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Abstract

The resistance distance r(u, v) between two vertices u, v of a connected graph
G is defined as the effective resistance between them in the corresponding elec-
trical network constructed from G by replacing each edge of G with a unit resis-
tor. Let G be a connected graph, the degree resistance distance of G is defined as
DR(G) =

∑

{u,v}⊆V (G)[d(u) + d(v)]r(u, v), where d(u) is the degree of the vertex
u. In this paper, we firstly characterize n-vertex unicyclic graphs with given girth
having maximum and second maximum degree resistance distance, then give n-
vertex unicyclic graphs with the maximum and second maximum degree resistance
distance.

1 Introduction

All graphs considered here are both connected and simple if not stated in particular. The

distance between vertices u and v of graph G, denoted by d(u, v) = d(u, v|G), is the length

of a shortest path between them. The degree of the vertex u is d(u) (or dG(u)), if the

underlying graph needs to be specified, then we shall write the degree as d(u|G). n,m

are the number of vertices and edges of G. The famous Wiener index was introduced by

Harold Wiener in 1947, defined as [1]

W (G) =
∑

{u,v}⊆V (G)

d(u, v) (1)

The concept of resistance distance was introduced by Klein and Randić [2] in 1993, on

the basis of electrical network theory. They viewed a graph G as an electrical network N

such that each edge of G is assumed to be a unit resistor. The resistance distance between
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the vertices u and v of a graph G, denoted by r(u, v) = r(u, v|G), is defined to be the

effective resistance between nodes u, v ∈ N . Analogous to the definition of the Wiener

index, the Kirchhoff index Kf(G) of a graph G is defined as [2,3]

Kf(G) =
∑

{u,v}⊆V (G)

r(u, v) (2)

If G is a tree, then r(u, v) = d(u, v) for any two vertices u and v, the Kirchhoff and

Wiener indices of trees coincide.

The Kirchhoff index is an important molecular structure descriptor [4], it has been well

studied in both mathematical and chemical literatures. For a general graph G, I. Lukovits

et al. [5] showed that Kf(G) ≥ n − 1 with equality if and only if G is complete graph

Kn, and Pn has maximal Kirchhoff index. Palacios [6] showed that Kf(G) ≤ 1

6
(n3 − n)

with equality if and only if G is a path. For a circulant graph G, Ref. [7] showed that

n− 1 ≤ Kf(G) ≤ 1

12
(n3 − n),

the first equality holds if and only if G is Kn and the second does if and only if G is Cn.

For more information on the Kirchhoff index, see the recent surveys [8–12].

A modified version of the Wiener index is the degree distance, was introduce by A. A.

Dobrynin and A. A. Kochetova [13], defined as

D(G) =
∑

{u,v}⊆V (G)

[d(u) + d(v)]d(u, v) (3)

If G is a tree on n vertices, then the Wiener index and the degree distance are related

as D(G) = 4W (G)− n(n− 1) (for details see [13]).

The degree resistance distance was introduced by I. Gutman, L. Feng and G. Yu in

[14]:

DR(G) =
∑

{u,v}⊆V (G)

[d(u) + d(v)]r(u, v) (4)

They investigated the degree resistance distance of unicyclic graphs, determined the uni-

cyclic graphs with minimum and second minimum DR-value. J. L. Palacios in [15] re-

named degree resistance distance as additive degree-Kirchhoff index and gave tight upper

and lower bounds for the degree resistance distance of a connected undirected graph by

using Markov chain theory.

If G is a tree, then r(u, v) = d(u, v) for any two vertices u and v. Consequently, the

degree distances and degree resistance distances coincide as well, i,e.,

DR(G) = 4W (G)− n(n− 1). (5)
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In this paper, we concentrate still on unicyclic graphs. A graph G is called a unicyclic

graph if it contains exactly one cycle. Let G = U(Cl;T1, T2, · · · , Tl) be the unicyclic graph

with Cl = v1v2 · · · vlv1 as the unique cycle in G, and for each i(1 ≤ i ≤ l), let Ti be the

component of G− (V (Cl)− vi). Obviously, Ti is a tree.

For convenience, let U(n, l) be the set of all unicyclic graphs on n vertices containing

cycle Cl, S
l
n denotes the graph obtained from cycle Cl by adding n − l pendant edges to

one vertex of Cl, P
l
n denotes the graph obtained by identifying one end-vertex of Pn−l+1

with any vertex of Cl, U (n) be the unicyclic graph with n vertices. Let Pk−1 be the path

with the vertices v1, v2, · · · , vk−1
, the graph T (k, i, 1) is construct from Pk−1 by adding one

pendant edge to the vertex vi(2 ≤ i ≤ k − 2), the unicyclic graph U(Cl;T (k, i, 1))(l ≥ 3,

2 ≤ i ≤ k−2, k+ l = n+1) is the graph obtained from cycle Cl by joining v1 of T (k, i, 1)

to a vertex of Cl, see Figure 1(2).

The paper is organized as follows. In Section 2 we state some preparatory results,

whereas in Section 3 we investigated the degree resistance distance of U(n, l), and give

the maximum and second maximum degree resistance distance of U(n, l). In Section 4,

we give the maximum and second maximum degree resistance distance of U (n).

2 Preliminary Results

For a graph G with v ∈ V (G), G−v denotes the graph obtained from G by deleting v (and

its incident edges). For an edge uv of the graph G (the complement of G, respectively),

G − uv(G + uv, respectively) denotes the graph resulting from G by deleting (adding,

respectively) the edge uv.

Let H be a subgraph of graph G, for a vertex u ∈ V (H), let

r(u|H) =
∑

v∈V (H)

r(v, u|H), S ′(u|H) =
∑

v∈V (H)

dH(v)r(v, u|H)

Let Cn be the cycle on n ≥ 3 vertices, for any two vertices vi, vj ∈ V (Cn) with i < j,

by Ohm’s law, we have

rCn
(vi, vj) =

(j − i)(n + i− j)

n

For any vertex u ∈ V (Cn), we are readily to have r(u|Cn) =
n2 − 1

6
, S ′(u|Cn) =

n2 − 1

3
.

Lemma 2.1([16]). Let T be any n vertices trees different from path Pn and Sn. Then

(n− 1)2 ≤ W (T ) ≤ 1

6
(n3 − n), (6)

the left equality holds if and only if G ∼= Sn and the right holds if and only if G ∼= Pn.
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Lemma 2.2([2]). Let x be a cut vertex of a connected graph and a and b be vertices

occurring in different components which arise upon deletion of x, then rG(a, b) = rG(a, x)+

rG(x, b).

Lemma 2.3([14]). Let G1 and G2 be connected graphs with disjoint vertex sets, with

n1 and n2 vertices, and with m1 and m2 edges, respectively. Let u1 ∈ V (G1); u2 ∈ V (G2).

Constructing the graph G by identifying the vertices u1 and u2, and denote the so obtained

vertex by u. Then

DR(G) = DR(G1) +DR(G2) + 2m2r(u1|G1) + 2m1r(u2|G2) + (n2 − 1)S ′(u1|G1)

+ (n1 − 1)S ′(u2|G2)

Let v be a vertex of degree p+1 in a graph G, such that vv1, vv2, · · · , vvp are pendant
edges incident with v, and u is the neighbor of v distinct from v1, v2, · · · , vp, and G′ =

σ(G, v) by removing the edges vv1, vv2, · · · , vvp and adding new edges uv1, uv2, · · · , uvp.
From the reference [14], one has

Lemma 2.4[14]. Let G′ = σ(G, v) be a graph transformed from the graphG, d(u) ≥ 1

described above. Then DR(G) ≥ DR(G
′), with equality holds if and only if G is a star

with v as its center.

Lemma 2.5. Let G0 be a connected graphs with m0 > 1 edges, and u, v ∈ V (G0)

be two distinct vertices with degree at least 3 in G0 such that r(u, v) = l. Let Ps =

u1u2 · · ·us and Pt = v1v2 · · · vt be two paths of order s ≥ 1 and t ≥ 1, respectively.

Let Gs,t be the graph obtained from G0, Ps and Pt by adding edges uu1, vv1. Suppose

that Gs−1,t+1 = Gs,t − urur−1 + vtur and Gs+1,t−1 = Gs,t − vt−1vt + usvt. Then either

DR(Gs,t) < DR(Gs−1,t+1) or DR(Gs,t) < DR(Gs+1,t−1).

Proof. Let H be the graph induced by V (G0) ∪ V (Pt). By Lemma 2.3, one has

DR(Gs,t) = DR(H) +DR(Ps+1) + 2(m0 + t)r(u|Ps+1) + 2sr(u|H)

+ (n0 + t− 1)S ′(u|Ps+1) + sS ′(u|H)

On one hand,

DR(H) = DR(G0) +DR(Pt+1) + 2tr(v|G0) + 2m0r(v|Pt+1) + tS ′(v|G0)

+ (n0 − 1)S ′(v|Pt+1)

= DR(G0) + 2tr(v|G0) + tS ′(v|G0) +m0t(t+ 1) +DR(Pt+1) + (n0 − 1)t2

+
2

3
t3 + t2 +

1

3
t
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Further, from equation (5), one arrives at

DR(Ps+1) = 4W (Ps+1)− s(s+ 1) =
2

3
s3 + s2 +

1

3
s,

and analogously, DR(Pt+1) =
2

3
t3 + t2 +

1

3
t.

On the other hand,

r(u|H) =
∑

z∈V (G0)

r(z, u) +
∑

z∈V (H−G0)

r(z, u) = r(u|G0) + lt +
1

2
t(t + 1),

r(u|Ps+1) =
1

2
s(s+ 1), S ′(u|Ps+1) =

∑

z∈V (Ps+1)

dH(z)r(z, u) = s2,

and analogously,

S ′(u|H) =
∑

z∈V (H)

dH(z)r(z, u)

=
∑

z∈V (G0)

dG0
(z)r(z, u) + 2l + t+ 2

t−1
∑

i=1

(2 + i)

= S ′(u|G0) + 2lt + t2

Finally,

DR(Gs,t) = DR(G0) + 2sr(u|G0) + 2tr(v|G0) + sS ′(u|G0) + tS ′(v|G0)

+m0[s(s+ 1) + t(t+ 1)] + (n0 − 1)(s2 + t2) +
2

3
(s3 + t3)

+ 2st(s+ t) + (s+ t)2 +
1

3
(s+ t) + 4lst

Similarly,

DR(Gs−1,t+1) = DR(G0) + 2(s− 1)r(u|G0) + 2(t+ 1)r(v|G0) + (s− 1)S ′(u|G0)

+ (t+ 1)S ′(v|G0) +m0[s(s− 1) + (t + 1)(t+ 2)] + (n0 − 1)[(s− 1)2

+ (t+ 1)2)] +
2

3
[(s− 1)3 + (t + 1)3)] + 2(s− 1)(t+ 1)(s+ t)

+ (s+ t)2 +
1

3
(s + t) + 4l(s− 1)(t+ 1)

and

DR(Gs+1,t−1) = DR(G0) + 2(s+ 1)r(u|G0) + 2(t− 1)r(v|G0) + (s+ 1)S ′(u|G0)

+ (t− 1)S ′(v|G0) +m0[(s+ 1)(s+ 2) + t(t− 1)] + (n0 − 1)[(s+ 1)2

+ (t− 1)2)] +
2

3
[(s+ 1)3 + (t− 1)3)] + 2(s+ 1)(t− 1)(s+ t)

+ (s+ t)2 +
1

3
(s + t) + 4l(s+ 1)(t− 1)
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So we get

DR(Gs−1,t+1)−DR(Gs,t)

= 2[r(v|G0)− r(u|G0)] + S ′(v|G0)− S ′(u|G0) + 2(m0 + n0 − 1− 2l)(−s + t+ 1)

By a similar reasoning, one has

DR(Gs+1,t−1)−DR(Gs,t)

= 2[r(u|G0)− r(v|G0)] + S ′(u|G0)− S ′(v|G0) + 2(m0 + n0 − 1− 2l)(s− t+ 1)

Hence, if DR(Gs−1,t+1)−DR(Gs,t) < 0, then

2[r(v|G0)− r(u|G0)] + S ′(v|G0)− S ′(u|G0) + 2(m0 + n0 − 1− 2l)(−s + t+ 1) < 0,

i.e.,

2[r(u|G0)− r(v|G0)] + S ′(u|G0)− S ′(v|G0) > 2(m0 + n0 − 1− 2l)(−s+ t+ 1).

Therefore,

DR(Gs+1,t−1)−DR(Gs,t)

> 2(m0 + n0 − 1− 2l)(−s + t+ 1) + 2(m0 + n0 − 1− 2l)(s− t + 1)

= 4(m0 + n0 − 1− 2l) > 0.

This completes the proof.

3 The maximum and second maximum degree resis-

tance distance of U(n, l)

Firstly, we shall investigate unicyclic graph in U(n, l) with the maximum degree resistance

distance.

Theorem 3.1. Let G be a unicyclic graph of order n and girth l. Then DR(G) ≤
DR(P

l
n), with equality holds if and only if G ∼= P l

n.

Proof. Suppose that G0 = U(Cl;T1, T2, · · · , Tl) has maximal degree resistance dis-

tance among U(n, l).
Claim 1. For each i, Ti is a path with vi as one of its end vertices.

For each i, DR(Ti) is maximal if and only if Ti is a path by Lemma 2.4, Hence Claim

1 holds.
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Claim 2. If l < n, all but one of the Ti are trivial.

Suppose that there are two trees Ti and Tj such that they both have more than one

vertices. By Claim 1, Ti and Tj are both paths. Suppose that Ti = viu1u2 · · ·uk, Tj =

vjw1w2 · · ·wm. Let G′ = G0 − uk−1uk + wmuk or G′ = G0 − wm−1wm + ukwm, then

DR(G
′) > DR(G0), this contradicts to the choice of G0, which implies Claim 2.

Claim 1 and Claim 2 yield to Theorem.

From Theorem 3.1, the degree resistance distance of P l
n is computed as follows:

DR(P
l
n)

= DR(Cl) + 2(n− l)r(v|Cl) + (n− l)S ′(v|Cl) + l(n− l)(n− l + 1) + (l − 1)(n− l)2

+
2

3
(n− l)3 + (n− l)2 +

1

3
(n− l)

= l3 − 1

3
(4n+ 3)l2 + nl +

2

3
n3 − 1

3
n

Combining above results and Theorem 3.1, one arrives at,

Theorem 3.2. Let G ∈ U(n, l), then

DR(G) ≤ l3 − 1

3
(4n+ 3)l2 + nl +

2

3
n3 − 1

3
n, (7)

the equality holds if and only if G ∼= P l
n.

Secondly, we shall investigate unicyclic graph in U(n, l) with the second maximum

degree resistance distance.

Theorem 3.3. Let G ∈ U(n, l), 3 ≤ l ≤ n− 3 and G 6∼= P l
n, then

DR(G) ≤ l3 − 1

3
(4n+ 3)l2 + nl +

2

3
n3 − 13

3
n + 10, (8)

the equality holds if and only if G ∼= U(Cl;T (n− l + 1, n− l − 1, 1)).

Proof. Suppose that G = U(Cl;T1, T2, · · · , Tl) has the second maximum degree re-

sistance distance among U(n, l).
Firstly, at most two of T1, T2, · · · , Tl are not trivial.

Otherwise, without loss of generality, we assume that T1, T2, T3 are not trivial. They

must be paths by Lemmas 2.4.

Let T1 = v1a1a2 · · · ar, T2 = v2b1b2 · · · bs, T3 = v3c1c2 · · · ct. Then
DR(G) < DR(G − ar−1ar + bsar) or DR(G) < DR(G − ar−1ar + ctar) by Lemma 2.5.

This contradicts to the choice of G.

Nextly, if exactly two of T1, T2, · · · , Tl are not trivial, then they are paths from Lemmas

2.4. Without loss of generality, we assume that T1 = v1a2 · · · ar and Ti = vib2 · · · bs
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(1 < i ≤ l), where r+ s+ l = n+ 2, r ≥ 2 and s ≥ 2, are not trivial. By Lemma 2.5, one

has

DR(G) < DR(G− ar−1ar + bsar), or DR(G) < DR(G− bs−1bs + arbs).

Repeating above steps, one arrives at r = 2 or s = 2 at last.

Without loss of generality, we assume that s = 2, i.e., G = Hi(2 ≤ i ≤ l) is the graph

shown in Figure 1(1).

.......C
lvib2 v1 a2 a

r−1

ar ....... .......Cl v1 vi

vk

v
k−1

(1) Hi (2) U(Cl;T (k, i, 1))

Figure 1.

It is easy to calculate out the degree resistance distance by Lemma 2.3 as follows:

DR(Hi)

=
1

3
(2k3 + l3 + 6k2l + 2kl2 − 9kl + 5k + 11l − 6) +

4

l
(k − 1)[−i2 + (2 + l)i− l − 1]

= l3 − 1

3
(4n− 9)l2 − (3n− 2)l +

4

l
(n− l − 1)[−i2 + (2 + l)i− l − 1]

+
1

3
(2n3 + 5n− 6)

and

DR(Hi) ≤



















l3 − 1

3
(4n− 6)l2 − (2n− 1)l +

1

3
(2n3 + 5n− 6), if l is even;

l3 − 1

3
(4n− 6)l2 − (2n− 1)l +

1

3
(2n3 + 5n− 3)− n− 1

l
, if l is odd.

with the equality if and only if i =
l

2
+ 1 for l is even, or i =

l + 1

2
+ 1 for l is odd.

If exactly one of T1, T2, · · · , Tl is not trivial, without loss of generality, we assume that

T1 is not trivial. Since G 6∼= P l
n, then T1 6= Pn−l+1. From Lemma 2.4, we know that G is

the graph shown in Figure 1(2).

Let G = U(Cl;T (k, i, 1)) (l ≥ 3, 2 ≤ i ≤ k − 2, k + l = n + 1) be the graph depicted

in Figure 1(2). G1 = Cl, G2 = T (k, i, 1), then G1 and G2 sharing the common vertex v1.

It is noted that V (G1) = E(G1) = l, V (G2) = k, E(G1) = k − 1;

r(v1|G1) =
l2 − 1

6
, r(v1|G2) =

1

2
(k − 2)(k − 1) + i;

S ′(v1|G1) =
l2 − 1

3
, S ′(v1|G2) = 2

k−3
∑

i=1

+(k − 2) + 2i− 1 = k2 − 4k + 3 + 2i.
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DR(G1) =
1

3
(l3 − l), DR(G2) =

2

3
k3 − k2 +

13

3
k + 4i2 − 4ki− 4.

Thus,

DR(G) = DR(G1) +DR(G2) + 2(k − 1)r(v1|G1) + 2lr(v1|G2)

+ (k − 1)S ′(v1|G1) + (l − 1)S ′(v1|G2)

=
1

3
(l3 − l) +

2

3
k3 − k2 +

13

3
k + 4i2 − 4ki− 4 + 2(k − 1) · l

2 − 1

6

+ 2l · [1
2
(k − 2)(k − 1) + i] + (k − 1) · l

2 − 1

3
+ (l − 1) · (k2 − 4k + 3 + 2i)

Bearing in the mind that k = n + 1− l, then

DR(G) = 4i2 − 2(2n+ 3− 4l)i+
1

3
(3l3 − 4nl2 + 9l2 − 9nl − 18l + 2n3 + 17n).

In the following, we shall investigate graphs in U(Cl;T (k, i, 1)) with the maximum

degree resistance distance.

Let f(x) = 4x2 − 2(2n + 3 − 4k)x +
1

3
(3l3 − 4nl2 + 9l2 − 9nl − 18l + 2n3 + 17n),

2 ≤ x ≤ n− l − 1. Then

(1) when
n

2
− l +

3

4
≤ 2, i.e., l ≤ n ≤ 2l + 3.

f(x) is increasing in [2, n− l − 1], thus,

f(x) ≤ l3 − 4n + 3

3
l2 + nl +

2

3
n3 − 13

3
n + 10,

the equality holds if and only if G ∼= U(Cl;T (n− l + 1, n− l − 1, 1)).

(2) when n ≥ 2l + 3.

f(x) is decreasing in [2,
n

2
− l +

3

4
] and increasing in [

n

2
− l +

3

4
, n− l − 1]. Then

DR(G) ≤ l3 − 4n+ 3

3
l2 + nl +

2

3
n3 − 13

3
n + 10,

the equality holds if and only if G ∼= U(Cl;T (n− l + 1, n− l − 1, 1)).

Finally, we need to compare degree resistance distance between H l

2
+1(H l+1

2
+1) and

U(Cl;T (n− l + 1, n− l − 1, 1)).

(1) If l ≥ 4 is even, then

DR(U(Cl;T (n− l + 1, n− l − 1, 1)))−DR(H l

2
+1)

= −3l2 + (3n− 1)l − 6n + 12

= n(3l − 6)− 3l2 − l + 12

≥ (l + 3)(3l − 6)− 3l2 − l + 12 (since n ≥ l + 3)

= 2l − 6 > 0
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(2) If l ≥ 3 is odd, then

DR(U(Cl;T (n− l + 1, n− l − 1, 1)))−DR(H l+1

2
+1)

= −3l2 + (3n− 1)l − 6n+ 11 +
n− 1

l

= n(3l +
1

l
− 6)− 3l2 − l − 1

l
+ 11

≥ (l + 3)(3l +
1

l
− 6)− 3l2 − l − 1

l
+ 11 (since n ≥ l + 3)

= 2l +
2

l
− 6 > 0

This completes the proof.

4 The maximum and second maximum degree resis-

tance distance of U (n)

Theorem 4.1. max
3≤l≤n

{DR(P
l
n)} = DR(P

3
n).

Proof. Let f(l) := DR(P
l
n) = l3 − 1

3
(4n+ 3)l2 + nl +

2

3
n3 − 1

3
n.

In what follows, we will find the maximum value of f(l) on I := [3, 4, · · · , n].
The first derivative of f(l) is

∂f(l)

∂l
= 3l2 − 2

3
(4n+ 3)l + n.

The roots of
∂f(l)

∂l
= 0 are l1,2 =

(4n+ 3)∓
√
16n2 − 3n+ 9

9
.

It is easy to see that for n ≥ 3,

l1 <
4n+ 3− (4n− 24)

9
= 3, l2 >

4n+ 3 + (24− 4n)

9
= 3.

In the following, we will show that f(3) is the maximum value of f(l) on I.

For n ≥ 3, it’s easy to verify that l2 ≤ n. Then, one has

(i) when l ∈ [3, l2),
∂f(l)

∂l
< 0, which indicates that f(l) is decreasing on [3, l2);

(ii) when l ∈ [l2, n],
∂f(l)

∂l
> 0, which indicates that f(l) is increasing on [l2, n].

So, the maximum value of DR(P
l
n) must occurred between f(3) and f(n).

It’s suffice to see that f(3)− f(n) =
1

3
(n3 − 27n+ 54).

Let g(x) =
1

3
(x3−27x+54)(x ≥ 3), then

∂g(x)

∂x
= x2−9 ≥ 0, g(x) is increasing when

x ≥ 3.

Since g(3) = 0, then g(x) ≥ 0 for n ≥ 3, i.e., f(3) ≥ f(n) for n ≥ 3.

This completes the proof.
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Theorem 4.2. Let G ∈ U (n) be an arbitrary unicyclic graph, then

DR(G) ≤ 2n3

3
− 28n

3
+ 18,

with the equality holds if and only if G ∼= P 3
n .

Analogously, one arrives at

Theorem 4.3. max
3≤l≤n−3

{DR(U(Cl;T (n− l+1, n− l−1, 1)))} = DR(U(C3;T (n−2, n−
4, 1))).

Corollary 4.4. Let G ∈ U(Cl;T (n− l + 1, n− l − 1, 1)), 3 ≤ l ≤ n− 3. Then

DR(G) ≤ 2n3

3
− 40n

3
+ 28,

with the equality holds if and only if G ∼= U(C3;T (n− 2, n− 4, 1)).

Theorem 4.5. Let G ∈ U (n)(n ≥ 6), be an arbitrary unicyclic graph, G 6∼= P 3
n . Then

DR(G) ≤ 2n3

3
− 40n

3
+ 28,

with the equality holds if and only if G ∼= U(C3;T (n− 2, n− 4, 1)).

Proof. Firstly, we shall find graphs in P l
n \ P 3

n with the maximum degree resistance

distance.

Similar to the proof of Theorem 4.1, max
4≤l≤n

{DR(P
l
n)} = {DR(P

4
n), DR(P

n
n )}.

By Theorem 3.2, we have

DR(P
4
n) =

2

3
n3 − 53

3
n+ 48, DR(P

n
n ) =

1

3
n3 − 1

3
n.

It is easy to verify that DR(P
4
n) > DR(P

n
n ).

Secondly, we compare DR(P
4
n) with DR(U(C3;T (n− 2, n− 4, 1))).

DR(U(C3;T (n− 2, n− 4, 1)))−DR(P
4
n)

=
2n3

3
− 40n

3
+ 28− (

2

3
n3 − 53

3
n+ 48)

=
13

3
n− 20 > 0.

The proof is completed.
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