Maximal Degree Resistance Distance of Unicyclic Graphs

Shubo Chen*, Qiao Chen, Xia Cai, Zhijun Guo

College of Mathematics, Hunan City University, Yiyang, Hunan 413000, P. R. China

(Received October 3, 2014)

Abstract

The resistance distance r(u, v) between two vertices u, v of a connected graph G is defined as the effective resistance between them in the corresponding electrical network constructed from G by replacing each edge of G with a unit resistor. Let G be a connected graph, the degree resistance distance of G is defined as $D_R(G) = \sum_{\{u,v\} \subseteq V(G)} [d(u) + d(v)]r(u,v)$, where d(u) is the degree of the vertex u. In this paper, we firstly characterize n-vertex unicyclic graphs with given given having maximum and second maximum degree resistance distance, then give n-vertex unicyclic graphs with the maximum and second maximum degree resistance distance.

1 Introduction

All graphs considered here are both connected and simple if not stated in particular. The distance between vertices u and v of graph G, denoted by d(u, v) = d(u, v|G), is the length of a shortest path between them. The degree of the vertex u is d(u) (or $d_G(u)$), if the underlying graph needs to be specified, then we shall write the degree as d(u|G). n, m are the number of vertices and edges of G. The famous Wiener index was introduced by Harold Wiener in 1947, defined as [1]

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v) \tag{1}$$

The concept of resistance distance was introduced by Klein and Randić [2] in 1993, on the basis of electrical network theory. They viewed a graph G as an electrical network Nsuch that each edge of G is assumed to be a unit resistor. The resistance distance between

^{*}Email: shubo.chen@163.com

the vertices u and v of a graph G, denoted by r(u, v) = r(u, v|G), is defined to be the effective resistance between nodes $u, v \in N$. Analogous to the definition of the Wiener

index, the Kirchhoff index Kf(G) of a graph G is defined as [2,3]

$$Kf(G) = \sum_{\{u,v\}\subseteq V(G)} r(u,v) \tag{2}$$

If G is a tree, then r(u, v) = d(u, v) for any two vertices u and v, the Kirchhoff and Wiener indices of trees coincide.

The Kirchhoff index is an important molecular structure descriptor [4], it has been well studied in both mathematical and chemical literatures. For a general graph G, I. Lukovits et al. [5] showed that $Kf(G) \ge n-1$ with equality if and only if G is complete graph K_n , and P_n has maximal Kirchhoff index. Palacios [6] showed that $Kf(G) \le \frac{1}{6}(n^3 - n)$ with equality if and only if G is a path. For a circulant graph G, Ref. [7] showed that

$$n-1 \le Kf(G) \le \frac{1}{12}(n^3-n),$$

the first equality holds if and only if G is K_n and the second does if and only if G is C_n . For more information on the Kirchhoff index, see the recent surveys [8–12].

A modified version of the Wiener index is the degree distance, was introduce by A. A. Dobrynin and A. A. Kochetova [13], defined as

$$D(G) = \sum_{\{u,v\} \subseteq V(G)} [d(u) + d(v)]d(u,v)$$
(3)

If G is a tree on n vertices, then the Wiener index and the degree distance are related as D(G) = 4W(G) - n(n-1) (for details see [13]).

The degree resistance distance was introduced by I. Gutman, L. Feng and G. Yu in [14]:

$$D_R(G) = \sum_{\{u,v\} \subseteq V(G)} [d(u) + d(v)]r(u,v)$$
(4)

They investigated the degree resistance distance of unicyclic graphs, determined the unicyclic graphs with minimum and second minimum D_R -value. J. L. Palacios in [15] renamed degree resistance distance as *additive degree-Kirchhoff index* and gave tight upper and lower bounds for the degree resistance distance of a connected undirected graph by using Markov chain theory.

If G is a tree, then r(u, v) = d(u, v) for any two vertices u and v. Consequently, the degree distances and degree resistance distances coincide as well, i.e.,

$$D_R(G) = 4W(G) - n(n-1).$$
 (5)

In this paper, we concentrate still on unicyclic graphs. A graph G is called a unicyclic graph if it contains exactly one cycle. Let $G = U(C_l; T_1, T_2, \dots, T_l)$ be the unicyclic graph with $C_l = v_1 v_2 \cdots v_l v_1$ as the unique cycle in G, and for each $i(1 \le i \le l)$, let T_i be the component of $G - (V(C_l) - v_i)$. Obviously, T_i is a tree.

For convenience, let $\mathcal{U}(n, l)$ be the set of all unicyclic graphs on n vertices containing cycle C_l , S_n^l denotes the graph obtained from cycle C_l by adding n - l pendant edges to one vertex of C_l , P_n^l denotes the graph obtained by identifying one end-vertex of P_{n-l+1} with any vertex of C_l , $\mathscr{U}(n)$ be the unicyclic graph with n vertices. Let P_{k-1} be the path with the vertices v_1, v_2, \dots, v_{k-1} , the graph T(k, i, 1) is construct from P_{k-1} by adding one pendant edge to the vertex $v_i(2 \le i \le k-2)$, the unicyclic graph $U(C_l; T(k, i, 1))(l \ge 3,$ $2 \le i \le k-2, k+l = n+1)$ is the graph obtained from cycle C_l by joining v_1 of T(k, i, 1)to a vertex of C_l , see Figure 1(2).

The paper is organized as follows. In Section 2 we state some preparatory results, whereas in Section 3 we investigated the degree resistance distance of $\mathcal{U}(n,l)$, and give the maximum and second maximum degree resistance distance of $\mathcal{U}(n,l)$. In Section 4, we give the maximum and second maximum degree resistance distance of $\mathscr{U}(n)$.

2 Preliminary Results

For a graph G with $v \in V(G)$, G-v denotes the graph obtained from G by deleting v (and its incident edges). For an edge uv of the graph G (the complement of G, respectively), G - uv(G + uv), respectively) denotes the graph resulting from G by deleting (adding, respectively) the edge uv.

Let H be a subgraph of graph G, for a vertex $u \in V(H)$, let

$$r(u|H) = \sum_{v \in V(H)} r(v, u|H), \quad S'(u|H) = \sum_{v \in V(H)} d_H(v)r(v, u|H)$$

Let C_n be the cycle on $n \ge 3$ vertices, for any two vertices $v_i, v_j \in V(C_n)$ with i < j, by Ohm's law, we have

$$r_{C_n}(v_i, v_j) = \frac{(j-i)(n+i-j)}{n}$$

For any vertex $u \in V(C_n)$, we are readily to have $r(u|C_n) = \frac{n^2 - 1}{6}$, $S'(u|C_n) = \frac{n^2 - 1}{3}$.

Lemma 2.1([16]). Let T be any n vertices trees different from path P_n and S_n . Then

$$(n-1)^2 \le W(T) \le \frac{1}{6}(n^3 - n),$$
 (6)

the left equality holds if and only if $G \cong S_n$ and the right holds if and only if $G \cong P_n$.

Lemma 2.2([2]). Let x be a cut vertex of a connected graph and a and b be vertices occurring in different components which arise upon deletion of x, then $r_G(a, b) = r_G(a, x) + r_G(x, b)$.

Lemma 2.3([14]). Let G_1 and G_2 be connected graphs with disjoint vertex sets, with n_1 and n_2 vertices, and with m_1 and m_2 edges, respectively. Let $u_1 \in V(G_1)$; $u_2 \in V(G_2)$. Constructing the graph G by identifying the vertices u_1 and u_2 , and denote the so obtained vertex by u. Then

$$D_R(G) = D_R(G_1) + D_R(G_2) + 2m_2r(u_1|G_1) + 2m_1r(u_2|G_2) + (n_2 - 1)S'(u_1|G_1) + (n_1 - 1)S'(u_2|G_2)$$

Let v be a vertex of degree p + 1 in a graph G, such that vv_1, vv_2, \dots, vv_p are pendant edges incident with v, and u is the neighbor of v distinct from v_1, v_2, \dots, v_p , and $G' = \sigma(G, v)$ by removing the edges vv_1, vv_2, \dots, vv_p and adding new edges uv_1, uv_2, \dots, uv_p . From the reference [14], one has

Lemma 2.4[14]. Let $G' = \sigma(G, v)$ be a graph transformed from the graph $G, d(u) \ge 1$ described above. Then $D_R(G) \ge D_R(G')$, with equality holds if and only if G is a star with v as its center.

Lemma 2.5. Let G_0 be a connected graphs with $m_0 > 1$ edges, and $u, v \in V(G_0)$ be two distinct vertices with degree at least 3 in G_0 such that r(u, v) = l. Let $P_s = u_1 u_2 \cdots u_s$ and $P_t = v_1 v_2 \cdots v_t$ be two paths of order $s \ge 1$ and $t \ge 1$, respectively. Let $G_{s,t}$ be the graph obtained from G_0 , P_s and P_t by adding edges uu_1 , vv_1 . Suppose that $G_{s-1,t+1} = G_{s,t} - u_r u_{r-1} + v_t u_r$ and $G_{s+1,t-1} = G_{s,t} - v_{t-1} v_t + u_s v_t$. Then either $D_R(G_{s,t}) < D_R(G_{s-1,t+1})$ or $D_R(G_{s,t}) < D_R(G_{s+1,t-1})$.

Proof. Let H be the graph induced by $V(G_0) \cup V(P_t)$. By Lemma 2.3, one has

$$D_R(G_{s,t}) = D_R(H) + D_R(P_{s+1}) + 2(m_0 + t)r(u|P_{s+1}) + 2sr(u|H)$$
$$+ (n_0 + t - 1)S'(u|P_{s+1}) + sS'(u|H)$$

On one hand,

$$D_R(H) = D_R(G_0) + D_R(P_{t+1}) + 2tr(v|G_0) + 2m_0r(v|P_{t+1}) + tS'(v|G_0) + (n_0 - 1)S'(v|P_{t+1}) = D_R(G_0) + 2tr(v|G_0) + tS'(v|G_0) + m_0t(t+1) + D_R(P_{t+1}) + (n_0 - 1)t^2 + \frac{2}{3}t^3 + t^2 + \frac{1}{3}t$$

Further, from equation (5), one arrives at

$$D_R(P_{s+1}) = 4W(P_{s+1}) - s(s+1) = \frac{2}{3}s^3 + s^2 + \frac{1}{3}s,$$

and analogously, $D_R(P_{t+1}) = \frac{2}{3}t^3 + t^2 + \frac{1}{3}t$. On the other hand,

$$r(u|H) = \sum_{z \in V(G_0)} r(z, u) + \sum_{z \in V(H-G_0)} r(z, u) = r(u|G_0) + lt + \frac{1}{2}t(t+1)$$
$$r(u|P_{s+1}) = \frac{1}{2}s(s+1), \quad S'(u|P_{s+1}) = \sum_{z \in V(P_{s+1})} d_H(z)r(z, u) = s^2,$$

and analogously,

$$S'(u|H) = \sum_{z \in V(H)} d_H(z)r(z, u)$$

=
$$\sum_{z \in V(G_0)} d_{G_0}(z)r(z, u) + 2l + t + 2\sum_{i=1}^{t-1} (2+i)$$

=
$$S'(u|G_0) + 2lt + t^2$$

Finally,

$$D_R(G_{s,t}) = D_R(G_0) + 2sr(u|G_0) + 2tr(v|G_0) + sS'(u|G_0) + tS'(v|G_0) + m_0[s(s+1) + t(t+1)] + (n_0 - 1)(s^2 + t^2) + \frac{2}{3}(s^3 + t^3) + 2st(s+t) + (s+t)^2 + \frac{1}{3}(s+t) + 4lst$$

Similarly,

$$\begin{split} D_R(G_{s-1,t+1}) &= D_R(G_0) + 2(s-1)r(u|G_0) + 2(t+1)r(v|G_0) + (s-1)S'(u|G_0) \\ &\quad + (t+1)S'(v|G_0) + m_0[s(s-1) + (t+1)(t+2)] + (n_0-1)[(s-1)^2 \\ &\quad + (t+1)^2)] + \frac{2}{3}[(s-1)^3 + (t+1)^3)] + 2(s-1)(t+1)(s+t) \\ &\quad + (s+t)^2 + \frac{1}{3}(s+t) + 4l(s-1)(t+1) \end{split}$$

and

$$\begin{split} D_R(G_{s+1,t-1}) &= D_R(G_0) + 2(s+1)r(u|G_0) + 2(t-1)r(v|G_0) + (s+1)S'(u|G_0) \\ &\quad + (t-1)S'(v|G_0) + m_0[(s+1)(s+2) + t(t-1)] + (n_0-1)[(s+1)^2 \\ &\quad + (t-1)^2)] + \frac{2}{3}[(s+1)^3 + (t-1)^3)] + 2(s+1)(t-1)(s+t) \\ &\quad + (s+t)^2 + \frac{1}{3}(s+t) + 4l(s+1)(t-1) \end{split}$$

So we get

$$D_R(G_{s-1,t+1}) - D_R(G_{s,t})$$

= 2[r(v|G_0) - r(u|G_0)] + S'(v|G_0) - S'(u|G_0) + 2(m_0 + n_0 - 1 - 2l)(-s + t + 1)

By a similar reasoning, one has

$$D_R(G_{s+1,t-1}) - D_R(G_{s,t})$$

= 2[r(u|G_0) - r(v|G_0)] + S'(u|G_0) - S'(v|G_0) + 2(m_0 + n_0 - 1 - 2l)(s - t + 1)

Hence, if $D_R(G_{s-1,t+1}) - D_R(G_{s,t}) < 0$, then

$$2[r(v|G_0) - r(u|G_0)] + S'(v|G_0) - S'(u|G_0) + 2(m_0 + n_0 - 1 - 2l)(-s + t + 1) < 0,$$

i.e.,

$$2[r(u|G_0) - r(v|G_0)] + S'(u|G_0) - S'(v|G_0) > 2(m_0 + n_0 - 1 - 2l)(-s + t + 1).$$

Therefore,

$$D_R(G_{s+1,t-1}) - D_R(G_{s,t})$$

> 2(m_0 + n_0 - 1 - 2l)(-s + t + 1) + 2(m_0 + n_0 - 1 - 2l)(s - t + 1)
= 4(m_0 + n_0 - 1 - 2l) > 0.

This completes the proof.

3 The maximum and second maximum degree resistance distance of $\mathcal{U}(n, l)$

Firstly, we shall investigate unicyclic graph in $\mathcal{U}(n,l)$ with the maximum degree resistance distance.

Theorem 3.1. Let G be a unicyclic graph of order n and girth l. Then $D_R(G) \leq D_R(P_n^l)$, with equality holds if and only if $G \cong P_n^l$.

Proof. Suppose that $G_0 = U(C_l; T_1, T_2, \cdots, T_l)$ has maximal degree resistance distance among $\mathcal{U}(n, l)$.

Claim 1. For each i, T_i is a path with v_i as one of its end vertices.

For each i, $D_R(T_i)$ is maximal if and only if T_i is a path by Lemma 2.4, Hence Claim 1 holds.

Claim 2. If l < n, all but one of the T_i are trivial.

Suppose that there are two trees T_i and T_j such that they both have more than one vertices. By Claim 1, T_i and T_j are both paths. Suppose that $T_i = v_i u_1 u_2 \cdots u_k$, $T_j = v_j w_1 w_2 \cdots w_m$. Let $G' = G_0 - u_{k-1} u_k + w_m u_k$ or $G' = G_0 - w_{m-1} w_m + u_k w_m$, then $D_R(G') > D_R(G_0)$, this contradicts to the choice of G_0 , which implies Claim 2.

Claim 1 and Claim 2 yield to Theorem.

From Theorem 3.1, the degree resistance distance of P_n^l is computed as follows: $D_R(P_n^l)$

$$= D_R(C_l) + 2(n-l)r(v|C_l) + (n-l)S'(v|C_l) + l(n-l)(n-l+1) + (l-1)(n-l)^2 + \frac{2}{3}(n-l)^3 + (n-l)^2 + \frac{1}{3}(n-l) = l^3 - \frac{1}{3}(4n+3)l^2 + nl + \frac{2}{3}n^3 - \frac{1}{3}n$$

Combining above results and Theorem 3.1, one arrives at,

Theorem 3.2. Let $G \in \mathcal{U}(n, l)$, then

$$D_R(G) \le l^3 - \frac{1}{3}(4n+3)l^2 + nl + \frac{2}{3}n^3 - \frac{1}{3}n,$$
(7)

the equality holds if and only if $G \cong P_n^l$.

Secondly, we shall investigate unicyclic graph in $\mathcal{U}(n, l)$ with the second maximum degree resistance distance.

Theorem 3.3. Let $G \in \mathcal{U}(n, l)$, $3 \leq l \leq n-3$ and $G \ncong P_n^l$, then

$$D_R(G) \le l^3 - \frac{1}{3}(4n+3)l^2 + nl + \frac{2}{3}n^3 - \frac{13}{3}n + 10,$$
(8)

the equality holds if and only if $G \cong U(C_l; T(n-l+1, n-l-1, 1))$.

Proof. Suppose that $G = U(C_l; T_1, T_2, \dots, T_l)$ has the second maximum degree resistance distance among U(n, l).

Firstly, at most two of T_1, T_2, \cdots, T_l are not trivial.

Otherwise, without loss of generality, we assume that T_1, T_2, T_3 are not trivial. They must be paths by Lemmas 2.4.

Let $T_1 = v_1 a_1 a_2 \cdots a_r$, $T_2 = v_2 b_1 b_2 \cdots b_s$, $T_3 = v_3 c_1 c_2 \cdots c_t$. Then

 $D_R(G) < D_R(G - a_{r-1}a_r + b_s a_r)$ or $D_R(G) < D_R(G - a_{r-1}a_r + c_t a_r)$ by Lemma 2.5. This contradicts to the choice of G.

Nextly, if exactly two of T_1, T_2, \dots, T_l are not trivial, then they are paths from Lemmas 2.4. Without loss of generality, we assume that $T_1 = v_1 a_2 \cdots a_r$ and $T_i = v_i b_2 \cdots b_s$

 $(1 < i \le l)$, where r + s + l = n + 2, $r \ge 2$ and $s \ge 2$, are not trivial. By Lemma 2.5, one has

 $D_R(G) < D_R(G - a_{r-1}a_r + b_s a_r)$, or $D_R(G) < D_R(G - b_{s-1}b_s + a_r b_s)$.

Repeating above steps, one arrives at r = 2 or s = 2 at last.

Without loss of generality, we assume that s = 2, i.e., $G = H_i(2 \le i \le l)$ is the graph shown in Figure 1(1).

Figure 1.

It is easy to calculate out the degree resistance distance by Lemma 2.3 as follows:

$$\begin{split} &D_R(H_i) \\ &= \frac{1}{3}(2k^3 + l^3 + 6k^2l + 2kl^2 - 9kl + 5k + 11l - 6) + \frac{4}{l}(k-1)[-i^2 + (2+l)i - l - 1] \\ &= l^3 - \frac{1}{3}(4n-9)l^2 - (3n-2)l + \frac{4}{l}(n-l-1)[-i^2 + (2+l)i - l - 1] \\ &+ \frac{1}{3}(2n^3 + 5n - 6) \end{split}$$

and

$$D_R(H_i) \le \begin{cases} l^3 - \frac{1}{3}(4n-6)l^2 - (2n-1)l + \frac{1}{3}(2n^3+5n-6), & \text{if } l \text{ is even;} \\ \\ l^3 - \frac{1}{3}(4n-6)l^2 - (2n-1)l + \frac{1}{3}(2n^3+5n-3) - \frac{n-1}{l}, & \text{if } l \text{ is odd.} \end{cases}$$

with the equality if and only if $i = \frac{l}{2} + 1$ for l is even, or $i = \frac{l+1}{2} + 1$ for l is odd.

If exactly one of T_1, T_2, \dots, T_l is not trivial, without loss of generality, we assume that T_1 is not trivial. Since $G \not\cong P_n^l$, then $T_1 \neq P_{n-l+1}$. From Lemma 2.4, we know that G is the graph shown in Figure 1(2).

Let $G = U(C_l; T(k, i, 1))$ $(l \ge 3, 2 \le i \le k - 2, k + l = n + 1)$ be the graph depicted in Figure 1(2). $G_1 = C_l, G_2 = T(k, i, 1)$, then G_1 and G_2 sharing the common vertex v_1 . It is noted that $V(G_1) = E(G_1) = l, V(G_2) = k, E(G_1) = k - 1$;

$$r(v_1|G_1) = \frac{l^2 - 1}{6}, \quad r(v_1|G_2) = \frac{1}{2}(k - 2)(k - 1) + i;$$

$$S'(v_1|G_1) = \frac{l^2 - 1}{3}, \quad S'(v_1|G_2) = 2\sum_{i=1}^{k-3} + (k - 2) + 2i - 1 = k^2 - 4k + 3 + 2i.$$

$$D_R(G_1) = \frac{1}{3}(l^3 - l), \quad D_R(G_2) = \frac{2}{3}k^3 - k^2 + \frac{13}{3}k + 4i^2 - 4ki - 4ki$$

Thus,

$$D_R(G) = D_R(G_1) + D_R(G_2) + 2(k-1)r(v_1|G_1) + 2lr(v_1|G_2) + (k-1)S'(v_1|G_1) + (l-1)S'(v_1|G_2) = \frac{1}{3}(l^3 - l) + \frac{2}{3}k^3 - k^2 + \frac{13}{3}k + 4i^2 - 4ki - 4 + 2(k-1) \cdot \frac{l^2 - 1}{6} + 2l \cdot [\frac{1}{2}(k-2)(k-1) + i] + (k-1) \cdot \frac{l^2 - 1}{3} + (l-1) \cdot (k^2 - 4k + 3 + 2i)$$

Bearing in the mind that k = n + 1 - l, then

$$D_R(G) = 4i^2 - 2(2n+3-4l)i + \frac{1}{3}(3l^3 - 4nl^2 + 9l^2 - 9nl - 18l + 2n^3 + 17n).$$

In the following, we shall investigate graphs in $U(C_l; T(k, i, 1))$ with the maximum degree resistance distance.

Let $f(x) = 4x^2 - 2(2n + 3 - 4k)x + \frac{1}{3}(3l^3 - 4nl^2 + 9l^2 - 9nl - 18l + 2n^3 + 17n),$ $2 \le x \le n - l - 1.$ Then (1) when $\frac{n}{2} - l + \frac{3}{4} \le 2$, i.e., $l \le n \le 2l + 3$. f(x) is increasing in [2, n - l - 1], thus,

$$f(x) \le l^3 - \frac{4n+3}{3}l^2 + nl + \frac{2}{3}n^3 - \frac{13}{3}n + 10,$$

the equality holds if and only if $G \cong U(C_l; T(n-l+1, n-l-1, 1)).$

(2) when $n \ge 2l + 3$.

$$f(x)$$
 is decreasing in $[2, \frac{n}{2} - l + \frac{3}{4}]$ and increasing in $[\frac{n}{2} - l + \frac{3}{4}, n - l - 1]$. Then
 $D_R(G) \le l^3 - \frac{4n+3}{3}l^2 + nl + \frac{2}{3}n^3 - \frac{13}{3}n + 10,$

the equality holds if and only if $G \cong U(C_l; T(n-l+1, n-l-1, 1)).$

Finally, we need to compare degree resistance distance between $H_{\frac{l}{2}+1}(H_{\frac{l+1}{2}+1})$ and $U(C_l; T(n-l+1, n-l-1, 1)).$

(1) If $l \ge 4$ is even, then

$$D_R(U(C_l; T(n-l+1, n-l-1, 1))) - D_R(H_{\frac{1}{2}+1})$$

= $-3l^2 + (3n-1)l - 6n + 12$
= $n(3l-6) - 3l^2 - l + 12$
 $\geq (l+3)(3l-6) - 3l^2 - l + 12$ (since $n \geq l+3$)
= $2l - 6 > 0$

(2) If $l \geq 3$ is odd, then

$$\begin{split} &D_R(U(C_l;T(n-l+1,n-l-1,1))) - D_R(H_{\frac{l+1}{2}+1}) \\ &= -3l^2 + (3n-1)l - 6n + 11 + \frac{n-1}{l} \\ &= n(3l + \frac{1}{l} - 6) - 3l^2 - l - \frac{1}{l} + 11 \\ &\geq (l+3)(3l + \frac{1}{l} - 6) - 3l^2 - l - \frac{1}{l} + 11 \quad (\text{since } n \geq l+3) \\ &= 2l + \frac{2}{l} - 6 > 0 \end{split}$$

This completes the proof.

4 The maximum and second maximum degree resistance distance of $\mathscr{U}(n)$

Theorem 4.1. $\max_{3 \le l \le n} \{ D_R(P_n^l) \} = D_R(P_n^3).$

Proof. Let $f(l) := D_R(P_n^l) = l^3 - \frac{1}{3}(4n+3)l^2 + nl + \frac{2}{3}n^3 - \frac{1}{3}n$. In what follows, we will find the maximum value of f(l) on $I := [3, 4, \cdots, n]$. The first derivative of f(l) is

$$\frac{\partial f(l)}{\partial l} = 3l^2 - \frac{2}{3}(4n+3)l + n.$$

The roots of $\frac{\partial f(l)}{\partial l} = 0$ are $l_{1,2} = \frac{(4n+3) \mp \sqrt{16n^2 - 3n + 9}}{9}$. It is easy to see that for $n \ge 3$,

$$l_1 < \frac{4n+3-(4n-24)}{9} = 3, \quad l_2 > \frac{4n+3+(24-4n)}{9} = 3.$$

In the following, we will show that f(3) is the maximum value of f(l) on I. For $n \ge 3$, it's easy to verify that $l_2 \le n$. Then, one has (i) when $l \in [3, l_2)$, $\frac{\partial f(l)}{\partial l} < 0$, which indicates that f(l) is decreasing on $[3, l_2)$; (ii) when $l \in [l_2, n]$, $\frac{\partial f(l)}{\partial l} > 0$, which indicates that f(l) is increasing on $[l_2, n]$. So, the maximum value of $D_R(P_n^l)$ must occurred between f(3) and f(n). It's suffice to see that $f(3) - f(n) = \frac{1}{3}(n^3 - 27n + 54)$. Let $g(x) = \frac{1}{2}(x^3 - 27x + 54)(x \ge 3)$, then $\frac{\partial g(x)}{\partial l} = x^2 - 9 \ge 0$, g(x) is increasing when $d = \frac{1}{2}(x^3 - 27x + 54)(x \ge 3)$.

Let
$$g(x) = \frac{1}{3}(x^3 - 27x + 54)(x \ge 3)$$
, then $\frac{\partial g(x)}{\partial x} = x^2 - 9 \ge 0$, $g(x)$ is increasing when $x \ge 3$.

Since g(3) = 0, then $g(x) \ge 0$ for $n \ge 3$, i.e., $f(3) \ge f(n)$ for $n \ge 3$. This completes the proof. **Theorem 4.2**. Let $G \in \mathscr{U}(n)$ be an arbitrary unicyclic graph, then

$$D_R(G) \le \frac{2n^3}{3} - \frac{28n}{3} + 18,$$

with the equality holds if and only if $G \cong P_n^3$.

Analogously, one arrives at

Theorem 4.3. $\max_{3 \le l \le n-3} \{ D_R(U(C_l; T(n-l+1, n-l-1, 1))) \} = D_R(U(C_3; T(n-2, n-4, 1))).$

Corollary 4.4. Let $G \in U(C_l; T(n - l + 1, n - l - 1, 1)), 3 \le l \le n - 3$. Then

$$D_R(G) \le \frac{2n^3}{3} - \frac{40n}{3} + 28,$$

with the equality holds if and only if $G \cong U(C_3; T(n-2, n-4, 1))$.

Theorem 4.5. Let $G \in \mathscr{U}(n) (n \geq 6)$, be an arbitrary unicyclic graph, $G \not\cong P_n^3$. Then

$$D_R(G) \le \frac{2n^3}{3} - \frac{40n}{3} + 28,$$

with the equality holds if and only if $G \cong U(C_3; T(n-2, n-4, 1))$.

Proof. Firstly, we shall find graphs in $P_n^l \setminus P_n^3$ with the maximum degree resistance distance.

Similar to the proof of Theorem 4.1, $\max_{4 \le l \le n} \{D_R(P_n^l)\} = \{D_R(P_n^4), D_R(P_n^n)\}.$ By Theorem 3.2, we have

$$D_R(P_n^4) = \frac{2}{3}n^3 - \frac{53}{3}n + 48, \quad D_R(P_n^n) = \frac{1}{3}n^3 - \frac{1}{3}n.$$

It is easy to verify that $D_R(P_n^4) > D_R(P_n^n)$. Secondly, we compare $D_R(P_n^4)$ with $D_R(U(C_3; T(n-2, n-4, 1)))$.

$$D_R(U(C_3; T(n-2, n-4, 1))) - D_R(P_n^4)$$

= $\frac{2n^3}{3} - \frac{40n}{3} + 28 - (\frac{2}{3}n^3 - \frac{53}{3}n + 48)$
= $\frac{13}{3}n - 20 > 0.$

The proof is completed.

Acknowledgement: Projects supported by National Natural Science Foundation of China (No. 11401192), Scientific Research Fund of Hunan Provincial Education Department (14A206, 14C0225).

References

- H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20.
- [2] D. J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81–95.
- [3] D. Bonchev, A. T. Balaban, X. Liu, D. J. Klein, Molecular cyclicity and centricity of polycyclic graphs. Cyclicity based on resistance distances or reciprocal distances, *Int. J. Quantum Chem.* **50** (1994) 1–20.
- [4] J. L. Palacios, Foster's formulas via probability and the Kirchhoff index, Meth. Comput. Appl. Prob. 6 (2004) 381–387.
- [5] I. Lukovits, S. Nikolić, N. Trinajstić, Resistance distance in regular graphs, Int. J. Quantum Chem. 71 (1999) 217–225.
- [6] J. L. Palacios, Resistance distance in graphs and random walks, Int. J. Quantum Chem. 81 (2001) 29–33.
- [7] H. P. Zhang, Y. J. Yang, Resistance distance and Kirchhoff index in circulant graphs, *Int. J. Quantum Chem.* **107** (2007) 330–339
- [8] W. Zhang, H. Deng, The second maximal and minimal Kirchhoff indices of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 683–695.
- [9] H. P. Zhang, X. Jiang, Y. J. Yang, Bicyclic graphs with extremal Kirchhoff index, MATCH Commun. Math. Comput. Chem. 61 (2009) 697–712.
- [10] Q. Guo, H. Deng, D. Chen, The extremal Kirchhoff index of a class of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 713–722.
- [11] H. Deng, On the minimum Kirchhoff index of graphs with a given number of cutedges, MATCH Commun. Math. Comput. Chem. 63 (2010) 171–180.
- [12] R. Li, Lower bounds for the Kirchhoff index, MATCH Commun. Math. Comput. Chem. 70 (2013) 163–174.
- [13] A. A. Dobrynin, A. A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082–1086.
- [14] I. Gutman, L. Feng, G. Yu, Degree resistance distance of unicyclic graphs, Trans. Comb. 1 (2012) 27–40.
- [15] J. L. Palacios, Upper and lower bounds for the additive degree Kirchhoff index, MATCH Commun. Math. Comput. Chem. 70 (2013) 651–655.
- [16] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (2001) 211–249.