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Abstract

The anti-forcing number of a connected graph G is the smallest number of edges

such that the remaining graph obtained by deleting these edges has a unique perfect

matching. In this paper, we show that the anti-forcing number of every fullerene

has at least four. We give a procedure to construct all fullerenes whose anti-forcing

numbers achieve the lower bound four. Furthermore, we show that, for every even

n ≥ 20 (n 6= 22, 26), there exists a fullerene with n vertices that has the anti-forcing

number four, and the fullerene with 26 vertices has the anti-forcing number five.

1 Introduction

A fullerene graph (simply fullerene) is a cubic 3-connected plane graph with only pentag-

onal faces (exact 12 of them by Euler’s polyhedron formula) and hexagonal faces. It is a

molecular graph of novel spherical carbon clusters called fullerenes [2]. The first fullerene
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molecule C60 was discovered in 1985 by Kroto et al. [9]. It is well known that a fullerene

graph on n vertices exists for every even n ≥ 20 except n = 22 [4].

A set of independent edges of a graph G is called a matching of G. A matching M of

G is called perfect matching (or Kekulé structure in chemical literature) if every vertex of

G is incident with exactly one edge in M . Kekulé structure plays a very important role

in analysis of the property of benzenoid hydrocarbons, fullerenes and other carbon cages.

Let G be a graph with a perfect matching M . A set S ⊆ M is called a forcing set of

M if S cannot be contained in another perfect matching of G other than M . The forcing

number (or innate degree of freedom) of M is defined as the minimum size of all forcing

sets of M , denoted by f(G,M) [3, 6]. The minimum forcing number of G is the minimal

value of the forcing numbers of all perfect matchings of G, denoted by f(G). Zhang, Ye

and Shiu [15] proved that the minimum forcing number of fullerenes has a lower bound 3

and there are infinitely many fullerenes achieving this bound.

Let G be a graph with vertex set V (G) and edge set E(G). For S ⊆ E(G), let G− S

denote the graph obtained by removing S from G. Then S is called an anti-forcing set

if G − S has a unique perfect matching. The cardinality of a smallest anti-forcing set is

called the anti-forcing number of G, denoted by af(G).

D. Vukičević and N. Trinajstić [13, 14] recently introduced the anti-forcing number

of graphs and determined the anti-forcing numbers of parallelogram benzenoid and cata-

condensed benzenoids. In fact, X. Li [11] had showed that a benzenoid with a forcing

single edge (equivalently, it has the anti-forcing number one) if and only if it is a truncated

parallelogram before it. D.J. Klein and V. Rosenfeld [7] described forcing and anti-forcing

idea in a united way. In this paper, we prove that the anti-forcing number of fullerenes has

a lower bound 4. Then we present an approach to generate all fullerenes which achieve

the lower bound 4 for the anti-forcing number. Furthermore, we demonstrate how to

construct at least one fullerene Fn with n vertices such that af(Fn) = 4 for every even

n ≥ 20 except n = 22 and 26.

2 Basic definitions and preliminaries

Firstly, we summarize some known results on the extendability and connectivity of fulle-

rene graphs, which will be used in proving our main results.

A connected graph G with at least 2(k + 1) vertices is said to be k-extendable if G
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has a perfect matching and any k disjoint edges of G belong to a perfect matching of G.

Theorem 2.1. ([16]) Every fullerene graph is 2-extendable.

Let G be a connected graph. For nonempty subsets X, Y of V (G), let [X, Y ] denote the

set of edges of G that each has one end-vertex in X and the other in Y . If X = V (G)\X 6=

∅, then [X,X] is called an edge-cut of G, and k-edge-cut whenever |[X,X]| = k. An edge-

cut S of G is cyclic if at least two components of G− S contain a cycle.

The cardinality of the smallest cyclic edge-cut of G is called the cyclic edge connectivity

of G, denoted by cλ(G). We call an edge-cut trivial if its edges are incident with the same

vertex. We call a cyclic k-edge-cut trivial if one of the resulting components induces a

single k-cycle.

Theorem 2.2. [1, 12] Every fullerene graph has the cyclic edge connectivity 5.

The theorem together with 3-connectivity imply that every fullerene graph has the

girth 5 ( the length of a shortest cycle), and each of all the 5-cycles and 6-cycles of

a fullerene graph bound a face. So pentagonal face and hexagonal face in a fullerene

coincide with pentagon and hexagon respectively. A pentacap is a graph consisting of 6

pentagons, as shown in Fig. 1 (left). F. Kardoš and R. Škrekovski [5], and K. Kutnar

and D. Marušič [10] independently proved that there is only one class of fullerenes which

admit nontrivial cyclic 5-edge-cut, as shown in Fig. 1 (right).

Figure 1. A pentacap (left) and a class of fullerenes which admit nontrivial cyclic

5-edge-cut (right).

Theorem 2.3. [5, 10] Let F be a fullerene admitting a nontrivial cyclic 5-edge-cut. Then

F contains a pentacap, and more precisely, F contains two disjoint antipodal pentacaps.

From the structure of fullerenes admitting a nontrivial cyclic 5-edge-cut, we have the

following observations.
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Observation 2.4. Let F be a fullerene with a nontrivial cyclic 5-edge-cut S. Then each

component of F − S is 2-connected. Furthermore, each component deleting one 2-degree

vertex is still 2-connected.

Observation 2.5. Let F be a fullerene with a nontrivial cyclic 5-edge-cut S. Then there

is no common edge for any two nontrivial cyclic 5-edge-cuts. And there exists at most one

common edge for any two cyclic 5-edge-cuts, one of them is nontrivial cyclic 5-edge-cut.

We can see the following basic fact:

Lemma 2.6. Every 3-edge-cut of a fullerene graph G is trivial.

Proof. Let E = [X,X] be a 3-edge-cut of G, where ∅ 6= X ⊂ V (G), X = V (G) \ X.

Denote by G[X] (resp. G[X]) the graph induced by X (resp. X) in G. Since G is

3-connected, G[X] and G[X] are components of G− E.

Suppose that X and X both have at least two vertices. Then we have that 3|X|−3
2

>

2(|X|−1)
2

= |X| − 1 and 3|X|−3
2

> 2(|X|−1)
2

= |X| − 1, which implies that G[X] and G[X]

both contain a cycle, contradicting that the cyclic edge connectivity of G is 5. So X or

X is a singleton.

Using this lemma, we could show the following result.

Lemma 2.7. Let F be a fullerene. Then there is at most one common edge for any two

cyclic 5-edge-cuts.

Proof. By Observation 2.5, we only need to show that there is at most one common edge

for any two trivial cyclic 5-edge-cuts.

To the contrary, suppose that there are two trivial cyclic 5-edge-cuts S1 and S2 which

share at least two common edges which connect two pentagons P1 and P2. Denote such

common edges by e1, e2,. . . ,ek, 2 ≤ k ≤ 5, in a consecutive order along the boundary of

P1 or P2. Then the plane subgraph P1 ∪ P2 + {e1, e2, . . . , ek} of F has exactly k faces

except P1 and P2. Let Ri denote such a face such that two consecutive edges ei and ei+1

lie on its boundary Ci, for 1 ≤ i ≤ k, where the subscript always modulo k. Then Ci

has no chords (a chord of a cycle C means an edge not in C but both end-vertices in C).

Since Ri is not a face of F , F has at least three edges issuing from distinct vertices on

Ci into Ri. This implies that in addition to the four endvertices of ei and ei+1, Ci has at

least three additional vertices. Note P1 and P2 have totally ten vertices. We must have
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that k = 2 and there are exactly three edges issuing from Ci to the same vertex in Ri for

i = 1 and 2 by Lemma 2.6 (see Fig. 2). Thus F has 12 vertices, contradicting that any

fullerene has at least 20 vertices.

e1

e2

C2

C1 P2P1

Figure 2. The illustration for the proof of Lemma 2.7.

Similar to Lemma 2.6 we have the following result.

Lemma 2.8. Every 4-edge-cut of a fullerene graph G isolates an edge.

Proof. Let E = [X,X] be a 4-edge-cut of G, where ∅ 6= X ⊂ V (G), X = V (G) \ X.

Denote by G[X] (resp. G[X]) the graph induced by X (resp. X) in G. Since G is

3-connected, G[X] and G[X] are components of G− E.

If both X and X have at least three vertices, then we have that 3|X|−4
2

> |X| − 1

(similarly for X), which implies that G[X] and G[X] both contain a cycle, contradicting

that cλ(G) = 5. So X or X has two vertices.

An edge of a graph G is said to be a pendent edge if it has an endvertex of degree one

in G. Such an endvertex is called a pendent vertex. An edge e of G is called a bridge if

deleting e from G increases the number of components.

Theorem 2.9. [8] Let G be a connected graph with a unique perfect matching. Then G

has a bridge belonging to the perfect matching.

From the theorem, it is clear that if a 2-edge connected graph contains a perfect

matching, then it has at least two perfect matchings.

3 The lower bound of anti-forcing number of

fullerenes

A lower bound of the minimum forcing number of fullerenes is stated in the following.
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Theorem 3.1. [15] Let F be a fullerene graph. Then f(F ) ≥ 3.

Now we state a lower bound of anti-forcing number of fullerenes as follows.

Theorem 3.2. For a fullerene graph F , af(F ) ≥ 4.

Proof. We just show that F does not contain an anti-forcing set of three distinct edges.

Suppose to the contrary that F contains an anti-forcing set S = {e1, e2, e3}. Then F − S

has a unique perfect matching M . There are two cases to be considered.

Case 1. There exist two adjacent edges in S. Suppose that e1 and e2 are incident to

the same end-vertex of an edge e in M . Then F has a cycle C containing both e and e3

since F is 3-connected. Since F is cyclically 5-edge connected, we have that C has length

at least 5. So there exists an edge e′ of C such that e and e′ are disjoint and e′ has a

common end-vertex with e3. By the 2-extendability of F (Theorem 2.1) and f(F ) ≥ 3

(Theorem 3.1), F has at least 2 perfect matchings containing both e and e′. So F − S

has at least 2 perfect matchings, a contradiction.

Case 2. Any two edges in S are not adjacent. By Theorem 2.9, F − S has a bridge

e in M . Let S ′ := S ∪ {e}. Then F − S ′ is not connected. We claim that S ′ is a minimal

edge-cut of F . Otherwise, some three edges in S ′ form a trivial edge-cut by Lemma 2.6,

a contradiction. Let S ′ = [X,X], where ∅ 6= X ⊂ V (F ), and X = V (F ) \X. Since any

two edges in S are not adjacent, |X| ≥ 3 and |X| ≥ 3. This contradicts Lemma 2.8.

Now we show that this bound is sharp. In Fig. 3, the remaining graphs by deleting

four edges {e1, e2, e3, e4} from F20 (left) and F24 (right) have only one perfect matching.

So both af(F20) and af(F24) equal 4.

e1

e2

e3

e4

e2

e3

e4

e1

Figure 3. F20 (left) and F24 (right) have an anti-forcing set of size 4.
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Next, we study the structure of anti-forcing sets of size 4.

Theorem 3.3. Let S be an anti-forcing set of a fullerene graph F and |S| = 4. Then

S is not a matching, and G[S] consists of either a path of length 2 and two independent

edges, or a path of length 3 and one independent edge.

Proof. We first claim that S possesses two adjacent edges in F . Suppose to the contrary

that S is a matching. Since S is an anti-forcing set, we have that F − S has a unique

perfect matching M . By Theorem 2.9, F−S has a bridge e = v1v2 in M . Let S ′ := S∪{e}.

So F − S ′ is disconnected. Similar to the proof (Case 2) of Theorem 3.2 we can obtain

that S ′ is a minimal 5-edge-cut. So there exists a proper nonempty subset X of V (F )

such that S ′ = [X,X], where X = V (F )\X. Since S is a matching, |X| ≥ 4 and |X| ≥ 4.

So 3|X|−5
2
− (|X| − 1) = |X|−3

2
> 0 (similarly for X). Thus S ′ is a cyclic 5-edge cut. Let

F1 = F [X] and F2 = F [X] denote the two components of F − S ′ such that v1 ∈ F1 and

v2 ∈ F2.

If S ′ is a nontrivial cyclic 5-edge-cut, then by Observation 2.4, F1 is 2-connected, v1

has degree 2 in F1, and F1 − v1 is 2-connected. By Theorem 2.9 F1 − v1 has more than

one perfect matching, contradicting that F − S has a unique perfect matching. If S ′ is a

trivial cyclic 5-edge-cut, then one of F1 and F2, say F2, must be a pentagon. Let ea and

eb be two edges of F2 belonging to M . Sine F is 2-extendable and f(F ) ≥ 3, then {ea, eb}

is not a forcing set of M . So {ea, eb} is a subset of at least two perfect matchings of F .

Thus F − S has at least 2 perfect matchings, a contradiction. The claim is verified.

Now suppose F [S] (the subgraph induced by S) contains two edge-disjoint paths of

length 2. It is clear that F − S contains two pendent edges that together are adjacent all

edges in S. We can see that these two pendent edges belong to M and form a forcing set

of M in F , which contradicts that f(F ) ≥ 3. Noting that each vertex of F [S] is of degree

1 or 2, F [S] is either union of a path with length 2 and two paths with length 1 or the

union of a path with length 3 and a path with length one.

By Theorem 3.3, F −S must contain pendent edges. Since F −S has a unique perfect

matching M , the pendent edges must belong to the perfect matching.

Theorem 3.4. Let F be a fullerene with af(F ) = 4 and E0 = {e1, e2, e3, e4} an anti-

forcing set of F . Let F ′ be the remaining graph after deleting both end vertices of all the

pendent edges from F−E0 recursively, and F ′′ the subgraph induced by all deleted vertices.
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If F ′ = ∅, then F ′′ = F ; If F ′ 6= ∅, then F ′ consists of two disjoint pentagons and one

edge between them (see Fig. 4) and there are exactly 8 edges from F ′ to F ′′.

Figure 4. The structure of subgraph F ′ with a unique Kekulé structure.

Proof. Let M be the unique perfect matching of F −E0. By Theorem 3.3, there exist two

adjacent edges in E0, say e1 and e2. So there is one pendent edge f1 = w1z1 of F − E0

that is adjacent to edges e1 and e2 in E0. Then f1 is viewed as the first pendent edge,

which must belong to the unique perfect matching M of F −E0. If F −E0−w1− z1 has

a pendent edge, then it is viewed as second pendent edge, belonging to M . In general, let

us define the following notations:

X: the set of edges of F from F ′ to F ′′,

F ′i : the remaining graph by deleting both end vertices of the former i pendent edges

from F − E0 (i.e. from the first to i-th pendent edges),

F ′′i : the subgraph induced by all deleted vertices after deleting both end vertices of

the i-th pendent edge from F − E0,

Xi: the set of edges in F from F ′i to F ′′i .

If F ′ 6= ∅, then from the above definition we have that F ′ also has a unique prefect

matching M ′ = M |F ′ . By Theorem 2.9, there is a bridge e′ = v1v2 of F ′ in M ′. Then F ′

is formed by two disjoint subgraphs G1 and G2 of F ′ − e′ connected by the edge e′ such

that v1 ∈ V (G1) and v2 ∈ V (G2). Since F ′ has no pendent edges, G1 and G2 both contain

cycles. The edges of F from F ′′ to G1 and G2 are denoted by XG1 and XG2 , respectively

(see Fig. 5).

Claim 1. |Xi| ≤ 8 for each i.

Since F ′′1 is a complete graph with two vertices, we have that |X1| = 4.

Second pendent edge must exist, i.e. F ′1 has a pendent edge. If not, F ′ = F ′1 6= ∅.

Since {e1, e2} ⊂ X1, [V (G1), V (G2)] has at most three edges in F , at most two of which

belong to E0. It follows that both XG1 ∪ [V (G1), V (G2)] and XG2 ∪ [V (G1), V (G2)] would

be cyclic 5-edge-cuts of F , which have three edges in common, contradicting Lemma 2.7.
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F

F

e
G1

2G

X XG G21

Figure 5. The illustration for the proof of Theorem 3.4.

Since there is no cycles of length 3 in fullerene, the second pendent edge must be

adjacent to an edge in E0 − {e1, e2}, say e3. By Theorem 3.3, the second pendent vertex

is incident with e3 and an edge in X1 as well. Then the F ′′2 is a path of length 3, i.e. it

consists of the first pendent edge and the second pendent edge and an edge connecting

them. So it is clear that |X2| = 6.

Similarly, F ′2 also has a pendent edge. If the third pendent edge is adjacent to e4, then

it is also adjacent to an edge in X2, so F ′′3 is connected. Hence |X3| ≤ 3×6−2×(6−1) = 8.

Further, if F ′i , i ≥ 3, has a pendent edge, then the (i+ 1)-pendent edge must be adjacent

to two edges in Xi. So |Xi+1| ≤ |Xi|. The induction procedure implies that we have

|Xi| ≤ 8 for all i.

e2

1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

Figure 6. Two cases for the third pendent edge not adjacent to e4.

If the third pendent edge is not adjacent with e4, then it must be adjacent to two

edges in X2; both possible cases of F ′′3 are shown in Fig. 6. It is clear that |X3| = 6.

Similarly there exists a pendent edge of F ′3 by Lemma 2.7. From the structure of F ′′3 , we

know that the corresponding forth 1-degree vertex must be incident with e4 and one edge

of X3. So F ′′4 is connected and contains a cycle. Hence |X4| ≤ 3× 8− 2× 8 = 8. Similar

to the above situation we can obtain |Xi| ≤ 8 for any i. Thus we have |X| ≤ 8.

By the above proof, we also obtain the following claim.
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Claim 2. E0 ⊆ E(F ′′) ∪X.

Now suppose that F ′ 6= ∅. We will prove that |X| = 8 and F ′ is formed by two disjoint

pentagons connected by exactly one edge.

By Claims 1 and 2, we have that |X| ≤ 8, [V (G1), V (G2)] = {e′} and {e′} ∪XG1 and

{e′} ∪XG2 are two cyclic edge-cuts of F . Since cλ(F ) = 5, |XG1| + |XG2| = |X| ≤ 8. So

|X| = 8 and {e′} ∪XG1 and {e′} ∪XG2 are two cyclic 5-edge-cuts.

If {e′} ∪XGi
is nontrivial, i = 1 or 2, then by Observation 2.4, Gi − vi is 2-connected

and has at least two perfect matchings, which contradicts that F ′ has a unique perfect

matching. So {e′} ∪XG1 and {e′} ∪XG2 are both trivial cyclic 5-edge-cuts. Hence both

G1 and G2 are pentagons, and the required results follow.

4 Construction for all fullerenes with anti-forcing

number 4

In this section we present a construction for generating all fullerene graphs with anti-

forcing number four.

Suppose that F is a fullerene graph with an antiforcing set E0 = {e1, e2, e3, e4}. By

Theorem 3.4 with notations in its proof, we have that each F ′i , 1 ≤ i ≤ 6, has a pendent

edge since F has at least 20 vertices. If the former three consecutive pendent edges are

all adjacent to edges of E0, we must describe all possible structures of F ′′3 induced by

all endvertices of these edges. It is known that F ′′2 is a path of length 3, and the third

pendent vertex is incident with edge e4 and has a neighbor in F ′′2 . So we can check that

all cases (configurations) of F ′′3 attached possible additional edges are showed in Fig. 7 in

a sense that in the same configuration edge set {e1, e2, e3, e4} can be chosen in a different

way.

If the third pendent edge is adjacent to no edges of E0, then it has two neighbors in

F ′′2 and the fourth pendent edge must be adjacent to e4. From two possible structures of

F ′′3 in Fig. 6 we can obtain all cases (configurations) of F ′′4 attached possible additional

edges as shown in Fig. 8.

A generalized patch (of fullerene) is a connected plane graph where all faces are

hexagons and pentagons except one outer face, with vertices not on the outer face having

degree 3 and vertices on the outer face having degree 1, 2 or 3.
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FS1 FS2 FS4

FS6

FS3

FS5 FS7 FS8

FS9 Fh1
F

h2

e1

e2 e3 e4
e3 e4

e3

e4

e3

e4

e1 e2

e3 e4

e1

e2

e3

e4

e3 e4

e3

e4

e1 e2

e1 e2

e3 e4

e1

e3e2

e3e4

e4

F
h3

e2

e1

e3

e4

e1

e2

e1

e2

e1

e2

e1

e2

e1

e2

Figure 7. All configurations of F ′′3 that the third pendent edge is adjacent to an

edge in E0.

e1

e2

e3 e4

e1
e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e1

e2

e3

e4

e4

e1

e2

e3

e1

e2

e3 e4

e1

e2

e3

e4

FS10
F

S11 FS12 FS13

FS14 Fh4 Fh5FS15

Figure 8. All configurations of F ′′4 that the third pendent edge is adjacent to no

edge in E0
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Lemma 4.1. Every F ′′i is a generalized patch of fullerene. Further, if F ′i has a pendent

vertex, then at least one pendent vertex is incident with two edges in Xi that are consecutive

along the boundary of F ′′i .

Proof. From the above discussions we have that all F ′′i are generalized patches from i = 1

to 3 and 4 respectively in above two cases. Suppose that F ′′i is a generalized patch and F ′i

has a pendent vertex. Then F ′i lies in the outer face of F ′′i . Let x be any pendent vertex

of F ′i and let y1, y2 and y3 be three neighbors of x such that y1, y2 ∈ F ′′i and y3 ∈ F ′i . If

F ′i is connected, then edges xy1 and xy2 and a part of the boundary of F ′′i bound a region

that is a face of F . This implies that xy1 and xy2 are consecutive along the boundary

of F ′′i . Further if y3 has one neighbor y4 in F ′′i , then similarly we have that y3y4, xy1

and xy2 are consecutive in Xi along the boundary of F ′′i . If y3 has two neighbors in F ′′i ,

then F ′′i+1 = F . Therefore F ′′i+1 is a generalized patch. If F ′i is disconnected, then it has

exactly two components that each contains a unique perfect matching by |Xi| ≤ 8. Since

cλ(F ) = 5, by Lemmas 2.6 and 2.8 both components of F ′i are complete graphs with two

vertices. So we can see that at least one pendent vertex F ′i is incident with two edges in

Xi that are consecutive along the boundary of F ′′i and F ′′i+1 is a generalize patch. This

induction establishes the lemma.

Since configurations Fhj, 1 ≤ j ≤ 5, in Figs. 7 and 8 can be generated from some of

configurations Fsi, 1 ≤ i ≤ 15, by merging two half edges into one edge. So let us call

the configurations Fs1Fs2, . . . , Fs15 the initial seed graphs. Our construction idea is that

starting from such initial seed graphs to expand incrementally a seed graph S to a large

seed graph S ′ by using several simple operations on the boundary of the seed graphs to

realize the growing of generalized patches F ′′i (Lemma 4.1).

Similarly to the case of using the boundary code to describe a fullerene patch, we use

a sequence to describe the boundary of a seed graph S. We label clockwise (counterclock-

wise) the half-edges of S by t1, t2, . . . , tk, and set ai as the number of vertices from ti to

ti+1 in a clockwise (counterclockwise) scan of the boundary of S. We call then the cyclic

sequence [a1, a2, . . . , ak] a distance-array of S. For instance, a distance-array to describe

the boundary of FS1 shown in Figure 8 could be [12222216]. Since a fullerene graph has

only pentagonal and hexagonal faces, we have that 1 ≤ ai ≤ 6. Note that a boundary

may have more than one distance-arrays describing it since we might start reading the

boundary from different position and we could read the boundary in clock or counter
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clock direction. However, it is easy to see that for the same boundary, the boundary

arrays are rotations and reversions of each other and we consider them equivalent in this

paper. Thus we shall make no distinction between the boundary of a seed graph and a

distance-array describing it.

We define the following operations on a seed graph S:

(O1) If the length of a distance-array of S is at least 4, ai is 4 or 5 and ai−1 and ai+1

are both at most 4, let ti and ti+1 be incident to a new vertex u. Add another

new vertex v, an edge uv, and attach two half edges to v. A distance array for the

resulting seed graph S ′ would be [a1, . . . , ai−2, ai−1 + 2, 1, ai+1 + 2, ai+2, . . . ak].

(O2) If the length of a distance-array of S is at least 4, ai is 5 or 6 and ai−1 + ai+1 is at

most 6, let the half edges ti and ti+1 merge into one edge. A distance array for the

resulting seed graph S ′ would be [a1, . . . , ai−2, ai−1 + ai+1, ai+2, . . . , ak].

(O3) If the length of a distance-array of S is 2 and a1 and a2 are both 5 or 6, we merge

the half edges t1 and t2 into one edge. The distance-array corresponding to the

resulting graph S ′ is the empty distance-array [].

(O4) If the length of a distance-array of S is 8, ai and ai+4 are both 1 or 2 for some i,

and all other aj are 3 or 4, we connect each half-edge of S to a vertex of degree

2 in the graph shown in Figure 4, in the only admissible way. The distance-array

corresponding to the resulting graph S ′ is the empty distance-array [].

For example, see Fig. 9. It is not difficult to see that the operations above maintain

the desired property. With the exception of O4, they are primitive operations in the sense

that they add the minimum number of vertices, edges or half-edges necessary to generate

larger seed graphs.

Operation O1 adds two vertices to a seed graph and preserves the length of the distance

array. Whereas, Operations O2 and O3 preserve the number of vertices in the seed graph

but reduce by 2 the length of the distance-array. Operation O4 adds 10 vertices to the

seed graph. Clearly, the application of Operations O3 and O4 produces a fullerene graph,

and no further operation can be performed so they are terminating operations.

The next stage is to compute a directed graph D representing all possible ways to

obtain fullerene graphs from the initial seed graphs by the successive implementations (in
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[32151322]

[32313322]

[322322]

1

2

e1

e2

e3 e4

FS10

Figure 9. An example for two operations O1 and O2 on Fs10 and on the distance-

array.

any order and a finite number of times) of the four operations O1 to O4. We call this

directed graph D the distance-array digraph. The vertices in D will be the distance-arrays

of all conceivable seed graphs, and there will be an arc (s, s′) in D if and only if there is

an operation on a seed graph S with boundary s yielding a seed graph S ′ with boundary

s′.

Let Li denote the distance-array determined by FSi, 1 ≤ i ≤ 15. Then we have

L1 = [12222216], L2 = [13222152], L3 = [12322143], L4 = [14221422],

L5 = [12421323], L6 = [13321332], L7 = [13215123], L8 = [14123214],

L9 = [14124123], L10 = [32151322], L11 = [41241322], L12 = [41232313],

L13 = [32142313], L14 = [25122322], L15 = [24213322].

From such initial distance arrays we describe the following procedure to generate D.

Algorithm 4.2 (Generation of Distance-Array Digraph D).

(S1) Set V = {L1, L2, . . . , L15} and A = ∅.

(S2) Select a distance array s ∈ V on which no operations have been made.

(S3) For a suitable operation (O1 to O4) on s, make it to get a distance array s′, then set

V := V ∪ {s′} whenever s′ 6∈ V , and set A := A ∪ {(s, s′)}. Repeat this procedure

for each of such operations. If no suitable operations on s, we say we have made

operations on s.
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(S4) If all distance arrays in V have been selected to make operations, then go to (S5).

Otherwise, go to (S2).

(S5) For every vertex s ∈ V , delete s if there is no directed path from s to the empty

distance-array [] (at this point we know [] ∈ V ). Then obtain the final directed graph

D with vertex-set V and arc-set A.

Figure 10. Generation of all possible distance arrays from L1, L2, L3, L6, L7, L8,

L10 and L12.

We now use the above procedure to generate D. From the initial distance arrays

L1, L2, L3, L6,L7, L8, L10 and L12, we implement step (S3) repeatedly for all possible

operations (in fact O1 and O2) to produce a digraph on a series of distance arrays, see

Fig. 10. We can see that they only reach “dead” distance arrays (i.e. non-empty distance

arrays for which no further operations can be made). So all such distance arrays are

discarded and does not appear in the final D.

For the remaining initial distance arrays, from them we also implement (S3) repeatedly

by all possible operations to produce a digraph on a series of distance arrays, and discard

all distance arrays that cannot reach the empty distance array. We can check that the

resulting directed graph D is as shown in Fig. 11 . It can be also verified by a program.

After the above computations, the distance-arrays digraph D turned out to have 52

vertices and 72 arcs. We found that D contains exactly one loop, at vertex [3351333], and

three pair of symmetric arcs, which form some possible closed directed walks.
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Figure 11. Distance-Array Digraph D.
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Given a sequence of distance arrays A1, A2, . . . , At+1 such that an operation Oi on

Ai is made to get Ai+1 for each 1 ≤ i ≤ t, where Oi ∈ {O1, O2, O3, O4}. If A1 is the

distance array of a seed graph S1, then we accordingly obtain the sequence of seed graphs

S1, S2, . . . , St+1 by implementing the same series of operations from S1. That is, for each

1 ≤ i ≤ t Si+1 has the distance array Ai+1 and Si+1 is obtained from Si via operation Oi.

We may say St+1 is generated from S1 by making a series of operations along sequence

A1, A2, . . . , At+1.

For example, take any directed path in D from L5, L9 or L13 to [33133323]. From

the corresponding initial seed graph we generate a seed graph by making a series of

operations along this directed path, then make the terminating operation O4 on it to

always get fullerene graph F24.

Take another directed path in D: L15 = [24213322] → [23314142] → [33143142] →

[33315142] → [333242] → [333414] → [335134] → [3434] → [5451] → [55] → []. Since the

initial seed graph Fs15 has eight vertices, from Fs15 we generate fullerene graph F20 by

making a series of operations along this directed path.

We now describe our method generating all fullerene graphs with anti-forcing number

4 as follows.

Theorem 4.3. A fullerene graph has the anti-forcing number 4 if and only if it can

be generated from one of six initial seed graphs Fs4, Fs5, Fs9, Fs13, Fs14, Fs15 by making

a series of operations along a directed walk in D from its distance array to the empty

distance array.

Proof. If a fullerene graph F has the anti-forcing number 4, then by the above discussions

F can reconstructed from some initial seed graph Fsi by making a series of operations in

O1 to O4, which also correspond to a directed walk in D from the distance array of Fsi

to the empty distance array.

Conversely, let F be a fullerene graph generated from some initial seed graphs Fsi by

making a series of operations along a directed walk from its distance array to the empty

distance array. Let E0 := {e1, e2, e3, e4} relating with Fsi. It suffices to show that F −E0

has a unique perfect matching. We can check that the vertices of Fsi have a unique pairing

in F − E0 (see double edges in Figs. 7 and 8). That is, any perfect matching of F − E0

(in fact it exists) has the restriction on Fsi, which is its unique perfect matching. For any

middle seed graph S generated from Fsi along a directed walk, suppose that any perfect
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matching of F − E0 has the restriction on S − E0 that is its unique perfect matching. If

operation O2 or O3 is made to get a seed graph S ′, then since V (S) = V (S ′) the same

statement holds also for S ′ − E0. If operation O1 is made to get a seed graph S ′, then

one added vertex has two neighbors in S. Hence it is incident with a pendant edge in

F − S, which must belong to a perfect matching of F −E0, and the same statement still

holds for S ′ − E0. If operation O4 is made to get a seed graph S ′, then by Theorem 3.4

F − S is a subgraph formed by two disjoint pentagons connected by an edge, and F − S

has a unique perfect matching. In this situation F = S ′ and F −E0 has a unique perfect

matching. This induction establishes the required fact.

Theorem 4.4. For any even n ≥ 20 (n 6= 22, 26) there is a fullerene Fn such that

af(Fn) = 4.

Proof. Fig. 3 already covers the cases n = 20 and n = 24, so we assume n = 2k with

k ≥ 14.

Consider a directed walk in D: L14 = [25122322] → [41322322] → [13322324] →

[33322341] → [33322513] → [33324133] → [33341333] → [33513333]k−13 → [343333] →

[515333] → [533513] → [5343] → [5451] → [55] → [], where [33513333]k−13 means k − 13

repetitions of [33513333] and k − 14 repetitions of a loop at [33513333]. Recall that

an operation preserving the length of the distance-array increases by 2 the number of

vertices in the seed graph, and an operation decreasing by 2 the length of the distance

array preserves the number of vertices. Along the directed walk from L14 to [] we can see

that operation O1 is made k − 4 times. Since the initial graph has eight vertices, from

it we generate a fullerene graph F2k with 2k(= 8 + 2(k − 4)) vertices along this directed

path. By Theorem 4.3 we have that this fullerene graph F2k has the anti-forcing number

4.

Corollary 4.5. af(F26) = 5.

Proof. From the above constructions for F24 and F2k (k ≥ 14), we know that any directed

path from L5, L9,or L13 to [] in D only produce fullerene F24, and any directed walk from

L14 to [] in D only produce fullerenes with at least 28 vertices. So we only consider all

directed walks from L4, L11, and L15 to [] in D, which form a directed subgraph D′ of D.

We can check that D′ is a bipartite directed graph. Let P denote any directed walk of

length l from L11 or L15 to []. Then from the initial seed graphs Fs11 or Fs15 we obtain a
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fullerene F by making a series of operations along P , and F has 8 + 2(l−4) = 2l vertices.

Further, there are directed paths of length 10 from L11 and L15 to [] in D′ respectively.

Since D′ is bipartite, P has the length with the same parity with 10. So l is even and F

must have 4k vertices. From such discussions, by Theorem 4.3 we have af(F26) ≥ 5. On

the other hand, there is a unique fullerene with 26 vertices and we find an anti-forcing set

with the size of 5 (see Fig. 12). So af(F26) = 5.

e1

e2

e3

e4

e5

Figure 12. An anti-forcing set with the size 5 on F26.

References
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