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Abstract

Fullerenes are molecules constituted entirely by tertiary carbon atoms,

forming a surface that contains only pentagonal and hexagonal faces. This

paper presents a comparison of some graph theoretic invariants in the con-

text of predicting the stability of fullerenes. In particular: the Fowler-

Manolopoulos criterion, the diameter, the Wiener index, the bipartite edge

frustration, the independence number, the number of perfect matchings, the

Fries number, and the Taylor number. With three exceptions, their values

were computed for each fullerene isomer with up to 130 vertices, and each

isolated pentagon isomer with up to 160 vertices.

1 Introduction

For most of the twentieth century, the only known substances constituted entirely

by carbon atoms were diamond, graphite, and amorphous carbon. That changed

in 1985, when Kroto, Heath, O'Brien, Curl, and Smalley provided the �rst hint

of the existence of an aggregate with 60 carbon atoms [52], later con�rmed to

be shaped as a truncated icosahedron [50]. Designated Buckminsterfullerene, in

honour of Richard Buckminster Fuller's geodesic domes, the structure was later

found to appear naturally in soot, along with other similar molecules [14]. Since
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then, the simpli�ed term fullerene is used to designate any molecule comprised

wholly of tertiary carbon atoms, forming polyhedral structures in which all faces

are either pentagons or hexagons. An extensive, in-depth treatment of fullerenes

and their properties can be found in Fowler and Manolopoulos' �An Atlas of

Fullerenes� [27].

One of the main problems encountered by chemists when dealing with fullerenes

is the fact that the Cn formula does not serve as a unique identi�er for a fullerene

with n atoms. For example, although the Buckminsterfullerene is denoted by C60,

its structure is only one among the 1812 combinatorially distinct ways of arranging

60 carbon atoms without violating the de�nition of fullerene � the others lead

to isomers of Buckminsterfullerene (molecules with the same chemical formula,

but di�erent structures). Actually, certain results from the area of mathematics

that studies polyhedric surfaces (mathematical abstractions useful to model the

structure of fullerenes) show that there should be fullerenes Cn for each even value

of n ≥ 20 (with the exception of 22) [35], and the number of isomers of Cn is in

Θ(n9) [14, 57].

However, even though the number of isomers for a particular Cn can be signif-

icantly high, only a fraction of these structures is stable enough to be successfully

isolated in experiment, existing for long enough to be detected. The di�culty,

then, is how to know which isomers are more relevant (i.e., stable) among the mass

of possibilities for each Cn. One of the ways researchers found to answer this ques-

tion is based on the observation that the chemical properties of a molecule (and,

consequently, its expected stability) are closely related to certain invariants in its

molecular graph � a graph in which the vertices correspond to the atoms and the

edges to the bonds between the atoms. Such technique has proven particularly

adequate in predicting the stability of fullerenes, since the presence of no atoms

other than carbon simpli�es the representation via molecular graph.

So far, several invariants have been investigated in the literature, though it is

hard to determine how e�ective they actually are. Generally, when a group of

authors propose a new invariant to predict the stability of fullerenes, there is little

concern in presenting experimental results comparing the performance of the new
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method with that of other invariants. Even in those cases in which comparisons

are performed, they tend to take into account only one or two more traditional

invariants.

Ergo, the main contribution of this work consists in presenting some evidence

of the consistency (or discrepancy) between expected stabilities according to each

of several invariants selected from literature � that is, investigate if and how much

these invariants �agree� as to which are the most stable isomers. Furthermore,

the experiments documented in the literature are usually restricted to values of n

around 100 or 120, given the computational di�culty.

Thus, a second objective of this work is to raise this limit in a way as to encom-

pass the studied invariants as uniformly as possible. In particular, calculations were

made for each isomer with up to 130 vertices, and each isolated pentagon isomer

with up to 160 vertices � with three exceptions due to lack of time and computa-

tional power: the independence number (up to 148), the Fries number (up to 124

and from 132 to 142), and the Taylor number (up to 130). These exceptions are

properly signaled from now on.

2 De�nitions and Notation

A graph is an ordered pair G = (V,E), where V is a non-empty set of vertices

and E ⊆
(
V
2

)
is a set of edges disjoint from V . The order and size of a graph

G correspond, respectively, to the values n = |V | and m = |E|. Given a vertex

v ∈ V , NG(v) denotes the set of all neighbours of v in G, and degG(v) = |NG(v)|

denotes the degree of v. Each edge e = {u, v} in a graph G may optionally be

associated to a non-negative number denominated weight of e and denoted by the

symbol w(e). Note that this work deals only with �nite and simple graphs, so,

from now on, it is assumed that the term �graph� is always used with this meaning.

A graph G is said to be complete if, and only if, all its vertices are pairwise

adjacent. A complete graph with n vertices is denoted by Kn. A bipartite graph,

G, is a graph in which the vertex set, V , can be partitioned in two disjoint subsets

X and Y , such that each edge e ∈ E has one endpoint in X and another in Y .

This (X, Y ) partition is denominated a bipartition of G. A matching M ⊆ E in
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a graph G is a subset of edges from E such that each vertex v ∈ V is incident

on, at most, one edge in M . Vertices incident on some edge of M are said to be

matched, and the others are said to be unmatched. A matching M in G is said to

be a perfect matching if all vertices of G are matched. Note also that, when G has

weights associated with its edges, the weight of a matching M in G is de�ned as

the sum of the weights of all edges in M .

Given these preliminary concepts, it is now possible to explain how to represent

fullerenes using graphs. As de�ned in [14], a fullerene graph with n vertices,

denoted by Cn, is a 3-regular, planar graph, where each face is formed by 5 or

6 edges. Note that, due respectively to 3-regularity and 3-connectivity, Cn must

contain exactly 3n/2 edges and have a unique immersion in the plane (preserving

face boundaries). From this de�nition it is possible to use Euler's formula [18] and

conclude that fullerenes have n/2− 10 hexagonal faces and exactly 12 pentagonal

faces (regardless of the size) [27]. Also according to Fowler and Manolopoulos,

fullerenes Cn exist only for even values of n, with the exception of n = 22.

However, the notation Cn works as a unique identi�er only for the three simplest

fullerenes (those with n equal to 20, 24, or 26). For values other than those,

the notation is ambiguous, as there are multiple Cn isomers, each one with a

distinct fullerene graph. One popular solution to this problem involves ordering

the isomers lexicographically using their smallest face spiral sequences [14,27]. For

a given value of n, the notation for each isomer is combined with a number k

(corresponding to its position in this order), resulting in Cn:k. For example, the

Buckminsterfullerene can be identi�ed as C60:1812, because its smallest face spiral

is the last among the 1812 isomers.

It is also important to make a brief comment regarding the use of the word

stability when talking about a fullerene isomer. In the literature about fullerenes,

even if the possible meanings of thermodynamic and kinetic stability are somewhat

related, the term is usually applied in an ambiguous way. So, in order to avoid

any confusion, from now on the expression stable isomer will be used speci�cally

in its less formal sense (similarly to [21]): to designate isomers that were or that

theoretically can be produced in su�cient quantity to be observed in laboratory.
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The �rst criterion used successfully to determine the stability of fullerenes

was the isolated pentagon rule, proposed by Kroto and Schmalz [51, 60] and later

formalized by Raghavachari [53] and Fowler and Manolopoulos [27]. This rule is

based on the observation that adjacencies between pentagons cause an increase in

what is known as steric strain of the molecule, which negatively impacts stability.

For n ≥ 70 all fullerenes have at least one isomer with no pentagon adjacencies and

each one of them receives the special denomination of IPR isomer. Sadly, even if

this criterion has shown itself consistent with experimental observations regarding

stability, beyond a certain point even the number of IPR isomers becomes too great

to be e�ciently manageable at present. Given that the isolated pentagon rule is

unable to distinguish between IPR isomers, this problem motivated the search for

new evaluation schemes.

3 Project and Implementation

The �rst step to accomplish the aforementioned goals for this work was obtaining

a set of fullerene graphs on which the analysis could be performed. An obvious

approach would involve using the buckygen [7] or fullgen [9�11] programs, but the

�les generated by these programs do not order isomers using the lexicographically

smallest face spiral1 (something indispensable for a correct analysis here, since

several other works use this same referencing scheme). The alternative solution

was using the House of Graphs [8] database as the source of fullerene graphs for

this work.

After this was settled, we choose to compare the following invariants: i) the

Fowler-Manolopoulos criterion, ii) the diameter, iii) the Wiener index, iv) the bi-

partite edge frustration, v) the independence number, vi) the number of perfect

matchings (also known as the number of Kekulé structures), vii) the Fries num-

ber, viii) the Taylor number. These choices were made trying to strike a balance

between the importance of the invariant in the literature, its expected predict-

ing potential, and the di�culty in its implementation. Programs were written to
1One of the authors was able to successfully contact (via email) researchers Gunnar

Brinkmann, Brendan McKay, and Jan Goedgebeur, who con�rmed those programs de�ne their
own custom order for the isomers.
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compute the value of these invariants on the selected set of fullerene graphs. The

following sections, after a short review of the literature for each invariant, brie�y

discuss implementation details. All programs were written in C++, and are avail-

able (publicly and free for academic activities) on the web2. Please note that at

certain points some third party libraries had to be used, and those may be subject

to speci�c license agreements.

3.1 Fowler-Manolopoulos Criterion

In the same paper treating the isolated pentagon rule, Raghavachari also proposes

an adaptation that allows one to deal with fullerenes for which there are multiple

IPR isomers. According to Raghavachari [53], one should consider not only if

two pentagonal faces are separate, but how separate they are. Theoretically, the

steric tension (which interferes in stability) is minimized when the curvature of

the pentagonal regions is distributed in the most uniform possible way through

the surface of the molecule [27].

The �rst step in quantifying this distribution is de�ning a way to deal with

hexagons, instead of pentagons. For each hexagon, the hexagonal neighborhood

index is the number of other hexagons to which it is adjacent. This way it is pos-

sible to assign to each isomer a signature 〈h0, h1, h2, h3, h4, h5, h6〉, where hk is the

number of hexagons with neighborhood index k. The signatures can be summa-

rized into a single number, which represents the value of the invariant for a given

fullerene graph. Fowler and Manolopoulos de�ned this number as the standard

deviation, σh, of the distribution of the hexagonal neighborhood index [27]:

σh =
√
〈k2〉 − 〈k〉2 where 〈k〉 =

6∑
k=0

khk

6∑
k=0

hk

and 〈k2〉 =

6∑
k=0

k2hk

6∑
k=0

hk

The program to compute the value of this invariant was divided in three stages:

i) obtaining a set of dual graphs from the set of fullerene graphs (which spawned a

subprogram, denominated planar2dual, implementing an algorithm adapted from
2http://www.inf.ufpr.br/arg/fullerene
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Guibas, Stol� and Guedes [36,38]), ii) iterating over all neighbours of vertices with

degree 6 in the dual, computing hexagon neighborhood indices, and iii) applying

directly the formula above.

3.2 Diameter and Wiener Index

The Wiener Index, denoted by W , is a topological index presented in 1947 by the

North American chemist Harry Wiener [66] that has a close relation with a great

number of physical and chemical properties of the alkanes (a type of hydrocarbon).

Although Wiener de�ned W only for the alkanes, the Japanese chemist Haruo

Hosoya [43] was the �rst to propose a relationship between W and the distances

in a general molecular graph. Hosoya showed that the value of W in a molecule

corresponds to exactly half the sum of all the elements in the distance matrix of its

corresponding molecular graph (the matrixM containing one line and one column

for each vertex in the graph, where position Mi,j corresponds to the distance

between the vertices identi�ed by i and j). In other words, for a graph G = (V,E),

the index W (G) is merely the sum of the distances between all pairs of vertices of

G [56] (considering only unique pairs, that is).

The Wiener index is a way to measure the rami�cation of the framework formed

by the carbon atoms in the molecule and, consequently, to measure how compact

it really is [6, 55]. This means that W represents the reason between surface and

volume in a molecule formed by carbon atoms, and serves as a sign of the presence

of certain intermolecular forces [39] which, in turn, a�ect stability. The expected

relationship is that, as W increases, the stability decreases, but there are already

studies making comments about the low precision of this relationship (for some

fullerenes), such as the work of Slanina et al. [61].

An invariant that is conceptually related to the Wiener index, and that has

already been studied for some classes of fullerenes [25], is the diameter. The di-

ameter of a graph G is the largest distance between two vertices of G, considering

all possible pairs of vertices. Even if this invariant is not considered particularly

relevant by the literature in predicting the stability of fullerenes, investigating the

use of the diameter for this purpose is not entirely without justi�cation. Andova
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at al. [3] de�ned an upper bound for the diameter of a fullerene graph, G, as being

diam(G) ≤ 1
5
n+1. In the same paper it is highlighted that, even if the diameter is

relatively small in fullerene graphs with symmetry similar to that of the Buckmin-

sterfullerene (icosahedral), the diameter of graphs modeling nanotubes is linear

on the number of vertices. Furthermore, this work presents a good opportunity

to compare the diameter (obtained �for free� when calculating the Wiener index)

with the other invariants. Both invariants were easily computed from the distance

matrices of each graph, constructed using an implementation of the Floyd-Warshal

algorithm adapted from Cormen et al. [12].

3.3 Bipartite Edge Frustration

One rather intuitive measure of the �bipartivity� of a graph can be de�ned through

counting the number of edges violating the most remarkable characteristic of a

bipartite graph: the fact that the two endpoints of each edge are not part of the

same bipartition class (edges violating a bipartition in this way are said to be

frustrated with respect to the bipartition). This invariant was �rst introduced in

the study of complex networks [42] and, although not computable e�ciently in the

general case, it can be calculated in polinomial time in the speci�c case of fullerene

graphs [17]. For each bipartition (X, Y ) of the vertex set, V , of a given graph,

G, denote by FXY the set formed by all edges frustrating bipartition (X, Y ). The

bipartite edge frustration of G, denoted by ϕ(G), is the cardinality of the smallest

FXY considering all possible bipartitions (X, Y ) of V . Equivalently, ϕ(G) can be

de�ned as the size of the smallest set of edges that need to be removed from G to

obtain a bipartite spanning subgraph. More formally:

ϕ(G) = mín {|FXY | | (X, Y ) is a bipartition of V }

Do²li¢ and Vuk£evi¢ show [17] the relationship that exists between ϕ(G) and

a particular set of edges in the dual dual graph of G. This set, denoted by H

and denominated obstacle, is the set formed by edges that need to be removed

from G′ (the dual of G) in order to obtain a spanning subgraph without vertices

of odd degree. Let K12(G) be the complete graph having one vertex for each
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pentagonal face of G, where each edge is associated to a weight corresponding to

the distance between the faces represented by its endpoints (this graph receives the

special denomination of pentagon distance graph of G). Again according to Do²li¢

and Vuk£evi¢, each obstacle of minimum cardinality will be mapped directly to a

minimum weight perfect matching in K12(G). The weight of this matching (i.e.,

the sum of the weights of its edges) corresponds to the value of the bipartite edge

frustration in G.

Similarly to the program calculating the Fowler-Manolopoulos criterion, the

program corresponding the the bipartite edge frustration receives the duals of the

fullerene graphs as input. The list of vertices is iterated over, and a breadth-�rst

search is performed at each vertex with degree 5. The distances between these

vertices are used to create the K12 graph, and a special library (implementing the

Blossom V algorithm [48]) is used to calculate a minimum weight perfect matching.

3.4 Independence Number

The application of this invariant as a criterion for predicting fullerene stability was

initially motivated by one of the conjectures made automatically by the Gra�ti

program [19, 20]. Despite originating from extremely limited data, the fortuitous

observation made by the program, that stable isomers had smaller independence

number than the others, seemed to be a promising criterion in selecting the more

relevant isomers (at least in the limited range of values of n considered at the

time). To de�ne formally the independence number, it is �rst necessary to revise

the concept of independent set. An independent set, S ⊆ V , of a graph G = (V,E)

is a (maximal) subset of the vertices of G such that the induced subgraph G[S]

has no edges. An independent set with maximum cardinality is called a maximum

independent set, and its size corresponds to the independence number of graph G,

denoted by α(G). More formally [14]:

α(G) = máx{|S| | S is an independent set of G}

Although the statistical observation made by the program Gra�ti has moti-

vated the proposition of the independence number as a criterion to predict sta-

bility in fullerenes [21], there was no coherent chemical explanations justifying
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this proposition. Actually, for the speci�c case of carbon nanotubes, the inde-

pendence number is specially imprecise, given that this type of fullerene has an

independence number far greater than other isomers with the same number of

atoms (what doesn't necessarily mean that they are any less stable) [21]. Accord-

ing to recent studies [26, 28], there doesn't seem to be much correlation between

the stability of fullerenes and the independence number.

Given the extremely high number of input graphs, and the fact that the problem

is known to be NP-Hard [33], once again the choice was made to use a specialized

library, but one relying on a slightly di�erent de�nition of the independence num-

ber, based on the concept of clique. A clique of a given graph, G, is a (maximal)

subset of vertices of G such that the induced subgraph G[C] is complete. In this

case, the mcqd [49] library was used to calculate a maximum clique on the com-

plement of each input graph. The size of this clique corresponds exactly to the

independence number on the original graph.

3.5 Number of Kekulé Structures

In Chemistry, the concept equivalent to that of a perfect matching in a car-

bon framework is known as Kekulé Structure (in honor of the German chemist

Friedrich August Kekulé), and the number of structures of this type supported by

the molecule (denoted here by K(G) for a fullerene graph G) provides a measure

of its electronic stability. This number, for the speci�c case of planar graphs, can

be computed in polynomial time by the FKT algorithm � an acronym formed by

the initials of the researchers Fisher, Kasteleyn and Temperley [45,63], who inde-

pendently discovered a result (posteriorly generalized by Kasteleyn for all planar

graphs [46, 47]) which would lead to the algorithm. The pseudocode, adapted

from [65], can be seen in Algorithm 1.

Given the need of calculating determinants and of representing the graphs

using adjacency matrices, the implementation of this algorithm involved using a

widely known library for linear algebra: the Eigen library [37]. It is also important

to mention that, as noted in [4], the measure of electronic stability provided by

the number of Kekulé structures seem to be slightly rough. Even in the limited
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Algorithm 1 FKT(G)

Require: A planar graph G = (V,E), immersed in the plane
Ensure: Number of perfect matchings, K(G), of G
Let T = (V, F ) be a spanning tree of G
for each e ∈ F do

Give e an arbitrary orientation
end for

Let H be a tree with one vertex for each face in G (including the outer face) and
an edge between two vertices if their corresponding faces in G share an edge not
in T . The root can be chosen arbitrarily, for example, the vertex corresponding
to the outer face.
for each leaf v in H that is not the root do
Let f be the face G corresponding to v
Let e be the (only) edge of G in f without an orientation
Orient e such that the number of clockwise-oriented edges in f is odd
Remove v from H

end for

Let M be the oriented adjacency matrix of G (�lled only with 1,−1, and 0)
return |

√
det(M)|

analysis in this paper, the pure counting of Kekulé structures fails to isolate the

Buckminsterfullerene as the most stable isomer [59]. The invariant also appears

to favor non-spheric structures with high steric strain (probably owing to the fact

that a high value of K is associated with more pentagon adjacencies), unlikely

candidates for stable molecules. This suggests that some matchings in particular

may be more important than others, or than counting the pure total.

3.6 Fries Number

One of the �rst works to take this notion into account was that of Fries, who

proposed the number of benzenoid hexagons as a criterion for stability [30, 31]. A

benzenoid hexagon (with respect to a given Kekulé structure of matching M) is

nothing more than a hexagonal face such that the bonds represented by its edges

are alternatingly simple (σ) and double (π), or, equivalently, such that its edges

are alternatingly part of M . The notation and terminology used here will be that

of [4]. That is, the Fries number for a perfect matching M , denoted by nF (M), is

the number of benzenoid hexagons inM . On the other hand, the Fries number for

a given fullerene G = (V,E), denoted by F (G), is the maximum value of nF (M)
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considering all possible perfect matchings in G. The problem of �nding F (G) can

be modeled as an integer programming problem, as described in [40], which was

the strategy followed here. In particular, after experimenting with the GLPK3,

SCIP [1], and lp_solve [5] libraries, the preference was for the GLPK, mostly

because of its ease of integration with pre-existing code.

3.7 Taylor Number

Even though the Fries number is an improvement over the pure Kekulé count,

rigidly following the criterion of maximizing the number of benzenoid hexagons

might not be a very �re�ned� technique, specially for the IPR isomers (which

are already known to be more prone to stability). In particular, those perfect

matchings having largest nF end up positioning their edges along pentagonal faces

of the IPR fullerene, something that should be avoided, according to Taylor [62],

with greater priority than maximizing the number of benzenoid hexagons.

For a perfect matching M , let nT (M) be the number of edges of M belonging

to pentagonal faces in G, and let nP2(M) be the number of pentagonal faces

containing exactly 2 edges of M . Two variants of the Taylor number, named in

honor of Taylor, are proposed in [4], both de�ned (similarly to the Fries number

F (G)) as being the maximum number of benzenoid hexagons nF (M) among all

perfect matchings M of a given set of perfect matchings.

The di�erence is that the �rst version, Ta(G), �rst selects those perfect match-

ings minimizing the value of nT (M), and then selects those maximizing nF (M).

Whereas the second version, Tb(G), begins by selecting those perfect matchings

minimizing nT (M) and nP2(M), and then selects those maximizing nF (M). Un-

like what happened with the Fries number, no explanation was found detailing

how to model the calculation of the Taylor number using integer programming,

only a statement in [4] that it had been done. Therefore, after selecting one of the

versions to implement (Ta(G)), the method in [40] was adapted to include some

new variables and restrictions, and the GLPK library was used once more.
3Access the link https://www.gnu.org/software/glpk/
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4 Experiments and Results

As mentioned previously, one of the objectives of this work involves calculating

the values of the invariants for all isomers with n between 20 and 130, and all IPR

isomers with n between 132 and 160. Therefore, for each invariant the experiments

were executed in this order, following the values of n sequentially. Several machines

were used in this computation, including three shared machines from UFPR's

Department of Informatics (all running operating system Linux Mint 17 Qiana)

and a Macbook Pro with processor Intel Core 2 Duo 2.4GHz, 4GB of RAM, and

Mac OS X Mountain Lion. For almost all experiments the execution time was

no more than a few hours or days (even with the amount of graphs to consider).

Only for three invariants the execution was so long that the planned objective

could not be completed: the independence number, the Fries number, and the

Taylor number. One attempted strategy to mitigate this problem was changing

the code to allow parallel execution of the programs for di�erent values of n and,

although it had some e�ect, it was not enough to complete all experiments in time.

In particular, the independence number was calculated for the values of n between

20 and 148, the Fries number for the values between 20 and 124 and between 132

and 142, and the Taylor number for the values between 20 and 130.

The output of all experiments was a set of approximately 500 .csv �les, occu-

pying over 4GB of disk space. There is one �le for each invariant and each value

of n in the designated range (with the exception of the diameter and the Wiener

index, which are stored in the same �les). Inside each �le there is one line for each

isomer, containing its identi�er and the invariant value. Three main approaches

were chosen to analyze and extract conclusions from such a large data set: com-

parison with values from other works (Subsection 4.1), veri�cation of performance

in predicting isomers known to be stable (Subsection 4.2), and statistical analysis

(Subsection 4.3).

4.1 Comparison with Values from Other Works

Comparing the values calculated for this work with those calculated in others

provides an independent measure of the correctness of the written programs and
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gives a certain degree of con�dence to all �new� values (those not yet calculated by

anyone else or not found by these authors among the literature). It is important

to mention that, given the libraries used for some invariants and the nature of

�oating point values, the results of some computations might be subject to minute

rounding errors, which will be ignored in this comparison (i.e., the rounded value

will be considered). Following is a list of values from other works that match those

computed here (no useful reference was found for the diameter):

• Fowler-Manolopoulos criterion: Tables 4.3, 4.4, and 4.5, from [27], show the

value of the invariant for the IPR isomers with 76, 78, and 84 atoms;

• Wiener index: [22] shows the value of this invariant for isomers of C40;

• Bipartite edge frustration: Table 1 from [17] shows the maximum value of

ϕ(G) for all IPR isomers with n between 94 and 120, and also for those with

n = 140 or 180. This paper also states that the maximum value of ϕ(G)

for n = 40 is achieved only by two isomers, and that all IPR isomers with n

between 60 and 92 have ϕ(G) = 12 (both statements corroborated here);

• Independence number: Table 3 from [21] shows the maximum and minimum

values of the invariant for all values of n corresponding to the isomers known

to be stable, along with the value for these isomers in particular;

• Number of Kekulé Structures, Fries Number, and Taylor Number: Table 4

from [4] shows the values of these invariants for some isomers, and Table 5

shows, for the Fries number, the minimum, maximum, and number of isomers

to achieve these limits considering isomers of C60. Another paper [64] (Table

1) also shows a selection of numbers of Kekulé structures for values of n

between 20 and 60.

4.2 Stable Isomers

In [21] there is a list of isomers known to be stable that, although limited, can be

used to give an ideia of the e�ectiveness of each invariant. The list is enumerated

based on spiral codes for the IPR fullerenes only, and they correspond to the
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following isomers on the more general notation: C60 : 1812, C70 : 8149, C76 : 19150,

C78 : 24105, C78 : 24106, C78 : 24107, C84 : 51590, C84 : 51591. Tables 1 to 8,

which can be seen below, document, for each invariant, the situation of each of

those special isomers.

Each table is comprised of �ve columns: Isomer, Max.?, Min.?, % abv., %

blw.. They inform, respectively, the code identifying the isomer, if it reaches the

maximum value (in which case there is a number between parenthesis indicating

how many other isomers reach the maximum), if it reaches the minimum value

(again with a number if it does), the percentage of isomers (for the same value of

n) with value strictly above it, and the percentage of isomers with value strictly

below it. Note that, when there are multiple isomers with the same value, the sum

of percentages might be nowhere near close to 100 (since repeated values do not

count as strictly above or below). When interpreting the content of these tables,

a sign of good performance is the capacity of the invariant to isolate each of these

special isomers in the most precise way possible. In this sense, there are two �ideal�

scenarios: all isomers on the table are among the few to reach maximum value,

or all of them are among the few to reach minimum value. In the �rst case, the

second column would be �lled with �Y� (and the value between parenthesis would

be the smallest possible), the third column with �N�, the fourth column would be

as close to zero as possible, and the �fth column as close to 100 as possible. In the

second case, these values would be inverted.

Despite the fact the Fowler-Manolopoulos criterion was expected (according to

the literature) to outperform all others as the most precise invariant, and even

though its performance is quite reasonable, what is seen here is that Tables 4

(bipartite edge frustration) and 5 (independence number) clearly illustrate the

two ideal scenarios. At least for this limited range, both invariants seem capable

of �ltering more than 99% of possible isomers. Another interesting detail on those

two cases is that, as the value of n increases, there is a slight increase in the number

of isomers reaching the maximum (or minimum). In order to prevent this from

becoming a problem for higher values of n, a good strategy seems to be the one

adopted by [17]: considering only IPR isomers, which by themselves are already a
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small fraction of the total number of isomers.

On the other end of the spectrum, the diameter seems to be one of the least

useful invariants in predicting the stability of fullerenes. As all isomers for a given

n are very similar, the diameters of the corresponding graphs end up repeating

themselves over and over again, meaning that, even when a stable isomer reaches

the minimum, the number of other isomers also doing that is so high that defeats

any advantage of using the invariant in the �rst place. For the Wiener index the

situation is only a little better, as it is o� to a very nice start (precisely �ltering

several of the stable isomers) but later has its e�cacy drastically reduced as n goes

beyond 78. If this behavior con�rms itself for even higher values, the invariant will

end up being of as little use as the diameter.

As for the number of Kekulé structures, although faring better than the diam-

eter (�ltering out a signi�cant part of the total), the invariant seems to be easily

replaceable by the Fries number or the Taylor number, showing a clearly superior

(and nearly identical, with a small advantage for the Taylor number) performance.

Perhaps surprisingly, the Fries number and the Taylor number seem to perform as

good as or even better than the Fowler-Manolopoulos criterion. It remains to be

seen if this advantage maintains itself for higher values of n.

Table 1. F.-M. Crit. � stable isomers.

Isomer Max.? Min.? % abv. % blw.

C60 : 1812 N Y(1) 99,94 0,00
C70 : 8149 N N 99,21 0,64
C76 : 19150 N N 95,97 4,03
C78 : 24105 N N 88,63 11,36
C78 : 24106 N N 94,48 5,31
C78 : 24107 N N 99,87 0,07
C84 : 51590 N Y(3) 99,99 0,00
C84 : 51591 N Y(3) 99,99 0,00

Table 2. Diameter � stable isomers.

Isomer Max.? Min.? % abv. % blw.

C60 : 1812 N Y(1261) 30,41 0,00
C70 : 8149 N N 26,20 0,02
C76 : 19150 N Y(4845) 74,70 0,00
C78 : 24105 N Y(2619) 89,14 0,00
C78 : 24106 N N 8,51 10,86
C78 : 24107 N N 8,51 10,86
C84 : 51590 N N 33,59 0,02
C84 : 51591 N N 33,59 0,02

Table 3. Wiener Index � stable isomers.

Isomer Max.? Min.? % abv. % blw.

C60 : 1812 N Y(1) 99,94 0,00
C70 : 8149 N Y(1) 99,99 0,00
C76 : 19150 N Y(3) 99,98 0,00
C78 : 24105 N Y(1) 99,99 0,00
C78 : 24106 N N 99,78 0,18
C78 : 24107 N N 87,45 11,17
C84 : 51590 N N 37,88 60,55
C84 : 51591 N N 41,16 57,11

Table 4. Bip. Edge Frust. - stable isomers

Isomer Max.? Min.? % abv. % blw.

C60 : 1812 Y(1) N 0,00 99,94
C70 : 8149 Y(1) N 0,00 99,99
C76 : 19150 Y(2) N 0,00 99,99
C78 : 24105 Y(5) N 0,00 99,98
C78 : 24106 Y(5) N 0,00 99,98
C78 : 24107 Y(5) N 0,00 99,98
C84 : 51590 Y(33) N 0,00 99,94
C84 : 51591 Y(33) N 0,00 99,94
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Table 5. Ind. Number � stable isomers.

Isomer Max.? Min.? % abv. % blw.

C60 : 1812 N Y(1) 99,94 0,00
C70 : 8149 N Y(1) 99,99 0,00
C76 : 19150 N Y(1) 99,99 0,00
C78 : 24105 N Y(3) 99,99 0,00
C78 : 24106 N Y(3) 99,99 0,00
C78 : 24107 N N 95,30 0,01
C84 : 51590 N Y(17) 99,97 0,00
C84 : 51591 N Y(17) 99,97 0,00

Table 6. Num. of K. Str. � stable isomers.

Isomer Max.? Min.? % abv. % blw.

C60 : 1812 N N 1,10 98,84
C70 : 8149 N N 3,77 96,22
C76 : 19150 N N 9,69 90,31
C78 : 24105 N N 13,80 86,20
C78 : 24106 N N 4,46 95,54
C78 : 24107 N N 30,39 69,60
C84 : 51590 N N 28,08 71,92
C84 : 51591 N N 29,99 70,01

Table 7. F. Number � stable isomers.

Isomer Max.? Min.? % abv. % blw.

C60 : 1812 Y(1) N 0,00 99,94
C70 : 8149 Y(8) N 0,00 99,90
C76 : 19150 N N 0,08 97,52
C78 : 24105 N N 0,53 96,50
C78 : 24106 N N 0,00 99,97
C78 : 24107 N N 0,03 99,47
C84 : 51590 N N 0,53 97,02
C84 : 51591 N N 0,03 99,47

Table 8. T. Number � stable isomers.

Isomer Max.? Min.? % abv. % blw.

C60 : 1812 Y(1) N 0,00 99,94
C70 : 8149 Y(8) N 0,00 99,90
C76 : 19150 N N 0,07 99,12
C78 : 24105 N N 0,22 99,11
C78 : 24106 N N 0,00 99,98
C78 : 24107 N N 0,02 99,81
C84 : 51590 N N 1,34 94,98
C84 : 51591 N N 0,02 99,85

4.3 Statistical Analysis

The statistical analysis of the computed values allows to measure, independent

from the literature, how much the di�erent invariants �agree� or �disagree� among

themselves. In particular, the chosen method for the analysis was Spearman's rank

correlation coe�cient [41], calculated for each pair of invariants and taking into

account the order of the data instead of its intrinsic value. By convention, the

coe�cient ranges from −1 (strongest negative correlation) to 1 (strongest positive

correlation), with zero representing the absence of correlation between variables.

In this work, a positive correlation indicates that the two invariants �order�

the isomers approximately the same way, whereas a negative correlation indicates

that the isomers are ordered more or less inversely by the two invariants. Values

closer to 1 (or −1) indicate that the two invariants agree among themselves, and

values closer to 0 show the opposite. Note that negative correlations are expected,

since in some invariants the objective is to minimize the value, while in others

the objective is to maximize it. What matters, more than the sign, is that the

correlation is far from zero.

The following pages contain 28 graphs, which can be seen in Figures 1 through 28,

one for each pair of invariants. In each graph, the X axis corresponds to the value

of n and is limited to the range [20, 160], while the Y axis corresponds to Spear-
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man's coe�cient. The points, obviously, correspond to the coe�cients between the

two invariants, calculated for each even value of n in the range with the exception

of the special cases mentioned before (independence number, Fries number, and

Taylor number), of the values 20, 24, and 26 (for which there are only one isomer)

and of the value 22 (since there are no fullerenes with 22 vertices).

First, it is interesting to note the relationship between the Fowler-Manolopoulos

criterion, appointed by the literature as the most promising invariant, with other

invariants. In each of the graphs of Figures 1 to 7 there is a similar pattern,

characterized by a medium correlation for values of n up to 80 or 100, followed by

a few alternating highs and lows. This correlation is particularly close to zero for

the Fries and Taylor numbers, whereas for the diameter, the Wiener index, and

the independence number the value is closer to 0.5, indicating a good degree of

agreement.

Second, in at least �ve of those graphs (Figures 1, 3, 4, 6, 7), the lowest and

highest points seem to repeat themselves at the same values of n (100, 120, 140, 160).

Although these limited observations are not enough to determine the existence of

an alternation for multiples of 20 above 100 (especially for the Fries, Taylor, and

independence numbers), there are strong clues of a tendency. If this was con�rmed,

it could be an indication of characteristics particularly prone to stability on these

isomers multiple of 20 � something equally detectable by all invariants.

A third case deserving attention is that of the bipartite edge frustration and the

independence number, which, at least according to the potential to �lter isomers

known to be stable, seem to be the most promising invariants. On Figure 19 it is

shown that the correlation between them is not particularly strong for small values

of n. However, as n approaches and surpasses 100, the situation changes and the

correlation jumps to 1. This nearly complete agreement maintains itself at least

up to n = 130, when the dots lower again. Perhaps with more observations in

this range it would be possible to see clearly some highs and lows just like on the

Fowler-Manolopoulos criterion.

The diameter, even being the least relevant invariant in practice, shows a posi-

tive correlation with most other invariants. In at least three cases (all for n above
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100) this correlation is signi�cant: on Figures 9 and 10 (bipartite edge frustra-

tion and independence number), and on Figure 11 (number of Kekulé structures,

although with a negative correlation). As a matter of fact, with the exception

of the Wiener index (which, generally, shows medium or weak correlations) and,

partially, of the Fowler-Manolopoulos criterion, all invariants seem to agree rather

strongly for the range of n starting at approximately 100 and going up to 130,

with coe�cients very close to 1 or −1.

Finally, Figure 28 illustrates the case of the Fries and Taylor numbers, in which

the correlation is consistently positive. Something expected, since one is nothing

more than a modi�ed version of the other. This similarity is reinforced by the fact

that all other invariants correlate in almost exactly the same way with both, as

can be seen on Figures 6, 7, 12, 13, 17, 18, 21, 22, 24, 25, 26, and 27.
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Figure 1. Spearman's Coe�cient between
the Fowler-Manolopoulos Criterion and the
Diameter.
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Figure 2. Spearman's Coe�cient between
the Fowler-Manolopoulos Criterion and the
Wiener Index.
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Figure 3. Spearman's Coe�cient between
the Fowler-Manolopoulos Criterion and the
Bipartite Edge Frustration.
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Figure 4. Spearman's Coe�cient between
the Fowler-Manolopoulos Criterion and the
Independence Number∗.
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Figure 5. Spearman's Coe�cient between
the Fowler-Manolopoulos Criterion and the
Number of Kekulé Structures.
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Figure 6. Spearman's Coe�cient between
the Fowler-Manolopoulos Criterion and the
Fries Number∗.
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Figure 7. Spearman's Coe�cient between
the Fowler-Manolopoulos Criterion and the
Taylor Number∗.
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Figure 8. Spearman's Coe�cient between
the Diameter and the Wiener Index.
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Figure 9. Spearman's Coe�cient between
the Diameter and the Bipartite Edge Frus-
tration.
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Figure 10. Spearman's Coe�cient be-
tween the Diameter and the Independence
Number∗.
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Figure 11. Spearman's Coe�cient be-
tween the Diameter and the Number of
Kekulé Structures.
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Figure 12. Spearman's Coe�cient be-
tween the Diameter and the Fries Number∗.
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Figure 13. Spearman's Coe�cient
between the Diameter and the Taylor
Number∗.

20 40 60 80 100 120 140 160
−1

−0.5

0

0.5

1

Figure 14. Spearman's Coe�cient be-
tween the Wiener Index and the Bipartite
Edge Frustration.
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Figure 15. Spearman's Coe�cient be-
tween the Wiener Index and the Indepen-
dence Number∗.
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Figure 16. Spearman's Coe�cient be-
tween the Wiener Index and the Number of
Kekulé Structures.
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Figure 17. Spearman's Coe�cient be-
tween the Wiener Index and the Fries
Number∗.
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Figure 18. Spearman's Coe�cient be-
tween the Wiener Index and the Taylor
Number∗.
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Figure 19. Spearman's Coe�cient be-
tween the Bipartite Edge Frustration and
the Independence Number∗.
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Figure 20. Spearman's Coe�cient be-
tween the Bipartite Edge Frustration and
the Number of Kekulé Strucutres.
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Figure 21. Spearman's Coe�cient be-
tween the Bipartite Edge Frustration and
the Fries Number∗.
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Figure 22. Spearman's Coe�cient be-
tween the Bipartite Edge Frustration and
the Taylor Number∗.
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Figure 23. Spearman's Coe�cient be-
tween the Independence Number∗ and the
Number of Kekulé Structures.
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Figure 24. Spearman's Coe�cient be-
tween the Independence Number and the
Fries Number∗.
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Figure 25. Spearman's Coe�cient be-
tween the Independence Number and the
Taylor Number∗.
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Figure 26. Spearman's Coe�cient be-
tween the Number of Kekulé Structures and
the Fries Number∗.
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Figure 27. Spearman's Coe�cient be-
tween the Number of Kekulé Structures and
the Taylor Number∗.
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Figure 28. Spearman's Coe�cient be-
tween the Fries Number and the Taylor
Number∗.
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5 Final Remarks and Future Work

This paper has presented a comparison of several graph invariants in the context

of predicting the stability of fullerene molecules, which can be represented using

the fullerene graphs de�ned in Section 2. The invariants in question were selected

considering their relevance in the literature, their alleged potential for predicting

stability, and the di�culty involved in their implementation.

For each one of these invariants, after careful study and consideration of avail-

able information in the literature, an algorithm to calculate it was implemented

and executed for each fullerene isomer with up to 130 vertices, and for each IPR

fullerene with at least 132 and up to 160 vertices (the three exceptions being the

independence number, the Fries number, and the Taylor number, for which only

part of this range was completed). Although most invariants mentioned before

have already been studied in such a context, as far as the authors know this is the

�rst comparative study taking all these invariants into account.

In order to extract useful conclusions from all these values, three approaches

were chosen. The �rst is comparing the values with those calculated in other

works, which serves as an independent veri�cation of the correctness of the writ-

ten programs and gives a greater degree of con�dence to the data. The second was

evaluating the performance of the invariants in predicting the stability of fullerenes

already known to have been previously observed in laboratory. Two invariants were

clearly more successful than the others in this task: the bipartite edge frustration

and the independence number. The third approach was to perform a statistical

analysis of the calculated values for each invariant, quantifying how much they

agree or disagree among themselves through Spearman's rank correlation coe�-

cient.

Three conclusions in particular deserve special attention: i) almost all invari-

ants seem to agree rather strongly for values of n between 100 and 130, ii) the

Fowler-Manolopoulos criterion, initially having an average correlation with other

invariants in the range of n between 80 and 100, shows a singular behavior for

values of n greater than 100, with a sequence of highs and lows that seems to
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repeat itself always at the same multiples of 20, and iii) despite indications in

literature that the independence number is not strongly related to stability, this

invariant was capable of isolating with high precision all isomers known to be stable

� strong evidence that it is more specialized version, the closed-shell independence

number [13,14] (not analyzed here), could perform even better.

Finally, all that remains is to mention some possible extensions of this work.

The most direct continuations would be �lling up the �gaps� left in the indepen-

dence number, the Fries number, and the Taylor number (calculating their values

as initially planned, to all isomers with up to 160 vertices) or expanding the limits

even further � for example, considering all IPR isomers with up to 200 vertices.

Another alternative would be the inclusion of other invariants, which could not

be included here for lack of time. Such is the case of the closed-shell indepen-

dence number [13, 14], the resistance distance (similar to the Wiener index, but

based on an analogy with electricity, considering each edge of the fullerene graph

as a wire with unit resistance [22]), the number of spanning trees (a concept also

known as complexity, which is inversely proportional to the number of adjacencies

between pentagons and, consequently, proportional to the relative stability [23]),

the topological descriptor Ψ from Réti and László (based in the traditional pen-

tagon indices, adding the new concept of pentagon arm indices [54]), the smallest

eigenvalue of the distance matrix [3, 24, 34], the saturation number [3, 15, 16], the

Cheeger constant [29,44], and many others [2, 32, 58,61].
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