 L1j = 0. By Lemma 2.6, we have S#j = 0. Hence

Kf(G) = ntr(T ) + ntr(S#)− j>T j .

4 Kirchhoff indices of G1 � G2 and G1 � G2

For two matrices A = (aij)m×n and B = (bij)p×q, the Kronecker product A ⊗ B is the

mp × nq matrix obtained from A by replacing each entry aij by aijB. If A and B are

square, then tr(A⊗B) = tr(A)tr(B). For matrices A,B,C and D such that products AC

and BD exist, we have (A⊗B)(C⊗D) = AC⊗BD. It is known that (A⊗B)> = A>⊗B>,

and if A and B are nonsingular, then (A⊗B)−1 = A−1 ⊗B−1.

Let In denote the identity matrix of order n, and let jn denote an all-ones column

vector of dimension n. The adjacency matrix of the edge corona G1 �G2 can be written

as (see [18])

AG1�G2 =

(
Im1 ⊗ AG2 B> ⊗ jn2

B ⊗ j>n2
AG1

)
, (4.1)

where B is the vertex-edge incidence matrix of G1, m1 = |E(G1)|, n2 = |V (G2)|. Clearly,

the adjacency matrix of G1�G2 can be written as

AG1�G2 =

(
Im1 ⊗ AG2 B> ⊗ jn2

B ⊗ j>n2
0

)
. (4.2)

Theorem 4.1. Let G1 be a connected graph with n1 vertices and m1 edges, and let G2 be

a graph with n2 vertices. Then

Kf(G1�G2) =
2

n2

Kf(G1) +Kf+(G1) +
n2

2
Kf ∗(G1)−

(n1 +m1n2)(n1 − 1) +m1n2

2

+

n2∑
i=1

m1(n1 +m1n2)

µi(G2) + 2
.

Proof. From equation (4.2), we know that the Laplacian matrix ofG1�G2 has the following

form

LG1�G2 =

(
Im1 ⊗ (LG2 + 2In2) −B> ⊗ jn2

−B ⊗ j>n2
n2DG1

)
,
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where B ∈ Rn1×m1 is the vertex-edge incidence matrix of G1. The matrix S defined in

Theorem 3.4 is

S = n2DG1 − (B ⊗ j>n2
)(Im1 ⊗ (LG2 + 2In2)

−1)(B> ⊗ jn2
)

= n2DG1 − (B ⊗ j>n2
)(B> ⊗ 1

2
jn2

)

= n2DG1 −
n2

2
BB> = n2DG1 −

n2

2
(DG1 + AG1) =

n2

2
LG1 .

Hence S# = 2
n2
L#
G1

. The matrix T defined in Theorem 3.4 is

T = Im1 ⊗ (LG2 + 2In2)
−1 + (Im1 ⊗ (LG2 + 2In2)

−1)(B> ⊗ jn2
)S#(B ⊗ j>n2

)

(Im1 ⊗ (LG2 + 2In2)
−1)

= Im1 ⊗ (LG2 + 2In2)
−1 + (B> ⊗ 1

2
jn2

)S#(B ⊗ 1

2
j>n2

)

= Im1 ⊗ (LG2 + 2In2)
−1 +

1

2n2

B>L#
G1
B ⊗ Jn2 ,

where Jn2 is the all-ones matrix of order n2. Since S# = 2
n2
L#
G1

, by Theorem 3.4 and

Lemma 2.3, we have

Kf(G1�G2) =
2(n1 +m1n2)

n1n2

Kf(G1) + (n1 +m1n2)tr(T )− j>T j . (4.3)

Let π = (d1, . . . , dn1)
> be the column vector of the degree sequence ofG1. By computation,

we have

j>T j = m1j
>(LG2 + 2In2)

−1j +
n2
2

2n2

π>L#
G1
π =

m1n2

2
+
n2

2
π>L#

G1
π , (4.4)

tr(T ) = m1tr[(LG2 + 2In2)
−1] +

n2

2n2

tr(B>L#
G1
B)

=

n2∑
i=1

m1

µi(G2) + 2
+

1

2

∑
ij∈E(G1)

[(L#
G1

)ii + (L#
G1

)jj + 2(L#
G1

)ij] .

By Lemmas 2.1 and 2.2, we have

tr(T ) =

n2∑
i=1

m1

µi(G2) + 2
+

1

2

∑
ij∈E(G1)

[2(L#
G1

)ii + 2(L#
G1

)jj − rij(G1)]

=

n2∑
i=1

m1

µi(G2) + 2
+ tr(DG1L

#
G1

)− n1 − 1

2
.

From Eqs. (4.3), (4.4) and the above equation, we have

Kf(G1�G2) =
2(n1 +m1n2)

n1n2

Kf(G1) +

n2∑
i=1

m1(n1 +m1n2)

µi(G2) + 2
+ (n1 +m1n2)tr(DG1L

#
G1

)

− (n1 +m1n2)(n1 − 1) +m1n2

2
− n2

2
π>L#

G1
π .
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By Theorem 3.2, we have π>L#
G1
π = 2m1tr(DG1L

#
G1

) − Kf ∗(G1) and n1tr(DG1L
#
G1

) =

Kf+(G1)− 2m1

n1
Kf(G1). Hence

Kf(G1�G2) =
2(n1 +m1n2)

n1n2

Kf(G1) + n1tr(DG1L
#
G1

)

+
n2

2
Kf ∗(G1) +

n2∑
i=1

m1(n1 +m1n2)

µi(G2) + 2
− (n1 +m1n2)(n1 − 1) +m1n2

2

=
2

n2

Kf(G1) +Kf+(G1) +
n2

2
Kf ∗(G1)−

(n1 +m1n2)(n1 − 1) +m1n2

2

+

n2∑
i=1

m1(n1 +m1n2)

µi(G2) + 2
.

Remark 4.1. If G2 = K1 is an isolated vertex in Theorem 4.1, then we can obtain

Theorem 2.3 in [31].

From Lemma 2.5, Corollary 3.3 and Theorem 4.1, we can obtain bounds of Kf(G1�G2)

as follows.

Proposition 4.2. Let G1 and G2 be two graphs satisfying conditions in Theorem 4.1,

and let

c1 =
(n2δ(G1) + 2)(n1 +m1n2)

n1n2

, c2 =
(n2∆(G1) + 2)(n1 +m1n2)

n1n2

,

c3 = −(n1 +m1n2)(n1 − 1) +m1n2

2
+

n2∑
i=1

m1(n1 +m1n2)

µi(G2) + 2
.

Then

c1Kf(G1) + c3 6 Kf(G1�G2) 6 c2Kf(G1) + c3 .

Equalities in both sides hold if and only if G1 is regular.

We can obtain the following result from Proposition 4.2.

Corollary 4.3. Let G be a connected graph with n vertices and m edges, and let

c1 =
(δ(G) + 2)(m+ n)

n
, c2 =

(∆(G) + 2)(m+ n)

n
.

Then

c1Kf(G) +
m2 − n2 + n

2
6 Kf(G�K1) 6 c2Kf(G) +

m2 − n2 + n

2
.

Equalities in both sides hold if and only if G is regular.
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Remark 4.2. The bounds in Corollary 4.3 are better than the bounds given in [31,

Proposition 2.5].

Theorem 4.4. Let G1 be a connected graph with n1 vertices and m1 edges, and let G2 be

a graph with n2 vertices. Then

Kf(G1 �G2) =
2

n2 + 2
Kf(G1) +

n2

n2 + 2
[Kf+(G1) +

n2

2
Kf ∗(G1)]

+

n2∑
i=1

m1(n1 +m1n2)

µi(G2) + 2
− n2(n

2
1 − n1 +m1n1n2 + 2m1)

2(n2 + 2)
.

Proof. From equation (4.1), we know that the Laplacian matrix ofG1�G2 has the following

form

LG1�G2 =

(
Im1 ⊗ (LG2 + 2In2) −B> ⊗ jn2

−B ⊗ j>n2
LG1 + n2DG1

)
,

where B is the vertex-edge incidence matrix of G1. Similar with the proof of Theorem

4.1, we know that matrices S and T defined in Theorem 3.4 are

S = LG1 + n2DG1 − (B ⊗ j>n2
)(Im1 ⊗ (LG2 + 2In2)

−1)(B> ⊗ jn2
)

= LG1 + n2DG1 −
n2

2
BB> =

n2 + 2

2
LG1 ,

T = Im1 ⊗ (LG2 + 2In2)
−1 + (Im1 ⊗ (LG2 + 2In2)

−1)(B> ⊗ jn2
)S#(B ⊗ j>n2

)

(Im1 ⊗ (LG2 + 2In2)
−1)

= Im1 ⊗ (LG2 + 2In2)
−1 +

1

2(n2 + 2)
B>L#

G1
B ⊗ Jn2 ,

where Jn2 is the all-ones matrix of order n2. Since S# = 2
n2+2

L#
G1

, by Theorem 3.4 and

Lemma 2.3, we have

Kf(G1 �G2) =
2(n1 +m1n2)

n1(n2 + 2)
Kf(G1) + (n1 +m1n2)tr(T )− e>Te . (4.5)

Let π = (d1, . . . , dn1)
> be the column vector of the degree sequence of G1. Similar with

the proof of Theorem 4.1, we can get

e>Te =
m1n2

2
+

n2
2

2(n2 + 2)
π>L#

G1
π , (4.6)

tr(T ) =

n2∑
i=1

m1

µi(G2) + 2
+

n2

n2 + 2
tr(DG1L

#
G1

)− n2(n1 − 1)

2(n2 + 2)
. (4.7)
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From Eqs. (4.5), (4.6) and (4.7), we have

Kf(G1 �G2) =
2(n1 +m1n2)

n1(n2 + 2)
Kf(G1) +

n2∑
i=1

m1(n1 +m1n2)

µi(G2) + 2

+
n2(n1 +m1n2)

n2 + 2
tr(DG1L

#
G1

)− n2(n
2
1 − n1 +m1n1n2 + 2m1)

2(n2 + 2)

− n2
2

2(n2 + 2)
π>L#

G1
π .

By Theorem 3.2, we have π>L#
G1
π = 2m1tr(DG1L

#
G1

) − Kf ∗(G1) and n1tr(DG1L
#
G1

) =

Kf+(G1)− 2m1

n1
Kf(G1). Hence

Kf(G1 �G2) =
2(n1 +m1n2)

n1(n2 + 2)
Kf(G1) +

n1n2

n2 + 2
tr(DG1L

#
G1

) +
n2
2

2(n2 + 2)
Kf ∗(G1)

− n2(n
2
1 − n1 +m1n1n2 + 2m1)

2(n2 + 2)
+

n2∑
i=1

m1(n1 +m1n2)

µi(G2) + 2

=
2

n2 + 2
Kf(G1) +

n2

n2 + 2
[Kf+(G1) +

n2

2
Kf ∗(G1)]

+

n2∑
i=1

m1(n1 +m1n2)

µi(G2) + 2
− n2(n

2
1 − n1 +m1n1n2 + 2m1)

2(n2 + 2)
.

Remark 4.3. If G2 = K1 is an isolated vertex in Theorem 4.4, then we can obtain

Theorem 4.3 in [32].

5 Kirchhoff indices, LEL and LEE of line graphs of

semiregular graphs

A graph G is called semiregular with parameters (n1, n2, r1, r2) if G is bipartite and V (G)

has a bipartition V (G) = V1 ∪ V2 such that |V1| = n1, |V2| = n2 and vertices in the same

colour class have the same degree (ni vertices of degree ri, i = 1, 2). Let φM(x) denote

the characteristic polynomial of a square matrix M .

Lemma 5.1. [8] Let G be a semiregular graph with parameters (n1, n2, r1, r2) (n1 > n2).

Then

φQG
(x) = x(x− r1 − r2)(x− r1)n1−n2

n2∏
i=2

((x− r1)(x− r2)− λ2i ) ,

where λ1, . . . , λn2 are the first n2 largest eigenvalues of AG.
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Let l(G) denote the line graph of a graph G. We can obtain the following lemma from

[24, Lemma 3.3].

Lemma 5.2. Let G be a semiregular graph with parameters (n1, n2, r1, r2). Then the

eigenvalues of Ll(G) are

(r1 + r2)
n1r1−n1−n2 , r1 + r2 − µ1(G), . . . , r1 + r2 − µn1+n2(G) ,

where the superscript denotes the multiplicity of the eigenvalue.

For a semiregular graph G, some bounds for Kf(l(G)) and LEL(l(G)) are given in [24].

Here we give formulas of Kf(l(G)), LEL(l(G)) and LEE(l(G)) as follows.

Theorem 5.3. Let G be a semiregular graph with parameters (n1, n2, r1, r2) (n1 > n2).

Then

LEL(l(G)) = LEL(G) + (n1 − n2)(
√
r2 −

√
r1) + (m− n)

√
r1 + r2 ,

LEE(l(G)) = LEE(G) + (n1 − n2)(e
r2 − er1) + (m− n)er1+r2 ,

where m = n1r1 = n2r2, n = n1 + n2. If G is connected, then

Kf(l(G)) =
m

n
Kf(G) +

m(m− n)

r1 + r2
− (n1 − n2)

2 .

Proof. Suppose that λ1, . . . , λn2 are the first n2 largest eigenvalues of AG. Since G is

bipartite, LG and QG have the same spectrum. From Lemma 5.1, we known that the

eigenvalues of LG are

0, r1 + r2, r
n1−n2
1 ,

r1 + r2 ±
√

(r1 − r2)2 + 4λ2i
2

, i = 2, . . . , n2 , (5.1)

where the superscript denotes the multiplicity of the eigenvalue. By Lemma 5.2, the

eigenvalues of Ll(G) are

0, (r1 + r2)
n1r1−n1−n2+1, rn1−n2

2 ,
r1 + r2 ±

√
(r1 − r2)2 + 4λ2i

2
, i = 2, . . . , n2 . (5.2)

From (5.1) and (5.2), we have

LEL(l(G)) = LEL(G) + (n1 − n2)(
√
r2 −

√
r1) + (m− n)

√
r1 + r2 ,

LEE(l(G)) = LEE(G) + (n1 − n2)(e
r2 − er1) + (m− n)er1+r2 ,
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where m = n1r1 = n2r2, n = n1 + n2. If G is connected, then by (5.1), (5.2) and Lemma

2.4, we have

Kf(l(G)) =
m(m− n+ 1)

r1 + r2
+
m(n1 − n2)

r2
+

n2∑
i=2

2m

r1 + r2 +
√

(r1 − r2)2 + 4λ2i

+

n2∑
i=2

2m

r1 + r2 −
√

(r1 − r2)2 + 4λ2i
,

Kf(G) =
n

r1 + r2
+
n(n1 − n2)

r1
+

n2∑
i=2

2n

r1 + r2 +
√

(r1 − r2)2 + 4λ2i

+

n2∑
i=2

2n

r1 + r2 −
√

(r1 − r2)2 + 4λ2i
.

From the above equations, we get

Kf(l(G)) =
m

n
Kf(G) +

m(m− n)

r1 + r2
+m(n1 − n2)(

1

r2
− 1

r1
)

=
m

n
Kf(G) +

m(m− n)

r1 + r2
− (n1 − n2)

2 .

Let Ct(G) denote the t-para-line graph of a graph G. We generalize Theorem 3.11

in [24] as follows.

Theorem 5.4. Let G be a connected r-regular graph of order n. Then

Kf(Ct(G)) = r(rt+ 2)Kf(G) +
nrt(1− 2n)

rt+ 2
+ n2(rt− 1) .

Proof. The number of edges of G is m = nr
2

. Note that G�Kt is a semiregular graph

with parameters (n,mt, rt, 2), where Kt the complement of the complete graph Kt. Since

Ct(G) is the line graph of G�Kt, by Theorem 5.3, we have

Kf(Ct(G)) =
nrt

n+mt
Kf(G�Kt) +

nrt(nrt− n−mt)
rt+ 2

− (n−mt)2

=
2rt

rt+ 2
Kf(G�Kt) +

nrt(nrt− n−mt)
rt+ 2

− (n−mt)2 .

By Theorem 4.1, we have

Kf(G�Kt) =
2

t
Kf(G) +Kf+(G) +

t

2
Kf ∗(G)− (n+mt)(n− 1) +mt

2

+
mt(n+mt)

2
=

(rt+ 2)2

2t
Kf(G) +

m2t2 − n2 + n

2
.
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From the expressions of Kf(Ct(G)) and Kf(G�Kt), we get

Kf(Ct(G)) = r(rt+ 2)Kf(G) +
rt(m2t2 − n2 + n) + nrt(nrt− n−mt)

rt+ 2
− (n−mt)2

= r(rt+ 2)Kf(G) +
nrt(nrt− 2n−mt+ 1)− 2m2t2

rt+ 2
− (n2 − 2mnt)

Since m = nr
2

, we have

Kf(Ct(G)) = r(rt+ 2)Kf(G) +
nrt(1− 2n)

rt+ 2
+ n2(rt− 1) .
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