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Abstract

In [Z. Chen, M. Dehmer, Y. Shi, H. Yang, Sharp upper bounds for the Balaban index of

bicyclic graphs, MATCH Communications in Mathematical and in Computer Chemistry, 75

(2016) 105–128.], the authors gave sharp upper bounds on Balaban index and sum–Balaban

index for bicyclic graphs. We find that there are some flaws in this paper, and that there

exists bicyclic graphs which having greater Balaban index and sum–Balaban index than

what are claimed by Chen at al. In this paper, we amend the upper bounds of Balaban

index and sum–Balaban index for bicyclic graphs, and characterize the bicyclic graphs which

attain the new bounds.

1 Introduction

Let G be a simple and connected graph with |V (G)| = n and |E(G)| = m. Let

NG(u) be the neighbor vertex set of vertex u. Then dG(u) = |NG(u)| is called the
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degree of u. The distance between vertices u and v in G is denoted by dG(u, v), and

DG(u) =
∑

v∈V (G)

dG(u, v) is the distance sum of vertex u in G.

Let G be a graph and ∅ 6= U ⊆ V (G). The subgraph with vertex set U and edge set

consisting of those pairs of vertices that are edges in G is called the induced subgraph

of G, denoted by G[U ]. For any vertex v ∈ V (G), we define DG(v, U) =
∑
u∈U

dG(v, u).

The cyclomatic number µ of G is the minimum number of edges that must be

removed from G in order to transform it to an acyclic graph. It is known that

µ =| E(G) | − | V (G) | +1 = m− n+ 1.

The Balaban index of a simple connected graph G is defined as

J(G) =
m

µ+ 1

∑
uv∈E(G)

1√
DG(u)DG(v)

.

It was proposed by Balaban in [1, 2], which is also called the average distance–sum

connectivity or J index. It appears to be a very useful molecular descriptor with

attractive properties. In 2010, Balaban et al. [3] also proposed the sum–Balaban

index SJ(G) of a connected graph G, which is defined as

SJ(G) =
m

µ+ 1

∑
uv∈E(G)

1√
DG(u) +DG(v)

.

Balaban index and sum–Balaban index were used in various quantitative structure-

property relationship (QSPR) and quantitative structure activity relationship (QSAR)

studies. It has been shown that Balaban index has a strong correlation with the

chemical properties of the chemical compound and other topological indices octanes.

Mathematical properties of Balaban index and sum–Balaban index can be found in

[3–13].

A bicyclic graph G is a connected simple graph which satisfies |E(G)| = |V (G)|+1.

There are two basic bicyclic graphs: ∞-graph and θ-graph. More concisely, an ∞-

graph, denoted by ∞(p, q, l), is obtained from two vertex-disjoint cycles Cp and Cq

by connecting one vertex of Cp and one vertex of Cq with a path Pl of length l − 1

(in the case of l = 1, identifying the above two vertices); and a θ-graph, denoted by

θ(p, q, l), is a union of three internally disjoint paths Pp+1, Pq+1, Pl+1 of length p, q, l

respectively with common end vertices, where p, q, l ≥ 1 and at most one of them is

-130-



1. Observe that any bicyclic graph G is obtained from an ∞-graph or a θ-graph G0

(possibly) by attaching trees to some of its vertices. We call G0 the kernel of G.

• • • •· · ·Cp Cq
v1 vl

∞(p, q, l)

• • • •· · ·

• • • • • •· · ·�
��

T
TT

T
TT
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��• • • •· · ·

u v

Pp+1

Pl+1

Pq+1

θ(p, q, l)

Figure 1.1 ∞-graph and θ-graph

In the recent paper [3], sharp upper bounds for Balaban and sum–Balaban indices

were given for bicyclic graphs. We find that there are some flaws in this paper, and

that there exists the bicyclic graph which has the bigger Balaban index and sum–

Balaban index than earlier claimed.

In this paper, we amend the upper bounds for the Balaban and sum–Balaban

indices for bicyclic graphs, and characterize the bicyclic graphs which attain the new

bounds. In Section 2, we introduce some useful graph transformations, and research

the changes of Balaban index and sum–Balaban index of a bicyclic graph after these

transformations. In Section 3, we obtain upper bounds for Balaban index and sum–

Balaban index for bicyclic graphs, which are better than the upper bounds of [3], and

characterize the bicyclic graphs which attain the bounds. In Section 4, we give some

examples to show that there are flaws in the paper [3].

2 Some useful graph transformations

In this section, we introduce some useful graph transformations.

2.1 Edge–lifting transformation ( [4, 5])

Let G1 and G2 be two graphs with n1 ≥ 2 and n2 ≥ 2 vertices, respectively. If G is

the graph obtained from G1 and G2 by adding an edge between a vertex u0 of G1 and

a vertex v0 of G2, G
′ is the graph obtained by identifying u0 of G1 to v0 of G2 and

-131-



adding a pendent edge to u0(v0), then G′ is called the edge–lifting transformation of

G (see Figure 2.1).

• •G1 G2u0 v0

G

•

•w0

u0G1 G2

G′

Figure 2.1 The edge–lifting transformation

Lemma 2.1 ( [4, 5]). Let G′ be the edge–lifting transformation of G. Then J(G) <

J(G′), and SJ(G) < SJ(G′).

Denote Bn by the set of all bicyclic graphs of order n. By Lemma 2.1, we can

verify that if B ∈ Bn attains the maximum Balaban index and sum–Balaban index

of all graphs in Bn, then the following two conditions hold.

(C1) The kernel B0 of B is ∞(p, q, 1) or θ(p, q, l);

(C2) The graph B is obtained from B0 by attaching some pendant edges.

Let n, p, q, t be positive integers with 1 ≤ t < p, 1 ≤ t < q and p+ q − t ≤ n. Let

B(p, q, t) be a digraph of order p+ q − t as in Figure 2.2, and B̂(p, q, t) be a digraph

of order n obtained from B(p, q, t) by attaching n − p − q + t pendant edges to its

vertices. It is clear that B̂(p, q, t) ∈ Bn.

• •

•

•

• •

• • •

··· ··· ···

v1

v2

vp

vp−1

vt+1 vt

uq

uq−1

ut+1

Figure 2.2 Graph B(p, q, t)

Let n, p, q, t be positive integers. Denote B̂n = {B̂(p, q, t) | p + q − t ≤ n, 1 ≤ t ≤
p
2

+ 1, 1 ≤ t ≤ q
2

+ 1}. In order to determine the bicyclic graph which attains the

maximum Balaban index and maximum sum–Balaban index of all graphs in Bn, we

just need to discuss the graphs B̂(p, q, t) in B̂n.
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In the following, we define three new graph transformations.

2.2 Cycle transformation

Let B̂(p, q, t) ∈ B̂n, where Wvi = {w | wvi ∈ E(B̂(p, q, t)) and dB̂(p,q,t)(w) = 1} and

|Wvi | = ki for 1 ≤ i ≤ p, and Wuj
= {w | wuj ∈ E(B̂(p, q, t)) and dB̂(p,q,t)(w) = 1}

and |Wuj
| = lj for t + 1 ≤ j ≤ q. If p is even and p ≥ 4, then B̂′(p, q, t) is the

graph obtained from B̂(p, q, t) by deleting the edge vpvp−1 and all pendent vertices

of vp, meanwhile, adding the edge v1vp−1 and kp−1 pendent edges to v1. If p is odd

and p ≥ 5, then B̂′(p, q, t) is the graph obtained from B̂(p, q, t) by deleting the edge

vpvp−1, vp−1vp−2 and all pendent edges of vp, vp−1, meanwhile, adding the edge v1vp−1

and kp + kp−1 pendent edges to v1.

We say that B̂′(p, q, t) is obtained from B̂(p, q, t) by the cycle transformation (see

Figure 2.3).
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Figure 2.3 The cycle transformation
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Lemma 2.2 ( [7]). Let x, y, a ∈ R+ such that x ≥ y + a. Then 1√
xy
≥ 1√

(x−a)(y+a)
,

and the equality holds if and only if x = y + a.

Lemma 2.3 ( [11]). Let x1, x2, y1, y2 ∈ R+ such that x1 > y1 and x2−x1 = y2−y1 >

0. Then 1√
x1

+ 1√
y2
< 1√

x2
+ 1√

y1
.

Lemma 2.4. Let B̂ = B̂(p, q, t) ∈ B̂n with p ≥ q and p ≥ 4, and B̂′ = B̂′(p, q, t) is

obtained from B̂(p, q, t) by the cycle transformation (see Figure 2.3). Then J(B̂) <

J(B̂′).

Proof Let V = {v1, v2, · · · , vp}, U = {ut+1, ut+2, · · · , uq}, Wvi = {w | wvi ∈ E(B̂)

and dB̂(w) = 1} and |Wvi | = ki for 1 ≤ i ≤ p, Wuj
= {w | wuj ∈ E(B̂) and

dB̂(w) = 1} and |Wuj
| = lj for t+ 1 ≤ j ≤ q.

Case 1. p is even.

We first consider the vertex vx ∈ V (B̂) \ {vp}. It easy to see that

DB̂(vx) = DB̂(vx, V ) +

p∑
i=1

DB̂(vx,Wvi) +DB̂(vx, U) +

q∑
j=t+1

DB̂(vx,Wuj
)

and

DB̂′(vx) = DB̂′(vx, V ) +

p∑
i=1

DB̂′(vx,Wvi) +DB̂′(vx, U) +

q∑
j=t+1

DB̂′(vx,Wuj
) .

From the operation of cycle transformation, note that B̂[U ∪Wuj
] ∼= B̂′[U ∪Wuj

]

and dB̂(vx, uj) ≥ dB̂′(vx, uj). Thus, DB̂(vx,Wuj
) ≥ DB̂′(vx,Wuj

), where

vx ∈ V (B̂) \ {vp}, t+ 1 ≤ j ≤ q. Then for any vertex vx ∈ V (B̂) \ {vp},

DB̂(vx, U) ≥ DB̂′(vx, U),

q∑
j=t+1

DB̂(vx,Wuj
) ≥

q∑
j=t+1

DB̂′(vx,Wuj
) .

Meanwhile, for any vertex vx ∈ V (B̂) \ {vp}, 1 ≤ i ≤ p,

DB̂(vx, V ) ≥ DB̂′(vx, V ),

p∑
i=1

DB̂(vx,Wvi) ≥
p∑

i=1

DB̂′(vx,Wvi) .

For the vertex vx ∈ V (B̂) \ {vp}, we have

DB̂(vx)−DB̂′(vx) = [DB̂(vx, V )−DB̂′(vx, V )]
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+

[
p∑

i=1

DB̂(vx,Wvi)−
p∑

i=1

DB̂′(vx,Wvi)

]
+ [DB̂(vx, U)−DB̂′(vx, U)]

+

[
q∑

j=t+1

DB̂(vx,Wuj
)−

q∑
j=t+1

DB̂′(vx,Wuj
)

]
≥ 0 . (1)

It can be checked directly that

1√
DB̂′(vx)DB̂′(vy)

≥ 1√
DB̂(vx)DB̂(vy)

, where vx ∈ V (B̂) \ {vp}. (2)

In what follows, we consider the edges on vertex vp of B̂: vpv1, vp−1vp, the edges

on vp to Wvp .

Case 1.1. vpv1 ∈ E(B̂).

It can be checked directly that

DB̂′(vp, V )−DB̂(vp, V ) =

[
2

(
1 + · · ·+ p− 2

2

)
+ p− 1

]

−
[
2

(
1 + · · ·+ p− 2

2

)
+
p

2

]
=
p

2
− 1

p∑
i=1

DB̂′(vp,Wvi)−
p∑

i=1

DB̂(vp,Wvi) =

p∑
i=1

[DB̂′(vp,Wvi)−DB̂(vp,Wvi)] =

p∑
i= p+2

2

ki

DB̂′(vp, U) = DB̂(vp, U)

q∑
j=t+1

DB̂′(vp,Wuj
) =

q∑
j=t+1

DB̂(vp,Wuj
) .

Then we have

DB̂′(vp)−DB̂(vp)

= [DB̂′(vp, V )−DB̂(vp, V )] + [

p∑
i=1

DB̂′(vp,Wvi)−
p∑

i=1

DB̂(vp,Wvi)]

+[DB̂′(vp, U)−DB̂(vp, U)] + [

q∑
j=t+1

DB̂′(vp,Wuj
)−

q∑
j=t+1

DB̂(vp,Wuj
)]

=

p∑
i= p+2

2

ki +
p

2
− 1.

Similarly, we have

DB̂(v1)−DB̂′(v1) =

p∑
i= p+2

2

ki +
p

2
− 1.
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Then we have

DB̂′(vp)−DB̂(vp) = DB̂(v1)−DB̂′(v1) =

p∑
i= p+2

2

ki +
p

2
− 1. (3)

Since dB̂′(vp, v1) = 1, we have

DB̂′(vp)−DB̂′(v1) = n− 2 >

p∑
i= p+2

2

ki +
p

2
− 1 = DB̂′(vp)−DB̂(vp). (4)

Let x = DB̂′(vp), y = DB̂′(v1), a =

p∑
i= p+2

2

ki +
p

2
− 1. Then x − y = n − 2 > a. By

Lemma 2.2, we have

1√
DB̂′(vp)DB̂′(v1)

>
1√

(DB̂′(vp)− a)(DB̂′(v1) + a)
=

1√
DB̂(vp)DB̂(v1)

. (5)

Case 1.2. vp−1vp ∈ E(B̂) .

By (1) and (4), we have DB̂′(vp−1) ≤ DB̂(vp−1), DB̂′(v1) < DB̂(vp). Then

1√
DB̂′(vp−1)DB̂′(v1)

<
1√

DB̂(vp−1)DB̂(vp)
. (6)

Case 1.3. The edges on vp to Wvp .

By (1) and (4), we have DB̂(vp) > DB̂′(v1), DB̂(vx) ≥ DB̂′(vx), where vx ∈ Wvp .

Then
1√

DB̂′(v1)DB̂′(vx)
>

1√
DB̂(vp)DB̂(vx)

, where vx ∈ Wvp . (7)

By (2), (5), (6), and (7), it can be checked directly that

1√
DB̂′(vx)DB̂′(vy)

>
1√

DB̂(vx)DB̂(vy)
, where vx, vy ∈ V (B̂) .

From the definition of Balaban index, if p is even, we have J(B̂′) > J(B̂).

Case 2. p is odd.

We first consider the vertex vx ∈ V (B̂) \ {vp, vp−1}. From the operation of cycle

transformation, noting that B̂′[U ∪Wuj
] ∼= B̂[U ∪Wuj

] and dB̂(vx, uj) ≥ dB̂′(vx, uj),
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DB̂(vx,Wuj
) ≥ DB̂′(vx,Wuj

), where vx ∈ V (B̂) \ {vp, vp−1}, t + 1 ≤ j ≤ q. Then for

any vertex vx ∈ V (B̂) \ {vp, vp−1}, we have

DB̂(vx, U) ≥ DB̂′(vx, U) ,

q∑
j=t+1

DB̂(vx,Wuj
) ≥

q∑
j=t+1

DB̂′(vx,Wuj
) .

Meanwhile, for any vx ∈ V (B̂) \ {vp, vp−1}, 1 ≤ i ≤ p, we have

DB̂(vx, V ) ≥ DB̂′(vx, V ),

p∑
i=1

DB̂(vx,Wvi) ≥
p∑

i=1

DB̂′(vx,Wvi).

Then for the vertices vx ∈ V (B̂) \ {vp, vp−1}, we have

DB̂(vx) ≥ DB̂′(vx) . (8)

For the vertex vx, vy ∈ V (B̂) \ {vp, vp−1}, we have

1√
DB̂′(vx)DB̂′(vy)

≥ 1√
DB̂(vx)DB̂(vy)

. (9)

In what follows, we consider the edges on the vertices vp, vp−1 of B̂: vpv1, vp−1vp,

vp−2vp−1, the edges on vp to Wvp and vp−1 to Wvp−1 .

Case 2.1. vpv1 ∈ E(B̂).

It can be checked directly that

DB̂′(vp, V )−DB̂(vp, V ) = 1

p∑
i=1

DB̂′(vp,Wvi)−
p∑

i=1

DB̂(vp,Wvi) = kp

DB̂′(vp, U) = DB̂(vp, U)

q∑
j=t+1

DB̂′(vp,Wuj
) =

q∑
j=t+1

DB̂(vp,Wuj
) .

Then

DB̂′(vp)−DB̂(vp) = kp + 1 . (10)

Similarly, we have

DB̂(v1, V )−DB̂′(v1, V ) = p− 3
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DB̂(v1, U) = DB̂′(v1, U)

q∑
j=t+1

DB̂(v1,Wuj
) =

q∑
j=t+1

DB̂′(v1,Wuj
)

p∑
i=1

DB̂(v1,Wvi)−
p∑

i=1

DB̂′(v1,Wvi) =

p∑
i=1

[DB̂(v1,Wvi)−DB̂′(v1,Wvi)] ≥ kp .

Then

DB̂(v1)−DB̂′(v1) ≥ kp + p− 3 > kp + 1 = DB̂′(vp)−DB̂(vp) . (11)

Since dB̂′(vp, v1) = 1, we have

DB̂′(vp)−DB̂′(v1) = n− 2 > kp + 1 = DB̂′(vp)−DB̂(vp) . (12)

Let x = DB̂′(vp), y = DB̂′(v1), a = kp + 1. Then x − y = n − 2 > a. By Lemma

2.2, we have

1√
DB̂′(vp)DB̂′(v1)

≥ 1√
(DB̂′(vp)− a)(DB̂′(v1) + a)

>
1√

DB̂(vp)DB̂(v1)
. (13)

Case 2.2. vp−1vp ∈ E(B̂).

It can be checked directly that

DB̂(vp−1)−DB̂′(v1) ≥ [DB̂(vp−1, V )−DB̂′(v1, V )]

+ [DB̂(vp−1,Wvi)−DB̂′(v1,Wvi)] ≥ p− 3 + kp > kp + 1

DB̂′(vp−1) = DB̂′(vp) .

By (10) and (12), we have DB̂′(vp−1) − DB̂(vp) = DB̂′(vp) − DB̂(vp) = kp + 1 and

DB̂(vp) > DB̂′(v1). Then DB̂′(vp−1) > DB̂(vp) > DB̂′(v1). Let x = DB̂′(vp−1), y =

DB̂′(v1), a = kp + 1. Then x > y + a. By Lemma 2.2, we have

1√
DB̂′(vp−1)DB̂′(v1)

>
1√

(DB̂′(vp−1)− a)(DB̂′(v1) + a)
>

1√
DB̂(vp)DB̂(vp−1)

.

(14)

Case 2.3. vp−2vp−1 ∈ E(B̂).

It can be checked directly that DB̂(vp−2) ≥ DB̂′(vp−2), DB̂(vp−1) > DB̂′(v1). Then

1√
DB̂′(vp−2)DB̂′(v1)

>
1√

DB̂(vp−2)DB̂(vp−1)
. (15)
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Case 2.4. The edges on vp to Wvp and the edges on vp−1 to Wvp−1 of B̂.

By (8) and (12), we have DB̂(vp) > DB̂′(v1), DB̂(vx) ≥ DB̂′(vx), where vx ∈ Wvp .

Then
1√

DB̂′(v1)DB̂′(vx)
>

1√
DB̂(vp)DB̂(vx)

, where vx ∈ Wvp . (16)

Since DB̂(vp−1) > DB̂′(v1) and DB̂(vx) ≥ DB̂′(vx), where vx ∈ Wvp−1 . Then

1√
DB̂′(v1)DB̂′(vx)

>
1√

DB̂(vp−1)DB̂(vx)
, where vx ∈ Wvp−1 . (17)

By (9) and (13)–(17), it can be checked directly that

1√
DB̂′(vx)DB̂′(vy)

>
1√

DB̂(vx)DB̂(vy)
, where vx, vy ∈ V (B̂) .

From the definition of Balaban index, if p is odd, we have J(B̂′) > J(B̂). �

Lemma 2.5. Let B̂ = B̂(p, q, t) ∈ B̂n with p ≥ q and p ≥ 4, and B̂′ = B̂′(p, q, t) is

obtained from B̂(p, q, t) by the cycle transformation (see Figure 2.3). Then SJ(B̂) <

SJ(B̂′).

Proof Let V, U,Wvi ,Wuj
be defined as in the proof of Lemma 2.4.

Case 1. p is even.

For the vertices vx, vy ∈ V (B̂) \ {vp}, by (1), we have

1√
DB̂′(vx) +DB̂′(vy)

≥ 1√
DB̂(vx) +DB̂(vy)

,where vx, vy ∈ V (B̂) \ {vp}. (18)

We following consider the edges on vertex vp of B̂: vpv1, vp−1vp, the edges on vp

to Wvp .

Case 1.1. vpv1 ∈ E(B̂) .

By (3), we have DB̂′(v1) +DB̂′(vp) = DB̂(v1) +DB̂(vp). Then

1√
DB̂′(vp) +DB̂′(v1)

=
1√

DB̂(vp) +DB̂(v1)
. (19)

Case 1.2. vp−1vp ∈ E(B̂) .

By (1) and (4), we have DB̂′(vp−1) < DB̂(vp−1), DB̂′(v1) ≤ DB̂(vp). Then

1√
DB̂′(vp−1) +DB̂′(v1)

>
1√

DB̂(vp−1) +DB̂(vp)
. (20)
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Case 1.3. The edges on vp to Wvp .

By (1) and (4), we have DB̂′(v1) ≤ DB̂(vp), DB̂′(vx) ≤ DB̂(vx), where vx ∈ Wvp .

Then
1√

DB̂′(v1) +DB̂′(vx)
≥ 1√

DB̂′(vp) +DB̂′(vx)
, where vx ∈ Wvp . (21)

By (18)–(21) and the definition of sum–Balaban index, if p is even, we have

SJ(B̂′) > SJ(B̂).

Case 2. p is odd (p ≥ 5).

For the vertices vx, vy ∈ V (B̂) \ {vp, vp−1}, by (8), we have

1√
DB̂′(vx) +DB̂′(vy)

≥ 1√
DB̂(vx) +DB̂(vy)

(22)

where vx, vy ∈ V (B̂) \ {vp, vp−1}.

In what follows, we consider the edges on vertices vp, vp−1 of B̂: vpv1, vp−1vp,

vp−2vp−1, the edges on vp to Wvp and vp−1 to Wvp−1 .

Case 2.1. vpv1 ∈ E(B̂).

By (11), we have

1√
DB̂′(vp) +DB̂′(v1)

≥ 1√
DB̂(vp) +DB̂(v1)

. (23)

Case 2.2. vp−1vp ∈ E(B̂).

It can be checked directly that DB̂(vp−1)−DB̂′(v1) > kp+1 = DB̂′(vp−1)−DB̂(vp).

Then
1√

DB̂′(v1) +DB̂′(vp−1)
>

1√
DB̂(vp−1) +DB̂(vp)

. (24)

Case 2.3. vp−2vp−1 ∈ E(B̂).

Since DB̂(vp−2) ≥ DB̂′(vp−2) and DB̂(vp−1) > DB̂′(v1), we have

1√
DB̂′(vp−2) +DB̂′(v1)

>
1√

DB̂(vp−2) +DB̂(vp−1)
. (25)

Case 2.4. The edges on vp to Wvp and the edges on vp−1 to Wvp−1 of Bp,q.
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By (8) and (12), we have DB̂(vp) > DB̂′(v1), DB̂(vx) ≥ DB̂′(vx), where vx ∈ Wvp .

Then
1√

DB̂′(v1) +DB̂′(vx)
>

1√
DB̂(vp) +DB̂(vx)

, where vx ∈ Wvp . (26)

Since DB̂(vp−1) > DB̂′(v1) and DB̂(vx) ≥ DB̂′(vx), where vx ∈ Wvp−1 , we have

1√
DB̂′(v1) +DB̂′(vx)

>
1√

DB̂(vp−1) +DB̂(vx)
, where vx ∈ Wvp−1 . (27)

By (22)–(27), we have

1√
DB̂′(vx) +DB̂′(vy)

>
1√

DB̂(vx) +DB̂(vy)
, where vx, vy ∈ V (B̂).

From the definition of sum–Balaban index, if p is odd, we have SJ(B̂′) > SJ(B̂).

�

By repeating cycle transformations, for any graph B̂(p, q, t) ∈ B̂n, we will get

B̂(3, 3, 1) (when t = 1) and B̂(3, 3, 2) (when t ≥ 2) from B̂(p, q, t), where graphs

B̂(3, 3, 1) and B̂(3, 3, 2) are defined in Figure 2.4.
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Figure 2.4 Graphs B̂(3, 3, 1) and B̂(3, 3, 2)

Figure 2.5 shows an example how to obtain B̂(3, 3, 2) by repeating cycle transfor-

mations from graph B̂(7, 6, 5).

We say that B̂′(3, 3, 1) is obtained from B̂(3, 3, 1) by pendent edges transformation

(see Figure 2.6).

-141-



• •

•

• •

•
•
•

@
@
@
@
�

�
�
�

v7

v6
v5

u1

v1

v2

v3

v4

B̂(7, 6, 5)

Cycle transformation−−−−−−−−−−−−−−→

• •

••

• •

•
•

@
@
@
@
�
�

�
�

v1
v2

v3

v4
v5

u1

v6

v7

B̂(5, 3, 2)

Isomorphism−−−−−−−−→

• •

••

• •

•
•

@
@
@
@
�
�

�
�

v1
v5

v4

v3
v2

u1

v6

v7

B̂(5, 3, 2)

Cycle transformation−−−−−−−−−−−−−−→

•

•

•

•

•
• •

•
�

�
�

�

@
@
@
@

@
@
@
@�
�
�
�

@@ ��

v1
v3

v2

u1

v4

v5 v6

v7

B̂(3, 3, 2)
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Figure 2.6 The pendent edges transformation (Choose i = 2)
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By Lemmas 2.4 and 2.5, we now only need to consider the Balaban indices and

sum–Balaban indices of the graphs B̂(3, 3, 1) and B̂(3, 3, 2).

2.3 Pendent edges transformation on B̂(3, 3, 1)

Let C1 = v1v2v3, C2 = v1v4v5, Wvi = {w | wvi ∈ E(B̂(3, 3, 1)) and dB̂(3,3,1)(w) = 1},

and |Wvi | = ki for 1 ≤ i ≤ 5. Choose any i ∈ {2, 3, 4, 5}. The graph B̂′(3, 3, 1) is

obtained from B̂(3, 3, 1) by deleting the pendent edges of vi, and adding ki pendent

edges to v1.

Lemma 2.6. Let B̂ = B̂(3, 3, 1) and B̂′ = B̂′(3, 3, 1) be defined as Figure 2.6 and

k2 > 0. Then J(B̂′) > J(B̂) and SJ(B̂′) > SJ(B̂) .

Proof Let V1 = {v1, v2, v3, v4, v5}, Wvi = {w | wvi ∈ E(B̂) and dB̂(w) = 1}, and

|Wvi | = ki for 1 ≤ i ≤ 5.

Case 1. vx ∈ V (B̂)\{v2}.

It can be checked directly that DB̂(vx) ≥ DB̂′(vx), then for any vertices vx, vy ∈

V (B̂)\{v2}, we have

1√
DB̂′(vx)DB̂′(vy)

≥ 1√
DB̂(vx)DB̂(vy)

, where vx, vy ∈ V (B̂)\{v2} (28)

and

1√
DB̂′(vx) +DB̂′(vy)

≥ 1√
DB̂(vx) +DB̂(vy)

, where vx, vy ∈ V (B̂)\{v2} . (29)

Case 2. v2 ∈ V (B̂).

We following consider the edges on vertices v2 of B̂: v1v2, v2v3 and v2w ∈ E(B̂),

where w ∈ Wv2 .

Case 2.1. v1v2 ∈ E(B̂).

It can be checked directly that DB̂(v1) − DB̂′(v1) = DB̂′(v2) − DB̂(v2) = k2 and

DB̂′(v2)−DB̂′(v1) > k1 + k2 . Let x = DB̂′(v2), y = DB̂′(v1), a = k2. Then x > y + a.
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By Lemma 2.2, we have

1√
DB̂′(v1)DB̂′(v2)

>
1√

DB̂(v1)DB̂(v2)
(30)

and
1√

DB̂′(v1) +DB̂′(v2)
=

1√
DB̂(v1) +DB̂(v2)

. (31)

Case 2.2. v2w ∈ E(B̂), where w ∈ Wv2 .

It can be checked directly that DB̂′(v2)−DB̂(v2) = k2, DB̂′(v2)−DB̂′(v1) > k1+k2,

then DB̂(v2) > DB̂′(v1). Noting that dB̂(v2, w) = 1, dB̂′(v1, w) = 1, where w ∈ Wv2 ,

we have DB̂(w) = DB̂(v2)+n−2, DB̂′(w) = DB̂′(v1)+n−2. Then DB̂(w) > DB̂′(w),

1√
DB̂′(v1)DB̂′(w)

>
1√

DB̂(v2)DB̂(w)
, where w ∈ Wv2 (32)

and
1√

DB̂′(v1) +DB̂′(w)
>

1√
DB̂(v2) +DB̂(w)

, where w ∈ Wv2 . (33)

Case 2.3. v2v3 ∈ E(B̂) and v1v3 ∈ E(B̂).

It can be checked directly that DB̂′(v2) −DB̂(v2) = DB̂(v1) −DB̂′(v1) = k2 > 0,

and DB̂(v2) > DB̂′(v1). Let x2 = DB̂′(v2), x1 = DB̂(v2), y2 = DB̂(v1), y1 = DB̂′(v1).

Then x2 − x1 = y2 − y1 = k2 > 0 and x1 > y1. By Lemma 2.3, we have

1√
DB̂′(v2)

+
1√

DB̂′(v1)
>

1√
DB̂(v2)

+
1√

DB̂(v1)
.

Meanwhile, DB̂(v3) = DB̂′(v3). Then

1√
DB̂′(v2)DB̂′(v3)

+
1√

DB̂′(v1)DB̂′(v3)

>
1√

DB̂(v2)DB̂(v3)
+

1√
DB̂(v1)DB̂(v3)

. (34)

Let x2 = DB̂(v2)+k2+DB̂′(v3), x1 = DB̂(v2)+DB̂(v3), y2 = DB̂′(v1)+k2+DB̂(v3),

y1 = DB̂′(v1) +DB̂′(v3). Then x2 − x1 = y2 − y1 = k2 > 0. By Lemma 2.3, we have
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1√
DB̂′(v2) +DB̂′(v3)

+
1√

DB̂′(v1) +DB̂′(v3)

>
1√

DB̂(v2) +DB̂(v3)
+

1√
DB̂(v1) +DB̂(v3)

. (35)

By (28), (30), (32), (34), and the definition of Balaban index, we have J(B̂′) >

J(B̂). By (29), (31), (33), (35), and the definition of sum–Balaban index, we have

SJ(B̂′) > SJ(B̂). �

By repeating pendent edges transformations on B̂(3, 3, 1), we will get B̂1(3, 3, 1)

from B̂(3, 3, 1), where graph B̂1(3, 3, 1) is defined in Figure 2.7.
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Figure 2.7 Graph B̂1(3, 3, 1)

2.4 Pendent edges transformation on B̂(3, 3, 2)

LetWvi = {w | wvi ∈ E(B̂(3, 3, 2)) and dB̂(3,3,2)(w) = 1}, and |Wvi | = ki for 1 ≤ i ≤ 4.

Choose any i ∈ {2, 3, 4}. The graph B̂′(3, 3, 2) is obtained from B̂(3, 3, 2) by deleting

the pendent edges of vi, and adding ki pendent edges to v1.

We say B̂′(3, 3, 2) is obtained from B̂(3, 3, 2) by pendent edges transformation (see

Figure 2.8).

Lemma 2.7. Let B̂ = B̂(3, 3, 2) and B̂′ = B̂′(3, 3, 2) be defined as Figure 2.8 and

k2 > 0. Then J(B̂′) > J(B̂) and SJ(B̂′) > SJ(B̂).

Proof Let V1 = {v1, v2, v3, v4}, Wvi = {w | wvi ∈ E(B̂) and dB̂(w) = 1, }, and

|Wvi | = ki for 1 ≤ i ≤ 4.
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Figure 2.8 The pendent edges transformation (Choose i = 2)

Case 1. vx ∈ V (B̂)\{v2}.

It can be checked directly that DB̂(vx) ≥ DB̂′(vx), then for any vertices vx, vy ∈

V (B̂)\{v2}, we have

1√
DB̂′(vx)DB̂′(vy)

≥ 1√
DB̂(vx)DB̂(vy)

, where vx, vy ∈ V (B̂)\{v2}, (36)

and

1√
DB̂′(vx) +DB̂′(vy)

≥ 1√
DB̂(vx) +DB̂(vy)

, where vx, vy ∈ V (B̂)\{v2} . (37)

Case 2. v2 ∈ V (B̂).

We following consider the edges on vertices v2 of B̂: v1v2, v2v3 and v2w ∈ E(B̂),

where w ∈ Wv2 .

Case 2.1. v1v2 ∈ E(B̂).

It can be checked directly that DB̂(v1) − DB̂′(v1) = DB̂′(v2) − DB̂(v2) = k2 and

DB̂′(v2)−DB̂′(v1) > k1 + k2. Let x = DB̂′(v2), y = DB̂′(v1), a = k2. Then x > y + a.

By Lemma 2.2, we have

1√
DB̂′(v1)DB̂′(v2)

>
1√

DB̂(v1)DB̂(v2)
(38)
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and
1√

DB̂′(v1) +DB̂′(v2)
=

1√
DB̂(v1) +DB̂(v2)

. (39)

Case 2.2. v2w ∈ E(B̂), where w ∈ Wv2 .

It can be checked directly that DB̂′(v2)−DB̂(v2) = k2, DB̂′(v2)−DB̂′(v1) > k1+k2,

then DB̂(v2) > DB̂′(v1). Noting that dB̂(v2, w) = 1, dB̂′(v1, w) = 1, where w ∈ Wv2 ,

we have DB̂(w) = DB̂(v2) +n−2, DB̂′(w) = DB̂′(v1) +n−2. Then DB̂(w) > DB̂′(w)

and
1√

DB̂′(v1)DB̂′(w)
>

1√
DB̂(v2)DB̂(w)

(40)

and
1√

DB̂′(v1) +DB̂′(w)
>

1√
DB̂(v2) +DB̂(w)

, where w ∈ Wv2 . (41)

Case 2.3. v2v3 ∈ E(B̂) and v1v3 ∈ E(B̂).

It can be checked directly that DB̂′(v2) −DB̂(v2) = DB̂(v1) −DB̂′(v1) = k2 > 0,

and DB̂(v2) > DB̂′(v1). Let x2 = DB̂′(v2), x1 = DB̂(v2), y2 = DB̂(v1), y1 = DB̂′(v1).

Then x2 − x1 = y2 − y1 = k2 > 0 and x1 > y1. By Lemma 2.3, we have

1√
DB̂′(v2)

+
1√

DB̂′(v1)
>

1√
DB̂(v2)

+
1√

DB̂(v1)
.

Meanwhile, DB̂(v3) = DB̂′(v3), then

1√
DB̂′(v2)DB̂′(v3)

+
1√

DB̂′(v1)DB̂′(v3)
>

1√
DB̂(v2)DB̂(v3)

+
1√

DB̂(v1)DB̂(v3)
.

(42)

Let x2 = DB̂(v2)+k2+DB̂′(v3), x1 = DB̂(v2)+DB̂(v3), y2 = DB̂′(v1)+k2+DB̂(v3),

y1 = DB̂′(v1) + DB̂′(v3). Then x2 − x1 = y2 − y1 = k2 > 0 and x1 > y1. By Lemma

2.3 we have

1√
DB̂′(v2) +DB̂′(v3)

+
1√

DB̂′(v1) +DB̂′(v3)

>
1√

DB̂(v2) +DB̂(v3)
+

1√
DB̂(v1) +DB̂(v3)

. (43)

By (36), (38), (40), (41), and the definition of Balaban index, we have J(B̂′) >

J(B̂). By (37), (39), (41), (43), and the definition of sum–Balaban index, we have

SJ(B̂′) > SJ(B̂). �
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Figure 2.9 Graphs G1 and G2

Lemma 2.8. Let G1 and G2 be defined as Figure 2.9, k3 > 0 and k1 + k2 + k4 > 0.

Then J(G2) > J(G1) and SJ(G2) > SJ(G1).

Proof Let V1 = {v1, v2, v3, v4}, Wvi = {w | wvi ∈ E(G1) and dG1(w) = 1} for

1 ≤ i ≤ 4, |Wv1 | = k1 + k2 + k4, |Wv2| = |Wv4| = 0, and |Wv3| = k3.

We first consider the vertex vx ∈ V (G1)\{v3}, secondly, we consider the vertex

v3 ∈ V (G1).

Case 1. vx ∈ V (G1)\{v3}.

It can be checked directly that DG2(vx) ≥ DG1(vx), then for any vertices vx, vy ∈

V (G1)\{v3}, we have

1√
DG2(vx)DG2(vy)

≥ 1√
DG1(vx)DG1(vy)

, where vx, vy ∈ V (G1) (44)

and

1√
DG2(vx) +DG2(vy)

≥ 1√
DG1(vx) +DG1(vy)

, where vx, vy ∈ V (G1). (45)

Case 2. v3 ∈ V (G1).

We following consider the edges on vertices v3 of G1: v3v1, v3v2, v3v4, and v3w ∈

E(G1), where w ∈ Wv3 .
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Case 2.1. v1v3 ∈ E(G1).

It can be checked directly that DG2(v3)−DG1(v3) = DG1(v1)−DG2(v1) = k3 and

DG2(v3) −DG2(v1) > k3. Let x = DG2(v3), y = DG2(v1), a = k3. Then x > y + a. By

Lemma 2.2, we have

1√
DG2(v3)DG2(v1)

>
1√

DG1(v3)DG1(v1)
(46)

and
1√

DG2(v1) +DG2(v2)
=

1√
DG1(v1) +DG1(v2)

. (47)

Case 2.2. v2v3, v3v4 ∈ E(G1).

It can be checked directly that DG2(v3)−DG1(v3) = DG1(v1)−DG2(v1) = k3. Let

x2 = DG2(v3), x1 = DG1(v3), y2 = DG1(v1), y1 = DG2(v1). Then x2−x1 = y2−y1 = k3

and x1 > y1. By Lemma 2.3, we have

1√
DG2(v3)

+
1√

DG2(v1)
>

1√
DG1(v3)

+
1√

DG1(v1)
.

Since DG1(v2) = DG2(v2) and DG1(v4) = DG2(v4), we have

1√
DG2(v2)DG2(v3)

+
1√

DG2(v1)DG2(v2)

>
1√

DG1(v2)DG1(v3)
+

1√
DG1(v1)DG1(v2)

(48)

and

1√
DG2(v3)DG2(v4)

+
1√

DG2(v1)DG2(v4)

>
1√

DG1(v3)DG1(v4)
+

1√
DG1(v1)DG1(v4)

. (49)

Let x2 = DG2(v3) + DG2(v2), x1 = DG1(v3) + DG1(v2), y2 = DG1(v1) + DG1(v2),

y1 = DG2(v1) + DG2(v2). Then x2 − x1 = y2 − y1 = k3 and x1 > y1. By Lemma 2.3,

we have
1√

DG2(v3) +DG2(v2)
+

1√
DG2(v1) +DG2(v2)

>

1√
DG1(v3) +DG1(v2)

+
1√

DG1(v1) +DG1(v2)
. (50)
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Similarly, we have

1√
DG2(v3) +DG2(v4)

+
1√

DG2(v1) +DG2(v4)
>

1√
DG1(v3) +DG1(v4)

+
1√

DG1(v1) +DG1(v4)
. (51)

Case 2.3. v3w ∈ E(G1), where w ∈ Wv3 .

It can be checked directly that DG1(v3) > DG2(v1) and DG1(w) > DG2(w), where

w ∈ Wv3 . Then
1√

DG2(v1)DG2(w)
>

1√
DG1(v3)DG1(w)

(52)

and
1√

DG2(v1) +DG2(w)
>

1√
DG1(v3) +DG1(w)

. (53)

By (44), (46), (48), (50), (52), and the definition of Balaban index, we have J(G2) >

J(G1). By (45), (47), (49), (51), (53), and the definition of sum–Balaban index, we

have SJ(G2) > SJ(G1). �

By repeating pendent edges transformations on B̂(3, 3, 2), we will get B̂2(3, 3, 2)

from B̂(3, 3, 2), where graph B̂2(3, 3, 2) is defined in Figure 2.10.

•

•

•

•

�
�
�

�

@
@
@
@

@
@
@
@�
�
�
�

A
A
�
�
· · ·

v1

v2

v3

v4

︷︸︸︷n− 4

Figure 2.10 Graph B̂2(3, 3, 2)
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3 Maximum Balaban index and sum–Balaban

index of bicyclic graphs

From the discussions of Section 2, for any bicyclic graph B̂(p, q, t) ∈ B̂n, we finally

get the graph B̂1(3, 3, 1) (if t = 1) or B̂2(3, 3, 2) (if t ≥ 2) from B̂(p, q, t) by cycle

transformation, pendent edges transformation, or any combination of these, where

graphs B̂1(3, 3, 1) and B̂2(3, 3, 2) are defined in Figures 2.7 and 2.10, respectively. By

Lemmas 2.4, 2.5, 2.6, 2.7, and 2.8, we have

J(B̂(p, q, t)) ≤

J(B̂1(3, 3, 1)), if t = 1

J(B̂2(3, 3, 2)), if t ≥ 2

and

SJ(B̂(p, q, t)) ≤

SJ(B̂1(3, 3, 1)), if t = 1

SJ(B̂2(3, 3, 2)), if t ≥ 2.

We now prove J(B̂1(3, 3, 1)) < J(B̂2(3, 3, 2)) and SJ(B̂1(3, 3, 1)) < SJ(B̂2(3, 3, 2)),

that is to say, B̂2(3, 3, 2) attains the maximum Balaban index and sum–Balaban index

of all graphs in Bn.

Lemma 3.1. Let B̂1 = B̂1(3, 3, 1) and B̂2 = B̂2(3, 3, 2) be defined in Figures 2.7 and

2.10, respectively. Then J(B̂1) < J(B̂2) and SJ(B̂1) < SJ(B̂2).

Proof It can be checked directly that

DB̂2
(v1) = DB̂1

(v1) = n− 1,

DB̂2
(v2) = DB̂1

(v2) = 6 + 2(n− 5) = 2n− 4,

DB̂2
(v4) = DB̂1

(v4) = 6 + 2(n− 5) = 2n− 4,

DB̂2
(v3) = DB̂1

(v3)− 1 = 2n− 5,

DB̂2
(v5) = DB̂1

(v5) + 1 = 2n− 3,

DB̂2
(w) = DB̂1

(w) = 2n− 3, where w ∈ Wv1 .

We first consider the vertex v5 ∈ V (B̂1), secondly, we consider the vertex vx ∈

V (B̂1)\{v5}.
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Case 1. v5 ∈ V (B̂1).

we following consider the edges on vertex v5 ∈ V (B̂1): v1v5 and v4v5.

Case 1.1. v1v5 ∈ E(B̂1).

For the edges v1v5 and v1v3, let x2 = DB̂2
(v5) = 2n − 3, x1 = DB̂1

(v3) = 2n − 4,

y2 = DB̂1
(v5) = 2n− 4, y1 = DB̂2

(v3) = 2n− 5. Then x2 − x1 = y2 − y1 = 1 > 0 and

x1 > y1. By Lemma 2.3, we have

1√
DB̂2

(v3)
+

1√
DB̂2

(v5)
>

1√
DB̂1

(v3)
+

1√
DB̂1

(v5)
.

Since DB̂2
(v1) = DB̂1

(v1), we have

1√
DB̂2

(v1)DB̂2
(v3)

+
1√

DB̂2
(v1)DB̂2

(v5)

>
1√

DB̂1
(v1)DB̂1

(v3)
+

1√
DB̂1

(v1)DB̂1
(v5)

. (54)

Let x2 = DB̂2
(v5) + DB̂2

(v1) = 3n − 4, x1 = DB̂1
(v5) + DB̂1

(v1) = 3n − 5,

y2 = DB̂1
(v3) +DB̂1

(v1) = 3n− 5, y1 = DB̂2
(v3) +DB̂2

(v1) = 3n− 6. Then x2 − x1 =

y2 − y1 = 1 > 0 and x1 > y1. By Lemma 2.3, we have

1√
DB̂2

(v5) +DB̂2
(v1)

+
1√

DB̂2
(v3) +DB̂2

(v1)

>
1√

DB̂1
(v5) +DB̂1

(v1)
+

1√
DB̂1

(v3) +DB̂1
(v1)

. (55)

Case 1.2. v4v5 ∈ E(B̂1).

For the edge v4v5 ∈ E(B̂1) and v3v4 ∈ E(B̂2), DB̂1
(v4) = DB̂2

(v4) and DB̂1
(v5) =

2n− 4 < 2n− 5 = DB̂2
(v3), then

1√
DB̂2

(v3)DB̂2
(v4)

>
1√

DB̂1
(v4)DB̂1

(v5)
(56)

and
1√

DB̂2
(v3) +DB̂2

(v4)
>

1√
DB̂1

(v4) +DB̂1
(v5)

. (57)
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Case 2. vx ∈ V (B̂1)\{v5}.

For the vertex vx ∈ V (B̂1)\{v5}, DB̂2
(vx) ≤ DB̂1

(vx). Then

1√
DB̂2

(vx)DB̂2
(vy)

≥ 1√
DB̂1

(vx)DB̂1
(vy)

, where vx, vy ∈ V (B̂1)\{v5}, (58)

and

1√
DB̂2

(vx) +DB̂2
(vy)

≥ 1√
DB̂1

(vx) +DB̂1
(vy)

, where vx, vy ∈ V (B̂1)\{v5}. (59)

By (54), (56), (58), and the definition of Balaban index, we have J(B̂1) < J(B̂2).

By (55), (57), (59), and the definition of sum–Balaban index, we have J(B̂1) < J(B̂2).

�

Theorem 3.2. Let B̂2 = B̂2(3, 3, 2) be defined in Figure 2.10. Then B̂2(3, 3, 2)

is the unique unicyclic graph in Bn which attains the maximum Balaban index and

sum–Balaban index of all graphs in Bn, and

J(B̂2(3, 3, 2)) =
2n+ 2

3
√

2n2 − 6n+ 4
+

2n+ 2

3
√

4n2 − 18n+ 20

+
n+ 1

3
√

2n2 − 7n+ 5
+

n2 − 3n− 4

3
√

2n2 − 5n+ 3

SJ(B̂2(3, 3, 2)) =
2n+ 2

3
√

3n− 5
+

2n+ 2

3
√

4n− 9
+

n+ 1

3
√

3n− 6
+
n2 − 3n− 4

3
√

3n− 4
.

Proof From the above discussions, we have that B̂2(3, 3, 2) is the unique unicyclic

graph of order n which attains the maximum Balaban index and sum–Balaban index

of all graphs in Bn. We now calculate the values J(B̂2

′
(3, 3, 2)) and SJ(B̂2

′
(3, 3, 2)).

It can be checked directly that

DB̂2
(v1) = n− 1,

DB̂2
(v2) = DB̂2

(v4) = 2n− 4,

DB̂2
(v3) = 2n− 5,

DB̂2
(w) = 2n− 3, where w ∈ Wv1 .
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Thus

J(B̂2) =
n+ 1

3

 1√
DB̂2

(v1)DB̂2
(v2)

+
1√

DB̂2
(v2)DB̂2

(v3)
+

1√
DB̂2

(v3)DB̂2
(v4)

+
1√

DB̂2
(v1)DB̂2

(v4)
+

1√
DB̂2

(v1)DB̂2
(v3)

+
∑

w∈Wv1

1√
DB̂2

(v1)DB̂2
(w)


=

2n+ 2

3
√

2n2 − 6n+ 4
+

2n+ 2

3
√

4n2 − 18n+ 20
+

n+ 1

3
√

2n2 − 7n+ 5

+
n2 − 3n− 4

3
√

2n2 − 5n+ 3

and

SJ(B̂2) =
n+ 1

3

 1√
DB̂2

(v1) +DB̂2
(v2)

+
1√

DB̂2
(v2) +DB̂2

(v3)

+
1√

DB̂2
(v3) +DB̂2

(v4)
+

1√
DB̂2

(v1) +DB̂2
(v4)

+
1√

DB̂2
(v1) +DB̂2

(v3)

+
∑

w∈Wv1

1√
DB̂2

(v1) +DB̂2
(w)


=

2n+ 2

3
√

3n− 5
+

2n+ 2

3
√

4n− 9
+

n+ 1

3
√

3n− 6
+
n2 − 3n− 4

3
√

3n− 4
. �

It is clear that the upper bounds of Theorem 3.2 is bigger than the upper bounds

of Theorems 3.2 and 4.2 in [3].

4 A note on the paper [3]

In this section, we will give three examples to show some flaws in [3].

Example 4.1. Let G and G′ be the bicyclic graphs of order 7 as in Figure 4.1.

According to Definition 2.3 in [3], G′ is the crossing–edge–lifting transformation of G

(see Figure 4.1).
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Take U0 = {u3, u4, u5}. By the proof of Case 1 of Lemma 2.9 in [3], for any vertex

u ∈ U0, we have DG(u) ≥ DG′(u). However, DG(u4) = 12, DG′(u4) = 13, and so

DG(u4) < DG′(u4).

•

••
•
• •

•

�
�

@
@

u1

u3 u2

u4

u5 v1

v2

G

•

••
•
• •

•

�
�

@
@�
�
�
�A
A
A
A

u1

u3 u2

u4

u5 v1

v2

G′

Figure 4.1 Graphs G and G′

Example 4.2. Let G be the bicyclic graph of order 5 as in Figure 4.2.

According to Lemma 2.10 in [3], there is the unique graph G′ obtained from G by

repeating the crossing–edge–lifting transformations until the two cycles of G′ have only

one crossing point. However, for the graph G as in Figure 4.2, we can not obtained

such graph from G.

• •

•

•

•

�
�
�
�

@
@
@
@

@
@
@
@

�
�
�
�

u1 v0 u2

u0

Figure 4.2 Graph G

Example 4.3. Let G and G′ be the bicyclic graphs of order 7 as in Figure 4.3.

According to Definition 2.4 in [3], G′ is the cycle-edge-transformation of G (see Figure

4.3). Take U0 = {u0, u1, u2, u3, u4}. By (2.25) in [3], for ui, uj ∈ U0,

1√
DG(ui)DG(uj)

<
1√

DG′(ui)DG′(uj)
.

However, since DG(u3) = 12, DG′(u3) = 13, and DG(u4) = DG′(u4) = 10, we have

1√
DG(u3)DG(u4)

>
1√

DG′(u3)DG′(u4)
.
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Figure 4.3 Graphs G and G′
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