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Abstract

Given a graph G, the atom-bond connectivity (ABC) index is defined to be ABC(G) =∑
uv∈E(G)

√
dG(u)+dG(v)−2

dG(u) dG(v) , where E(G) is the edge set of graph G and dG(v) is the degree of

vertex v in graph G. The paper [10] claims to classify tho trees with a fixed number of leaves

which minimize the ABC index. Unfortunately, there is a gap in the proof, leading to other

examples that contradict the main result of that work. These examples and the problem are

discussed in this note.

1 Introduction

Given a graph G with vertex set V (G) and edge set E(G), the atom–bond connectivity

(ABC) index is defined to be [4]

ABC(G) :=
∑

uv∈E(G)

√
dG(u) + dG(v)− 2

dG(u) dG(v)
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where dG(v) is the degree (the number of incident vertices) of a vertex v ∈ V (G) in graph

G.

An early (and easy) mathematical result on the ABC index is that of all trees on

n vertices, the star has the highest ABC index [5]. An analogous problem, namely

the characterization of trees on n vertices with smallest ABC index, turned out to be

prohibitively difficult. In spite of numerous attempts, its solution is still unknown. Details

of the search for trees with minimal ABC index are outlined in [9]; for more recent works

along the same lines see [1–3]. Also of interest is to maximize and minimize chemical

indices on trees with a fixed number of leaves. In [6,8], a tight inequality is suggested for

the first and the second Zagreb indices over trees with a fixed number of leaves. In [7] a

dynamic programming approach is used to characterize the minimizers of the generalized

first Zagreb index and the second Zagreb index. For the ABC index, there is no maximum

value on a fixed number of leaves, since a broom (a path with one end joined to the center

of a star) has a fixed number of leaves but arbitrarily large ABC index as the length of

the path grows.

2 Observations

Regarding the minimum ABC index over trees with a fixed number of leaves, the following

result was claimed in [10].

Theorem 1. [10] Among all trees with k ≥ 19 leaves, the balanced double–star has the

smallest ABC index. Among all trees with 2 ≤ k < 19 leaves, the star has the smallest

ABC index.

Unfortunately, a gap was soon noticed in the proof,∗ leading to counterexamples to

Theorem 1. In particular, a tree with 40 pendent vertices, which has smaller value of

ABC index than the respective balanced double star, can be found in [7] (see Figure 1).

In [7] a routine based on a dynamic programming technique was suggested to calculate

numerically the minimizers for the second–Zagreb–like indices of the form

C2(G) =
∑

uv∈E(G)

c2(dG(u), dG(v))

∗In the proof of Claim 1 in [10], in the expression for ABC(w), instead of the term (d′ − 1)
√

d′

d′+1 , it

was erroneously written d′
√

d′

d′+1 . This seemingly benign mistake caused a major error in the final result.
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Figure 1: A counterexample to Theorem 1: The ABC index of this tree with 40 pendent
vertices is smaller than that of a double–star.

over all trees with given number of pendent vertices. Here c2(d, d′) is a symmetric non-

negative function of two natural arguments, d and d′.

This routine is based on the notion of the attached pendent–rooted tree, where the root

is a pendent vertex, which is considered as a vertex of degree d when calculating C2 for

this tree. The idea of the routine is that if a tree T delivers the minimum to C2(·) over

all trees with n pendent vertices, and one selects any internal vertex v ∈ V (T ) of degree

d, then T is a union of d attached rooted trees T1, . . . , Td having their roots in vertex v,

and Ti minimizes the ABC index over all rooted trees with ni pendent vertices and the

root of degree d.

Moreover, if we denote by C∗2(n, d) the minimum value of the ABC index for an

attached rooted tree with n pendent vertices and the root of degree d, then we can write

the Bellman equation as

C2(T ) = min
d=2,...,n

min
n1,...,nd

{
d∑

i=1

C∗2(ni, d) : n1 + · · ·+ nd = n

}
which can be used to calculate by induction the minimizers of C2 over trees with n pendent

vertices.

If we know that the vertex degree in any extremal tree does not exceed ∆, then

C2-minimizers can be efficiently calculated in O(n∆) operations.

It is clear that the second Zagreb index M2 is a special case of C2 for c2(d, d′) = dd′,

and the ABC index is a special case for c2(d, d′) =
√

d+d′−2
d d′

. Therefore, the trees with n

vertices delivering the minimum to M2 are characterized in [7]. For the ABC index, the

maximal degree in an extremal tree was not estimated, so only extremal chemical trees

(those having maximum vertex degree 4) were characterized in [7].

Although evaluation of ABC index minimizers becomes too expensive for large n, we

calculated numerically all trees with the smallest ABC index among the trees with n ≤ 53

pendent vertices.
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A star Sn minimizes the ABC index for n = 1, . . . , 18. A balanced double–star

minimizes the ABC index for n = 19, . . . , 35 (Figure 2 shows the example for n = 28). A

caterpillar with the central path of length 3 minimizes the ABC index for n = 36, . . . , 49

if and only if the vertices of the central path have n1 , n2 , and n3 pendants, respectively,

as indicated in Table 2. An example of such a caterpillar for n = 40 is shown in Figure 1.

`

`

Figure 2: The balanced double–star with 28 pendent vertices.

Table 1: Number of pendent vertices incident to vertices of the central path of a caterpillar,
required that the ABC index of a tree with n pendent vertices be minimal.

n n1 n2 n3 n n1 n2 n3

36 11 14 11 43 13 17 13
37 11 15 11 44 13 18 13
38 11 16 11 45 13 18 14
39 11 16 12 46 13 19 14
40 12 16 12 47 14 19 14
41 12 17 12 48 14 20 14
42 12 17 13 49 15 20 14

A star S3 with n1 , n2 , and n3 additional pendent vertices attached to its leaves

and nc additional pendent vertices attached to its center, minimizes the ABC index for

n = 50, . . . , 53 if an only if n1 , n2 , n3 , and nc assume the values indicated in Table 2.

An example for n = 50 is shown in Figure 3.

`

Figure 3: A foliated star S3 with 50 pendent vertices.
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Table 2: Number of additional pendent vertices attached to the vertices of the star S3 ,
required that the ABC index of a tree with n pendent vertices be minimal.

n n1 n2 n3 nc

50 11 11 11 17
51 11 11 11 18
52 11 11 12 18
53 11 11 12 19

3 Conclusion

The results outlined in this note show that Theorem 1 from the recent paper [10], holds

only for trees up to n = 35 leaves. For n ≥ 36, trees significantly different from double–

stars have minimal ABC index among all trees with n leaves. Much like the problem of

finding the minimum ABC index over all trees on n vertices, the problem of finding the

minimum ABC index over trees with a fixed number of leaves appears to be elusive. The

solution of both problems remains a task and challenge for the future.
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