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Abstract

Recently a class of molecular graphs, called altans, became a focus of attention
of several theoretical chemists and mathematicians. In this paper we study primary
iterated altans and show, among other things, their connections with nanotubes
and nanocaps. The question of classification of bipartite altans is also addressed.
Using the results of Gutman we are able to enumerate Kekulé structures of several
nanocaps of arbitrary length.

1 Introduction

Altans were first introduced as special planar systems, obtained from benzenoids by at-

tachment of a ring to all outer vertices of valence two [19,26], in particular in connection

with concentric decoupled nature of the ring currents (see papers by Zanasi et al. [25,26]

and also Mallion and Dickens [8,9]). The graph-theoretical approach to ring current was

initiated by Milan Randić in 1976 [31]. It was also studied by Gomes and Mallion [11].

Full description is provided for instance in [29, 30]. Moreover, see paper [10] by Patrick

Fowler and Wendy Myrvold on ‘The Anthracene Problem’.
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Later altans were generalized by Ivan Gutman [18] to arbitrary graphs. We essentially

follow Gutman’s approach. Our point of departure is a peripherally rooted graph, i.e. an

ordered pair (G,S) which consists of an arbitrary graph G and a cyclically ordered subset

S of its vertices, called the peripheral root.

Let n denote the order of G and let k denote the cardinality of S. Assume that V (G) =

{0, 1, . . . , n − 1}. The operation A(G,S) maps the pair (G,S) to a new pair (G1, S1) as

follows: Let S0 = {n, n+ 1, . . . , n+k−1} and S1 = {n+k, n+k+ 1, . . . , n+ 2k−1}. Let

the vertex set of G be augmented by S0 ∪ S1. Through the vertices S0 ∪ S1, we construct

a peripheral cycle graph C of length 2k in the cyclic order

(n, n+ k, n+ 1, n+ k + 1, n+ 2, . . . , n+ k − 1, n+ 2k − 1, n).

Finally, we attach C to G by k edges between S and S0 of the form (si, n+ i), 0 ≤ i < k,

where si is the i-th vertex of S. The vertices of C that have valence 2 in the final

construction form are exactly the ones originating from S1 and are the new peripheral

root of the altan. The new peripheral root, S1, is ordered in the natural way.

Example 1. A bipartite graph may give rise to non-bipartite or bipartite altans. Let

G = C6 and S = (0, 1, 2, 3, 4, 5). Graph G and the non-bipartite A(G,S) are depicted in

Figure 1.
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(a) G = C6, S =
(0, 1, 2, 3, 4, 5)
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(b) A(G,S) = (G1, S1). S1 =
(12, 13, 14, 15, 16, 17) consists of vertices of
valence 2 in the natural cyclic order.

Figure 1: The altan of benzene is not bipartite since A(G,S) contains pentagons.

Example 2. The altan of the graph G in Figure 2 is bipartite.

Note that the altan in Example 1 is non-bipartite, whilst the one in Example 2 is

bipartite. We can classify bipartite altans.
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(a) G, S = (a, b, c)
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(b) G, S1 = (a′, b′, c′)

Figure 2: Since G is bipartite and all vertices of S belong to the same set of bipartition,
A(G,S) is also bipartite.

Theorem 3. Let (G,S) be a graph G with a peripheral root S. The altan A(G,S) is

bipartite if and only if

a) G is bipartite and

b) members of S belong to the same bipartition set.

Proof. First, we will show that conditions a) and b) imply that A(G,S) = (G1, S1) is

bipartite. Let G be bipartite and let us colour its vertices black and white. We may

assume that S has all of its vertices coloured black. Their adjacent vertices, S0, can be

coloured white. This can be further extended, by colouring S1 black, to a proper black and

white vertex colouring of G1. Hence G1 is bipartite. Furthermore, (G1, S1) also satisfies

the conditions a) and b) of the Theorem.

Now we prove the other direction. Let A(G,S) be bipartite. Graph G is a subgraph of

G1, so it is also bipartite. If G is bipartite but not all vertices of S are coloured with the

same colour, then two consecutive vertices of S, say u and v, would be coloured differently.

Recall that vertices of S are cyclically ordered. Hence there is a u, v-path in G of odd

length. By attaching the cycle C to G to form A(G,S) it is possible to connect u to v by

a path of length 4. This means there is a cycle of odd length in graph G1, a contradiction.

From the definition of the altan operation it follows that we may repeat it several times.

Let An(G,S) denote the n-th altan of (G,S), i.e. A(A(· · ·A︸ ︷︷ ︸
n

(G,S) · · · )). We obtain the

following consequence of Theorem 3.
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Corollary 4. Let (G,S) be a graph with peripheral root S and let n ≥ 1 be an arbitrary

integer. An(G,S) is bipartite if and only if (G,S) satisfies the conditions of Theorem 3.

Proof. It follows by induction. The basis of induction is given by Theorem 3.

2 Altans of benzenoid systems

Let B be a finite benzenoid system. The altan of B is assumed to have the cyclically

ordered peripheral vertices, S, of valence 2. Their order is obtained by traversing B along

its perimeter.

Theorem 5. For any finite benzenoid B, the altan A(B) is non-bipartite.

This theorem is evident from the considerations in [19]. Nevertheless, we will give a

short formal proof here:

Proof. By [20] each finite benzenoid has two consecutive peripheral vertices of valence 2,

say u and v. Both vertices u and v are attached to the outer cycle C of A(B) to vertices

u′ and v′ respectively that are two-apart in C. Let w′ be the vertex on C adjacent to

both u′ and v′. Vertices uvv′w′u′ form a cycle of length 5. Altan A(B) is not bipartite.

Note that the result follows also from Theorem 3. Although B is bipartite, the corre-

sponding peripheral root S is not all coloured with the same color.

For a bipartite graph G and a peripheral root S we may define partition Sb and Sw

with black and white coloured sets. For a connected G the partition is unique. We can

consider two bipartite altans A(G,Sb) and A(G,Sw). In case of benzenoids the definition

is natural and the bipartite altans are determined by the benzenoid itself.

Example 6. Black and white altans may be isomorphic (see Figures 3 and 4) or not (see

Figure 5.)

Proposition 7. If G is bipartite, then both A(G,Sb) and A(G,Sw) satisfy conditions of

Theorem 3.

Proof. Since all vertices of Sb are coloured black and all vertices of Sw are coloured white,

Theorem 3 applies to both black and white altans and the conclusion follows in each case.
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(a) B (b) Aw(B) ∼= Ab(B)

Figure 3: Black and white altans are isomorphic: Aw(B) ∼= Ab(B).

(a) B

(b) Ab(B) (c) Aw(B)

Figure 4: Black and white altans are isomorphic, Ab(B) ∼= Aw(B), but are oppositely
oriented.

In [18, 19] it was shown that A(G,S) has twice as many Kekulé structures as G. We

note that this number is independent of the order in which we choose the vertices of S.

It is even independent of the choice of S itself. It is not hard to see that An(G) at some

point becomes similar to a hexagonal nanotube with the original graph G as part of the

cap. The structure of the periphery of An(G,S) is composed of a ring of k hexagons

where k = |S|. Here we give the answers to the question of which benzenoids B or more
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(a) B

(b) Ab(B) (c) Aw(B)

Figure 5: Black and white non-isomorphic altans Ab(B) � Aw(B).

general fullerene patches will give rise to a capped nanotube An(B).

There is a special class of benzenoids, called convex benzenoids [4]. It can be defined in

several equivalent ways. Each benzenoid B is uniquely determined by its boundary-edges

code b(B) [21], see also [23], which in turn gives the distances between any two boundary

vertices of valence 3. By definition, benzene itself is assigned the code 6.

Definition 8. A benzenoid B is convex if and only if its boundary-edges code b(B) does

not contain symbol 1.

Example 9. The distinction between convex and non-convex benzenoids is visible from

their boundary-edges codes. For instance, the boundary-edges code 24334 of the benzenoid

on Figure 6(a) is 24334 and does not contain 1. Therefore this benzenoid is convex, whilst

the boundary-edges code for the benzenoid in Figure 6(b) is 144144, containing a 1. Hence

the benzenoid itself is non-convex. See Figure 6.
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Figure 6: The distinction between convex and non-convex benzenoids is visible from their
boundary-edges codes.

3 Altans of fullerene- and other patches

Now we generalize benzenoids to more general planar systems that we call patches. Our

definition generalises one used by Jack Graver and his co-authors [2, 12–16]. Each patch

has a unique boundary-edges code, however unlike benzenoids that are uniquely deter-

mined by their boundary-edges codes, the same boundary-edges code may belong to more

than one patch or even to a fullerene patch (as defined below).

Definition 10. A patch Π is either a cycle or a 3-valent 2-connected plane (multi)graph

with a distinguished outer face whose edges may be arbitrarily subdivided.

In the following example we depict some benzenoids as patches arising from plane

cubic graphs.

Example 11. Some plane cubic 2-connected graphs may be expanded to benzenoids; see

Figure 7.

Example 12. The graph in Figure 8 does not give rise to any patch.

Clearly, a patch is a proper generalization of a benzenoid.

Definition 13. A patch Φ with interior faces pentagons and hexagons is called a fullerene

patch.

The above definition coincides with the definition of Graver et al. [13, 14].

Definition 14. A patch Φ with interior faces hexagons is called a helicene patch.
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(a) benzene

(b) naphthalene

(c) anthracene

(d) phenanthrene

(e) phenalene

Figure 7: Smallest benzenoids as patches. Benzene is obtained from a loop and the rest
are obtained from plane cubic 2-connected graphs.

Figure 8: A plane cubic graph that is not 2-connected does not have a boundary cycle
and is therefore not able to produce any patch.
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Proposition 15. The class of helicene patches and helicenes coincide.

Proof. It follows directly from the definitions.

In particular this means that the following is true:

Proposition 16. Each benzenoid is a helicene patch but there are helicene patches that

are not benzenoids.

Proof. The implication follows directly from the definition. It is not an equivalence, since

each proper helicene such as the one from Figure 9 is a counter-example to the converse.

Figure 9: Not all patches with internal 6-cycles are benzenoids. The patch in this figure
is a helicene.

For a patch Π, the altan of the patch, A(Π), is clearly defined, i.e. its peripheral root

contains cyclically ordered vertices of valence 2 on the perimeter.

Proposition 17. If Π is a patch with k vertices of valence 2, then A(Π) is a patch with

k vertices of valence 2 and boundary-edges code 2k. Furthermore, the faces of Π are

augmented by a ring of k faces to form the internal faces of A(Π).

Proof. This follows directly from the definition of altans.

A (k, 1)-nanotube is a ring of k hexagons. We may view it as the black altan of a

cycle on 2k vertices: Ab(C2k). If we glue s such rings one on top of the other we obtain a

(k, s)-nanotube.

Corollary 18. If Π is a patch with boundary code 2k then the ring of faces attached to Π

when forming A(Π) is a (k, 1)-nanotube.
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Figure 10: (k, 1)-nanotube

Corollary 19. Let Π be an arbitrary patch with k vertices of valence 2. The iterated

altan An(Π) is composed of A(Π) to which a (k, n− 1)-nanotube is attached.

Proof. It follows easily by induction.

Definition 20. A patch Π is convex if its boundary-edges code contains no 1.

Proposition 21. Let Π be a patch. The ring of new faces of A(Π) contains only faces of

length ≥ 5 and A(Π) is convex.

Proof. Each vertex of valence 2 on the peripheral cycle is adjacent to two vertices of

valence 3. Therefore each new face of A(Π) contains at least 3 peripheral vertices. It must

contain at least two old vertices. Actually it will contain two consecutive old vertices if

and only if they were adjacent boundary vertices of valence 2 of Π. By definition A(Π) is

convex by Proposition 17.

Proposition 22. Let Π be a patch. The ring of new faces of A(Π) contains only faces of

length 5 or 6 if and only if Π is convex.

Proof. The pentagons are covered already in the proof of Proposition 21. A face of length

> 6 appears if and only if the boundary edges code contains one or more consecutive 1s.

Theorem 23. A benzenoid B will give rise to a fullerene nano-tube if and only if it is

convex.

Proof. It follows by induction from Proposition 22.

Theorem 24. If Π is a convex fullerene patch with p pentagons and boundary-edges code:

b(Π) = (2 + a1)(2 + a2) . . . (2 + ak), ai ≥ 0, d = a1 + a2 + . . . + ak. Then d + p = 6 and

A(Π) is a fullerene patch with edges boundary code 2k and 6 pentagons.
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Proof. This result may be viewed as a consequence of the fact that a nanotube may be

capped only by a fullerene patch having 6 pentagons. All action takes place at the initial

step passing from Π to A(Π) since the width of the tube does not change after eventual

iterated applications of altan operation.

4 Kekulé structures of iterated altans

We have seen that An(G) behaves essentially like a capped nanotube. In the first step

from G to A(G) all irregularities happen. After that each An+1(G) is obtained from An(G)

by attaching a ring of hexagons to its periphery.

Gutman [18] proved the following:

Lemma 25 (Gutman, 2014). Let G be a graph having K = K(G) Kekulé structures.

Then any of its altans A(G) has 2K i.e. twice the number of Kekulé structures.

We may apply it to the iterated altans:

Theorem 26. The number of Kekulé structures in the n-th iterated altan of G is 2nK(G).

Proof. From Gutman’s Lemma by induction.

This result has many interesting consequences. The first one is confirmation of the

result of Sachs et al. [32] that the number of Kekulé structures of a (k, s)-nanotube is

independent of k and is equal to 2s+1. More generally we may compute the number of

Kekulé structures of any patch extended by a nanotube.

Corollary 27. Let Π be a patch then K(An(Π)) = 2nK(Π).

In particular this means that a nanotube capped by six pentagons (half of a dodecahe-

dron) has no Kekulé structures, while the nanotube capped by half of the buckyball and

its 11 Kekulé structures gives rise to the total of 11 × 2n Kekulé structures. We should

mention that our nanotubes correspond to a very special untwisted case of much more

general nanotubes, alias tubules considered in the 73-page paper [32].
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· · ·

· · ·

s

k

Figure 11: (k, s)-nanotube

(a) (b)

(c) (d)

Figure 12: A cap Π with a single pentagon (see (a), (b)) that turns into a bucky-ball
dome A(Π) with six pentagons (see (c), (d)) after the first altan and to a longer capped
nanotube after any additional altan operation.
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