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Abstract

The edge-Wiener index of a graph G is defined as the Wiener index of the line graph of
G. In this paper an algorithm is developed that, for a given benzenoid system G with m
edges, computes the edge-Wiener index of G in O(m) time. The key to the algorithm is a
reduction of the problem to three different weighted trees. In addition to the previously
used weighted vertex- and edge-Wiener indices, the so-called weighted vertex-edge-Wiener
index is introduced and essentially used in the algorithm.

1 Introduction

The edge-Wiener index of a graph was independently introduced in [19, 20]. In [19] several

possible variations of the concept were discussed and suggested that the edge-Wiener index

of a graph G should be defined as

We(G) =
1

2

∑
e∈E(G)

∑
f∈E(G)

dG(e, f) , (1)
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where dG(e, f) is the usual shortest-path distance between vertices e and f of the line

graph L(G) of G. In other words, We(G) is just the Wiener index of the line graph of G,

that is,

We(G) = W (L(G)) . (2)

Here we follow this convention because in this way the pair (E(G), d) forms a metric

space. On the other hand, for edges e = ab and f = xy of a graph G it is also legitimate

to set

d̂G(e, f) = min{dG(a, x), dG(a, y), dG(b, x), dG(b, y)} . (3)

Replacing d with d̂ in (1), a variant of the edge-Wiener index from [20] is obtained, let us

denote it with Ŵe(G) (it was denoted We1(G) in [19]). It is easy to observe that We(G)

and Ŵe(G) are connected in the following way (cf. [19, Corollary 8] and [20, Theorem

2.4]):

Ŵe(G) = We(G)−
(
|E(G)|

2

)
. (4)

Because of (2) it is not surprising that the edge-Wiener index was investigated long before

it was formally introduced, see [9, 10, 15, 16, 17]. Recent studies of the edge-Wiener index

include [1, 2, 3, 8, 12, 31] as well as [24, 26, 29] where relations with related invariants are

obtained. We point out that in [33] the so-called classical cut-method [22] was developed

for the edge-Wiener index and that in the paper [23] (which rounds off several earlier

papers) a complete solution of the equation W (L3(T )) = W (T ) is given. For a recent

survey on the edge-Wiener descriptors in chemical graph theory see [18].

In this paper we develop a linear time algorithm for the edge-Wiener index of benzenoid

systems. These graphs are also know as the hexagonal systems (see [32, 34]) and form

one of the most extensively studied family of chemical graphs. Papers [4, 7, 11, 13, 14,

25, 27, 28, 30] present a sample of relevant recent investigations.

The algorithm of this paper is parallel to the linear algorithm for the Wiener index that

was developed in [6]. However, the present algorithm is a bit more involved and requires

some additional insights. We proceed as follows. In the next section we give definitions

and recall or introduce concepts needed later. In Section 3 we prove that the edge-Wiener

index of a benzenoid system can be expressed as the sum of weighted Wiener-type indices

of related weighted trees and also show how the vertex-edge Wiener index of a weighted

tree can be computed. These results form the basis of the algorithm that is presented

and analyzed in Section 4. In the final section an example is presented to illustrate the
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performance of the algorithm as well as to show that the method used can be applicable

to determine the edge-Wiener index by hand.

2 Preliminaries

Unless stated otherwise, the graphs considered in this paper are connected. We have

already defined dG(x, y) to be the distance between vertices u, v ∈ V (G). From technical

reasons we also set d̂G(x, y) = dG(x, y). In addition, to be consistent with (3), for a vertex

x ∈ V (G) and an edge e = ab ∈ E(G) we set

d̂G(x, e) = min{dG(x, a), dG(x, b)} .

The Wiener index of a graph G is defined as W (G) =
1

2

∑
x∈V (G)

∑
y∈V (G)

dG(x, y). To em-

phasize that it is the vertex-Wiener index, we will also write Wv(G) for W (G). The

edge-Wiener index was already defined in (1), while the vertex-edge Wiener index is

Wve(G) =
∑

x∈V (G)

∑
e∈E(G)

dG(x, e) .

In [20] the vertex-edge Wiener index is defined with the additional factor 1/2, but for our

purposes the present definition is more suitable. Moreover, in this way we consider all

vertex-edge pairs exactly once, just like W considers all (unordered) vertex-vertex pairs

and We all edge-edge pairs.

The above definitions of the Wiener indices extend to weighted graphs as follows. Let

G be a graph and let w : V (G) → R+ and w′ : E(G) → R+ be given functions. Then

(G,w), (G,w′), and (G,w,w′) are a vertex-weighted graph, an edge-weighted graph, and a

vertex-edge weighted graph, respectively. The corresponding weighted Wiener indices are

defined as

W (G,w) =
1

2

∑
x∈V (G)

∑
y∈V (G)

w(x)w(y)dG(x, y) ,

We(G,w
′) =

1

2

∑
e∈E(G)

∑
f∈E(G)

w′(e)w′(f)dG(e, f) ,

Wve(G,w,w
′) =

∑
x∈V (G)

∑
e∈E(G)

w(x)w′(e)d̂G(x, e) .

The vertex version was for the first time introduced in [21]; we will again also write

Wv(G,w) for W (G,w). Ŵe(G,w
′) is defined analogously as We(G,w

′), that is, by replac-

ing dG(e, f) with d̂G(e, f) in the definition.
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LetH be the hexagonal (graphite) lattice and let Z be a cricuit on it. Then a benzenoid

system is induced by the vertices and edges of H, lying on Z and in its interior. The edge

set of a benzenoid system G can be naturally partitioned into sets E1, E2, and E3 of edges

of the same direction. For i ∈ {1, 2, 3}, set Gi = G−Ei. Then the connected components

of the graph Gi are paths. The quotient graph Ti, 1 ≤ i ≤ 3, has these paths as vertices,

two such paths (i.e. components of Gi) P
′ and P ′′ being adjacent in Ti if some edge in

Ei joins a vertex of P ′ to a vertex of P ′′. It is known that T1, T2 and T3 are trees [5, 6].

Let (Ti, wi) be the vertex-weighted tree Ti, where wi(x) is the number of vertices in the

component (the path) of G − Ei corresponding to x. Now we can recall the following

fundamental result:

Proposition 2.1 [6, Proposition 2] If G is a benzenoid system and (Ti, wi), 1 ≤ i ≤ 3,

are the corresponding weighted quotient trees, then Wv(G) = Wv(T1, w1) + Wv(T2, w2) +

Wv(T3, w3).

3 Preparation for the algorithm

Let G be a benzenoid system and let T1, T2, T3 be its quotient trees as defined in the

preliminaries. Then for every i ∈ {1, 2, 3} we define αi : E(G) −→ V (Ti) ∪ E(Ti) by

αi(e) =

{
C ∈ V (Ti); e ∈ E(C) ,

C1C2 ∈ E(Ti); e = ab and a ∈ V (C1), b ∈ V (C2) .
(5)

Now we can state:

Theorem 3.1 If G is a benzenoid system, then for every e, f ∈ E(G),

d̂G(e, f) =
3∑
i=1

d̂Ti(αi(e), αi(f)) .

Proof. Let e = ab, f = xy and assume that d̂G(e, f) = d̂G(a, x). Select a shortest path

P from a to x in G and for every i ∈ {1, 2, 3}, set Fi = E(P ) ∩ Ei. As P is a shortest

path, no two edges of Fi belong to the same cut. Since d̂G(e, f) = |F1| + |F2| + |F3| it

suffices to show that for i ∈ {1, 2, 3} it holds |Fi| = d̂Ti(αi(e), αi(f)). Let C1, C2 ∈ V (Ti)

be connected components of G− Ei such that a ∈ V (C1) and x ∈ V (C2). It follows that

d̂Ti(C1, C2) = |Fi|. In order to show that d̂Ti(αi(e), αi(f)) = d̂Ti(C1, C2), we consider the

following cases.
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Case 1. e /∈ Ei and f /∈ Ei.

In this case we have αi(e) = C1 and αi(f) = C2 and the desired conclusion is clear.

Case 2. One of e and f is in Ei but not the other.

We may without loss of generality assume that e ∈ Ei and f /∈ Ei. Then αi(e) = C ′C1 ∈

E(Ti) for some C ′ ∈ V (Ti) and αi(f) = C2. Since d̂Ti(C1, C2) ≤ d̂Ti(C
′, C2), it follows

that d̂Ti(αi(e), αi(f)) = d̂Ti(C1, C2) (see Fig. 1).

Figure 1: Edges e and f as in Case 2

Case 3. e ∈ Ei and f ∈ Ei.

Now αi(e) = C ′C1 ∈ E(Ti) for some C ′ ∈ V (Ti) and αi(f) = C ′′C2 for some C ′′ ∈ V (Ti).

We thus infer (cf. Fig. 2) that d̂Ti(αi(e), αi(f)) = d̂Ti(C1, C2).

Figure 2: Edges e and f in Case 3

Since in any case d̂Ti(αi(e), αi(f)) = d̂Ti(C1, C2) holds, the proof is complete.

We next extend the quotient trees T1, T2, T3 to weighted trees (Ti, wi), (Ti, w
′
i),

(Ti, wi, w
′
i) as follows:

• for C ∈ V (Ti), let wi(C) be the number of edges in the component C of Gi;
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• for E = C1C2 ∈ E(Ti), let w′
i(E) be the number of edges between components C1

and C2.

The next theorem is the key to our algorithm.

Theorem 3.2 If G is a benzenoid system, then

Ŵe(G) =
3∑
i=1

(
Ŵe(Ti, w

′
i) +Wv(Ti, wi) +Wve(Ti, wi, w

′
i)
)
.

Proof. Applying Theorem 3.1 we obtain:

Ŵe(G) =
1

2

∑
e∈E(G)

∑
f∈E(G)

d̂G(e, f) =
1

2

∑
e∈E(G)

∑
f∈E(G)

(
3∑
i=1

d̂Ti(αi(e), αi(f))

)

=
3∑
i=1

(
1

2

∑
e∈E(G)

∑
f∈E(G)

d̂Ti(αi(e), αi(f))

)
.

Depending on the map αi defined in (5), the inner sums can be partitioned into three

sums such that

Ŵe(G) =
3∑
i=1

(
1

2

∑
e∈E(G)

αi(e)∈E(Ti)

∑
f∈E(G)

αi(f)∈E(Ti)

d̂Ti(αi(e), αi(f))

+
1

2

∑
e∈E(G)

αi(e)∈V (Ti)

∑
f∈E(G)

αi(f)∈V (Ti)

d̂Ti(αi(e), αi(f))

+
∑

e∈E(G)
αi(e)∈V (Ti)

∑
f∈E(G)

αi(f)∈E(Ti)

d̂Ti(αi(e), αi(f))

)
.

Taking into account the definition of the corresponding weighted trees we conclude that

Ŵe(G) =
3∑
i=1

(
1

2

∑
E∈E(Ti)

∑
F∈E(Ti)

w′
i(E)w′

i(F )d̂Ti(E,F )

+
1

2

∑
C1∈V (Ti)

∑
C2∈V (Ti)

wi(C1)wi(C2)d̂Ti(C1, C2)

+
∑

C∈V (Ti)

∑
E∈E(Ti)

wi(C)w′
i(E)d̂Ti(C,E)

)

=
3∑
i=1

(
Ŵe(Ti, w

′
i) +Wv(Ti, wi) +Wve(Ti, wi, w

′
i)
)
.
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For a fast computation of the Wiener indices of weighted trees we need some additional

notation. If T is a tree and e ∈ E(T ), then the graph T − e consists of two components

that will be denoted by C1(e) and C2(e). For a vertex-edge weighted tree (T,w,w′) and

e ∈ E(T ) set

ni(e) =
∑

u∈V (Ci(e))

wi(u) and mi(e) =
∑

e∈E(Ci(e))

w′
i(e) .

Using this notation we recall the following results:

W (T,w) =
∑

e∈E(T )

n1(e)n2(e) (6)

and

Ŵe(T,w
′) =

∑
e∈E(T )

m1(e)m2(e) , (7)

where (6) was proved in [21], while (7) is a result from [33]. We next derive a related

result for the vertex-edge Wiener index.

Proposition 3.3 If (T,w,w′) is a vertex-edge weighted tree, then

Wve(T,w,w
′) =

∑
e∈E(T )

(
n1(e)m2(e) + n2(e)m1(e)

)
.

Proof. Let e be an edge of T . If x ∈ V (T ), f ∈ E(T ), and f 6= e, then set δe(x, f) = 0

if x and f are in the same connected component of T − e, and δe(x, f) = 1 otherwise. In

addition, if e = f , then set δe(x, f) = 0. Let f = ab and assume that d̂T (x, f) = d̂T (x, a)

(= dT (x, a)). Considering the (unique) shortest a, x-path in T we see that the edges of P

are precisely the edges e, for which δe(x, f) 6= 0 holds. It follows that

d̂T (x, f) =
∑

e∈E(T )

δe(x, f).

With this equality we have

Wve(T,w,w
′) =

∑
x∈V (T )

∑
f∈E(T )

w(x)w′(f)

( ∑
e∈E(T )

δe(x, f)

)
.

Therefore,

Wve(T,w,w
′) =

∑
e∈E(T )

( ∑
x∈V (T )

∑
f∈E(T )

w(x)w′(f)δe(x, f)

)
.

Because δe(x, f) = 1 if and only if x is in one and f is in another connected component

of T − e, the inner sum equals n1(e)m2(e) + n2(e)m1(e).
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4 The algorithm

We are now ready to design the announced algorithm. For a given benzenoid system G we

first compute the quotient trees Ti using a procedure called calculateQuotientTrees.

For each Ti we first compute the vertex weights w and the edge weights w′ using a

procedure calculateWeights. These weights are then updated in the algorithm and new

weights w′′ are computed using a procedure named UpdateWeights. (See the proof of

Theorem 4.1 for details on this.) For a given i, the three terms from Theorem 3.2 are

finally computed into Xi,1, Xi,2, and Xi,3 and (4) is used to obtain the final result. The

algorithm reads as follows:

Algorithm 1: Edge-Wiener Index of Benzenoid Systems

Input : Benzenoid system G with m edges
Output: We(G)

1 (T1, T2, T3)← calculateQuotientTrees (G)
2 for i = 1 to 3 do
3 (wi, w

′
i)← calculateWeights (Ti, G)

4 updateWeights (Ti, wi, w
′
i, w

′′
i )

5 Xi,1 ← Wv(Ti, wi, w
′
i, w

′′
i )

6 Xi,2 ← We(Ti, wi, w
′
i, w

′′
i )

7 Xi,3 ← Wve(Ti, wi, w
′
i, w

′′
i )

8 Yi ← Xi,1 +Xi,2 +Xi,3

9 end

10 We(G)← Y1 + Y2 + Y3 +
(
m
2

)
Theorem 4.1 If G is a benzenoid system with m edges, then Algorithm 1 correctly com-

putes We(G) and can be implemented in O(m) time.

Proof. The correctness of the algorithm follows from Theorem 3.2 and Equality (4).

For the time complexity we first recall from [5] that the quotient trees Ti, 1 ≤ i ≤ 3,

can be computed in linear time. It is also straightforward to determine the corresponding

weights wi and w′
i. The fact that the Wiener index of a weighted tree can be computed

within the same time was proved in [6] (see Lemma 3 from the paper and the text after-

wards).

Using a method parallel to the above method from [6] to compute the Wiener index of

a weighted tree, the for loop of the algorithm can be implemented to run in O(m) time.

More precisely, consider Ti as a rooted tree with a root x and label the vertices of Ti such

that, if a vertex y is labelled `, then all vertices in the subtree rooted at y have labels

smaller than `. For instance, such a labeling can be obtained by ordering the vertices

of Ti with respect to the distance levels from x, the most distant vertices receiving the
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smallest labels. Using the standard BFS algorithm this can be done in linear time. When

traversing the tree Ti we visit vertices according to this labeling.

In Line 4, we update weights wi and calculate new weights w′′
i as follows. For each

vertex y, the new weight wi(y) is computed as the sum of all the weights of vertices in

the subtree rooted at y, while the weight w′′
i (y) is obtained as the sum of all the weights

of the edges in the subtree rooted at y. To calculate these weights we traverse Ti and

proceed as follows. Suppose that y is a vertex just visited. If y is a leaf, then wi(y) is

left unchanged and w′′
i (y) is set to 0. Otherwise update wi(y) by adding to it wi(z) for

all down-neighbours z of y, and compute w′′
i (y) as the sum of w′′

i (z) and w′
i(e) for all

down-neighbors z of y and all the corresponding edges e. Since each of the weights in the

computations is used a constant number of times (actually at most two times), the time

complexity of the for loop is also O(m).

Note that for every vertex y of the tree Ti, we can consider the subtree rooted at y as a

connected component of the graph Ti− e, where e is the up-edge of y. Therefore, n1(e) =

wi(y) and m1(e) = w′′
i (y). Denote with nTi =

∑
v∈V (Ti)

wi(v) and mTi =
∑

f∈E(Ti)
w′
i(f)

the sum of the weights of the vertices and edges of Ti, respectively. Then n2(e) = nTi −

n1(e) and m2(e) = mTi − m1(e) − w′
i(e). Due to Equations (6), (7), and Proposition

3.3, Lines 5 to 7 can be computed in linear time. We conclude that Algorithm 1 can be

implemented in O(m) time.

5 An example

We conclude the paper with an example that demonstrates how the designed algorithm

performs and how the method can also be used by hand. Consider the benzenoid system

G from Fig. 3 with m = 30 edges.

Figure 3: Benzenoid system G
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First, for i = 1, 2, 3, we determine the graphs G−Ei, where Ei is the set of edges of G of

the same direction. These graphs are represented in Fig. 4 with thick edges. Afterwards

we determine the weighted quotient trees (Ti, wi, w
′
i), 1 ≤ i ≤ 3, see Fig. 5. We next

compute (note that this can also be done by hand!) the quantities:

Wv(T1, w1) = 250, Ŵe(T1, w
′
1) = 26, Wve(T1, w1, w

′
1) = 179,

Wv(T2, w2) = 266, Ŵe(T2, w
′
2) = 12, Wve(T2, w2, w

′
2) = 126,

Wv(T3, w3) = 231, Ŵe(T3, w
′
3) = 12, Wve(T3, w3, w

′
3) = 128.

Figure 4: Graphs G− E1, G− E2, and G− E3

Figure 5: Weighted quotient trees

By Theorem 3.2 and Equation (4) we then conclude that

We(G) = (250 + 26 + 179) + (266 + 12 + 126) + (231 + 12 + 128) +

(
30

2

)
= 1665.

Acknowledgment : S. K. supported in part by the Ministry of Science of Slovenia under

the grant P1-0297.
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