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Abstract

Generalized fusenes are structures that are similar to the hexagon based ben-
zenoids and fusenes, except that also non-hexagonal faces are allowed. In this paper,
a fast algorithm to enumerate generalized fusenes with given faces is given. The al-
gorithm is fast enough to generate millions of non-isomorphic structures per second
and is based on a two-step approach using the canonical construction path method
and the homomorphism principle.

Introduction

Between 1968 [1] and 1998 [5] a large number of increasingly fast algorithms have been

proposed for the enumeration of benzenoids and fusenes , see [3] for a survey. Finally,

in [2] an algorithm was proposed that could generate tens of millions of nonisomorphic

fusenes and benzenoids per second. The bottleneck in this algorithm is in fact writing the

structures to a file or a pipe.

The restriction to hexagonal rings was due to the fact that hexagonal rings are ener-

getically ideal for carbon. The discovery of fullerenes [7, 12], that need pentagonal faces

for their curvature, led to an increasing interest in structures also containing pentagons.

Not much later also heptagons were detected in carbon structures [11]. Nanojoins [14]

joining two nanotubes with different parameters or even more than two nanotubes also

need heptagonal faces. To this end also carbon structures including (a limited amount
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of) pentagons and heptagons in addition to hexagonal rings could not be neglected any

more. See e.g. [6, 8, 15].

This motivates the development of algorithms specializing in the generation of struc-

tures with mostly hexagons and few pentagons and heptagons allowed. In this article we

will solve this problem by giving a more general algorithm that can generate all these

chemically relevant structures extremely efficiently, but can in addition also generate

structures that are of less chemical interest, like e.g., structures with only octagons or

even larger faces.

Our algorithm is based on the algorithm described in [2] and we will describe here

only the parts that are essentially different from [2]. For the parts following closely the

lines of the algorithm generating fusenes and benzenoids, the reader is referred to [2].

An efficient implementation of the algorithm can be obtained from the authors or –

embedded in an easily usable user interface – as part of the program package CaGe [9].

The algorithm generates generalized fusenes from their inner duals. While for fusenes

each vertex in the inner dual represents a hexagon, in generalized fusenes the vertices

may represent faces of different size. This makes an additional step necessary that assigns

face sizes to the vertices. In case of several different face sizes, this additional step can

increase the efficiency of the algorithm, but the characterization of inner duals is more

complicated.

The structures we will generate are defined as follows:

Definition 1 A generalized fusene with face vector (n3, n4, . . . , nk) is a plane graph F
with the following properties:

(a) F is simple.

(b) F is 2-connected.

(c) All vertices v not in the boundary of the outer face have degree d(v) = 3 and all
vertices w in the boundary of the outer face have degree d(w) ∈ {2, 3}.

(d) For 3 ≤ i ≤ k there are exactly ni bounded faces of degree i and there are no bounded
faces with other degrees.

We will denote these structures as (n3, . . . , nk)-fusenes.

The algorithm

We assume that the order of edges around a vertex of a plane graph describes the clockwise

rotation around that vertex.
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There is a one-to-one correspondence between the dual of a plane graph and the graph

itself. Removing the vertex corresponding to the outer face, we get the inner dual. Non-

isomorphic plane graphs can have the same inner duals. An example can be seen in

Figure 1.

Traversing the boundary of the outer face of an inner dual in anticlockwise order

(seen from inside the face) we get a cyclic sequence of (not necessarily pairwise disjoint)

vertices. A subsequence u, v, w of this sequence is called an angle of the outer face. Such a

subsequence corresponds to two edges e1(u, v, w) with endpoints u, v and e2(u, v, w) with

endpoints v, w that were traversed when generating the subsequence. The inner duals

of fusenes are simple graphs, but inner duals of generalized fusenes can be multigraphs

(without loops), so describing edges just by their endpoints could be ambiguous. If an

angle u, v, w in the outer face of an inner dual of a 2-connected plane graph G is labeled

with the number of edges that were deleted between e1(u, v, w) and e2(u, v, w) in the order

around v, we get the angle labeled inner dual of G. Note that all labels are strictly positive

as a label 0 would correspond to a face of size at least 4 in the dual and therefore a vertex

of degree at least 4 in the generalized fusene.

As duals of 2-connected plane graphs do not have loops, we can reconstruct the duals

and finally the graphs from angle labeled inner duals of 2-connected plane graphs, or with

other words: there is a one-to-one correspondence between 2-connected plane graphs and

their angle labeled inner duals. To this end it is sufficient to generate the angle labeled

inner duals of the graphs we want to generate.

During the construction we will also use vertex labeled inner duals. The vertex labeled

inner dual of a generalized fusene is the inner dual with each vertex v of the inner dual

labeled with the size of the face that corresponds to v. So the vertex labeled inner dual

of a generalized fusene with face vector (n3, n4, . . . , nk) has exactly ni vertices labeled i

for 3 ≤ i ≤ k and no other vertices.

We will generate angle labeled inner duals of generalized fusenes with face vector

(n3, n4, . . . , nk) in three steps: first we will generate inner duals, from these we will gen-

erate vertex labeled inner duals and from these we will generate the angle labeled inner

duals. In each step it is important to generate only those structures that will later ac-

tually correspond to a (n3, . . . , nk)-fusene. To ensure this, we will give some lemmas

characterizing these labeled and unlabeled inner duals.
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Figure 1: The figure shows two different generalized fusenes with the same inner dual
represented as angle labeled inner duals. The vertex labeled inner dual is shown as an
intermediate step. Only two vertex labeled inner duals are given, but note that there are
more non-equivalent ways to label the vertices of the inner dual with 4, 5, 6 and 7 and
more angle labeled inner duals for each of the vertex labeled inner duals in the figure.

The total degree dt(v) of a vertex in an angle labeled multigraph is the sum of the

degree d(v) and all labels of angles centered at v. So for vertices w not in the boundary

of the outer face we have dt(w) = d(w) and for vertices w in the boundary of the outer

face we have dt(w) > d(w).

Lemma 2 A plane multigraph G (without loops) with all angles of the outer face labeled
is the angle labeled inner dual of a (n3, . . . , nk)-fusene F , if and only if

(i2) For 3 ≤ i ≤ k there are exactly ni vertices with total degree i and no other vertices.

(ii2) G is connected.

(iii2) All bounded faces are triangles.

(iv2) All labels are strictly positive.

(v2) The sum of all labels is at least 3.
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Proof: The necessity of (i2),(iii2) and (iv2) follows directly from the properties of a dual

and the fact that F is a (n3, . . . , nk)-fusene. Property (v2) follows from the fact

that F is simple – so the outer face is no 2-gon. It is well known that the dual

of a 2-connected multigraph (without loops) is also 2-connected. After removing

the vertex corresponding to the outer face, the inner dual is at least 1-connected,

proving property (ii2).

Assume now that an angle labeled multigraph G with properties (i2) to (v2) is

given. In each angle of the outer face we add as many edges as given by the label

and connect them to a new vertex o representing the outer face. This graph F̄ has

only faces of size 2 and 3 and all 2-gons are adjacent with o. We will show that the

dual F of F̄ is an (n3, . . . , nk)-fusene.

If F had a double edge, F̄ had two faces sharing at least two edges. As all faces

in F̄ are 2- or 3-gons, this would imply the existence of a vertex with degree 2 in

F̄ , which could neither be o (property (v2)) nor one of the other vertices that have

degrees between 3 and k. This implies that F is a simple graph (property (a)).

We will now show that F̄ is a 2-connected graph (without loops). This implies

that F is also 2-connected (property (b)). G is a connected graph, but may have

cutvertices. As all bounded faces are triangles and G has no loops, all cutvertices are

in the boundary of the outer face. As o is connected to all vertices in the boundary

of the outer face, each path between vertices of G using a cutvertex c in G can be

modified to use neighbours of c in the boundary of the outer face and the new vertex

o. So the removal of a single vertex cannot separate two vertices from G. It remains

to be shown that no vertex v in G can be separated from o by removing just one

vertex. If v is in the boundary of the outer face, it is connected to o, so v and o

cannot be separated. After the removal of an arbitrary vertex, the component of an

internal vertex v in G still contains at least one other boundary vertex (G has no

loops), so that there is still a path from v to o via this vertex.

Property (c) follows from the fact that all bounded faces of F̄ are 2- or 3-gons and

that all 2-gons contain the vertex o.

Property (d) finally follows from (i2). �

Also for the next step we can characterize the structures that finally lead to (n3, . . . , nk)-
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fusenes. We define the degree bound db(v) of a vertex v to be the degree plus the number

of times it occurs in the boundary cycle. The degree bound of a vertex v gives a lower

bound for the label of v.

Lemma 3 A plane multigraph G = (V,E) (without loops) together with a labeling func-
tion l : V → N is the vertex labeled inner dual of a (n3, . . . , nk)-fusene F , if and only
if

(i3) For 3 ≤ i ≤ k there are exactly ni vertices labeled i and no other vertices.

(ii3) G is connected.

(iii3) All bounded faces are triangles.

(iv3) For all vertices v we have l(v) ≥ db(v). For interior vertices we have l(v) =
db(v) (= d(v)).

(v3)
∑

v∈V l(v) ≥ (
∑

v∈V d(v)) + 3.

Proof: It is easy to see that a vertex labeled plane multigraph with these properties can

be transformed into an angle labeled graph G′ with the properties of Lemma 2 by

labeling angles with positive numbers so that the total degree equals the vertex

label. Applying Lemma 2 we get that G′ corresponds to a (n3, . . . , nk)-fusene F and

it is easy to see that G is the vertex labeled inner dual of F . �

Finally we can exactly characterize the class of graphs that are the starting point of

our labelings leading to (n3, . . . , nk)-fusenes.

Lemma 4 A plane multigraph G = (V,E) (without loops) is the inner dual of a (n3, . . . , nk)-
fusene F , if and only if

(i4) G has
∑k

i=3 ni vertices.

(ii4) G is connected.

(iii4) All bounded faces are triangles.

(iv4) For 3 ≤ i ≤ k there are at most ni vertices of degree i that are not in the boundary.

(v4) If mi is the number of vertices v with db(v) = i, then
for 3 ≤ i ≤ k we have

∑i
j=3mj ≥

∑i
j=3 nj

(vi4)
∑k

j=3(nj · j) ≥ (
∑

v∈V d(v)) + 3
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Proof: It is easy to see that disregarding the labels of a vertex labeled inner dual of a

(n3, . . . , nk)-fusene – that is an inner dual with the properties from Lemma 3 – one

has a plane multigraph with the given properties.

In order to prove that a plane multigraph G with these properties is the inner dual

of a (n3, . . . , nk)-fusene, we prove that the vertices can be labeled in a way that the

resulting vertex labeled multigraph has the properties from Lemma 3. Properties

(ii3) and (iii3) are immediate as they are independent of the labeling.

We label the vertices as follows:

1.) Label all interior vertices with their degree.

Let n̄j denote the number of interior vertices labeled j.

Property (iv4) makes sure that after this step at most ni vertices have label i for all

3 ≤ i ≤ k

In the following loop we will start with i = 3 and proceed to i = k.

2.) For i from 3 to k choose ni− n̄i still unlabeled vertices with db(v) ≤ i and label

them i.

Note that at the beginning of step j only interior vertices are labeled j.

It is clear that if we can perform this step for all 3 ≤ i ≤ k, at the end properties

(i3), (iv3) and (v3) are fulfilled. At the beginning of step i, for 3 ≤ j < i exactly

nj vertices are labeled j. Due to property (v4) there are
∑i

j=3mj −
∑i−1

j=3 nj ≥ ni

vertices with db(v) ≤ i that are still unlabeled or internal vertices labeled i. So there

are at least ni − n̄i vertices that can still be labeled i. �

The construction of the inner dual

Once we have the inner duals of (n3, . . . , nk)-fusenes, it is straightforward how to label

the vertices in every possible way leading to a vertex labeled inner dual of a (n3, . . . , nk)-

fusene and in the next step label the angles in every possible way leading to an angle

labeled inner dual of a (n3, . . . , nk)-fusene. The construction of the unlabeled inner dual

must be described though.
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The construction is based on the construction in [2]. Some changes are necessary, as

for generalized fusenes different face sizes are allowed and double edges can occur in inner

duals.

Definition 5 A plane multigraph G = (V,E) (without loops) is called an (n3, . . . , nk)-
dual with deficit d, if and only if

(i5) G has (
∑k

i=3 ni)− d vertices.

(ii5) G is connected.

(iii5) All bounded faces are triangles.

(iv5) For 3 ≤ i ≤ k there are at most ni vertices of degree i that are not in the boundary.

(v5) If mi is the number of vertices v with db(v) = i, then
for 3 ≤ i ≤ k we have

∑i
j=3mj ≥ (

∑i
j=3 nj)− d

(vi5)
∑k

j=3 nj ≥ (
∑

v∈V d(v)) + 3

Note that except for deficit 0 property (vi5) is implicit by the other properties.

For d = 0 this exactly characterizes the inner duals of (n3, . . . , nk)-fusenes and for

d = (
∑k

i=3 ni)− 1 a single vertex is a (n3, . . . , nk)-dual for all (n3, . . . , nk) that are not all

0. Removing a boundary vertex of a (n3, . . . , nk)-dual with deficit d that is not a cutvertex,

we get a (n3, . . . , nk)-dual with deficit d + 1, so all (n3, . . . , nk)-duals can be recursively

constructed by the inverse operations of such removals. The inverse operations can – just

like in [2] – be described by adding a new vertex in the outside face and connecting it to all

occurrences of vertices in a boundary segment of the smaller dual. For the extension of a

(n3, . . . , nk)-dual with deficit d+1 only operations are considered that lead to (n3, . . . , nk)-

duals with deficit d. Though not difficult, the details of how boundary segments are tested

for this property are quite technical. We refer the reader to [10] for details.

Isomorphism rejection

The isomorphism rejection techniques closely follow the lines in [2] and will not be de-

scribed in detail here. We apply McKay’s canonical construction path method [13] and

for testing isomorphism of the vertex labeled inner duals and angle labeled inner duals in

addition the homomorphism principle is applied.

Vertex labeled inner duals are constructed from inner duals by assigning vertex labels,

so isomorphic vertex labeled inner duals come as labelings of the same inner dual and

each such isomorphism induces an automorphism of the inner dual. For inner duals with
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a nontrivial automorphism group we apply the canonical construction path method, but

only with respect to the (always small) group of automorphisms of the inner dual. If

the automorphism group of the inner dual is trivial (which is in by far most of the cases

the case), all vertex labeled inner duals are non-isomorphic (and have a trivial group

themselves) – so no tests are necessary. If the group is nontrivial, a code – very similar

to the one in [2] – is constructed to decide on canonicity.

Angle labeled inner duals are constructed by distributing the differences between the

vertex label and the degree of boundary vertices over the boundary angles. Isomorphic

angle labeled inner duals come from the same vertex labeled inner dual and each such

isomorphism induces an automorphism of the vertex labeled inner dual, so that again no

isomorphism tests are necessary in case the automorphism group of the vertex labeled

inner dual is trivial, which is – unless only one of the ni is positive – is even more often

the case than for unlabeled inner duals. If the automorphism group of the vertex labeled

inner dual is nontrivial, again the canonical construction path method is applied in a way

that is very similar to [2].

Kekuléan structures and structures embeddable in a lattice.

As an additional feature we implemented the option to restrict the generation to gener-

alized fusenes with a Kekulé structure (or in mathematical terms: a perfect matching).

In [4] an algorithm was given that added essential modifications to the algorithm from [2]

in order to get optimal performance. We did not go that far here, but implemented just a

filter combined with a look ahead deciding whether the fusene would have an even number

of vertices, which is a necessary prerequisite for a Kekulé structure. This look ahead uses

the fact described in the following lemma that the number of vertices is already fixed by

the inner dual, so that inner duals that lead to structures with an odd number of vertices

don’t have to be labeled. The filter is a straightforward combination of a greedy approach

and an exhaustive algorithm searching for Tutte paths increasing the size of a matching.

As the structures dealt with are relatively small, more complicated matching algorithms

with a better asymptotic complexity are not needed.

Lemma 6 Let b be the length of the boundary cycle of an inner dual D of a (n3, . . . , nk)-
fusene G. Furthermore let f denote the number of bounded faces of D. Then G has∑k

i=3(i · ni)− b− 2f vertices.

Proof: Counting vertices by summing up all face sizes – that is: computing
∑k

i=3(i · ni)
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– vertices that are contained in 3 bounded faces (internal vertices) are counted 3

times and vertices contained in 2 bounded faces are counted twice. The number

of internal vertices is equal to the number of bounded faces in D – so we have to

subtract 2f in order to count these vertices only once. Vertices contained in 2 faces

are vertices in the boundary with degree 3. Each of these vertices has 2 edges in

the boundary and 1 internal directed edge starting in the vertex that is not in the

boundary. There are one-to one correspondences between these vertices and the

internal directed edges on one hand and between the internal directed edges and

directed edges corresponding to them in the inner dual. In the inner dual these

edges are exactly the directed edges in the boundary cycle, so their number is b and

we have to subtract b. �

Benzenoids are fusenes that are subgraphs of the euclidean hexagonal lattice (or tiling).

For constant vertex degree 3, triangles, squares and pentagons give a tiling of the sphere

(the tetrahedron, cube and dodecahedron) and faces with size s ≥ 7 give a regular tiling

of the hyperbolic plane. This means that there is a natural generalization of the concept

of benzenoids (although of more theoretical interest than actual chemical relevance): gen-

eralized fusenes with only one size of face that can be embedded into the corresponding

(spherical or hyperbolic) regular tiling. As the spherical tilings are finite, there are obvi-

ously only few such generalized benzenoid-like fusenes for face size s < 6, while for the

hyperbolic case (s > 6) the numbers grow fast. We implemented a filter for embeddability

that also follows the lines of [2]: the corresponding lattice is built in the computer and

it is tested whether the boundary of the generalized fusene is a simple closed curve in

the tiling. There is only one additional optimization. That optimization is based on the

following two easy lemmas:

Lemma 7 Each generalized fusene with only one face size k ≥ 6 has at least k vertices
of degree 2 in the boundary.

Proof: This result is a consequence of the Euler formula. Let f denote the number

of bounded faces of the generalized fusene, v denote the number of vertices and e

denote the number of edges. Furthermore let b denote the size of the outer face and

b2 denote the number of vertices in the boundary with degree 2.

Summing up the number of edges in each face we count each edge twice and get

e = k·f+b
2

.
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Summing up the number of vertices in each face, we count each vertex 3 times

except for the vertices of degree 2. Adding b2 to this sum we get v = k·f+b+b2
3

.

Inserting this into the Euler formula we get

k·f+b+b2
3

− k·f+b
2

+ (f + 1) = 2

which can be simplified to 2b2 − b = 6 + (k − 6)f .

As b2 ≤ b we get b2 ≥ 6 + (k − 6)f and as f ≥ 1 and (k − 6) ≥ 0 finally b2 ≥ k. �

With this lemma we can prove the following result, which makes it possible to decide

that for some inner duals all corresponding generalized fusenes can be embedded. This

look ahead speeds up the tests especially for large face sizes.

Lemma 8 The inner dual of a generalized fusene G with only one face size k ≥ 6 that
can not be embedded into the corresponding lattice contains two vertices at distance at
least k − 1.

Proof: Assume that a generalized fusene G with only one face size k ≥ 6 can not be

embedded into the corresponding lattice. Then there are faces f, f ′ so that different

vertices in the boundary of these faces are mapped onto the same vertex in the

lattice. For each such f, f ′ there is some shortest path connecting the corresponding

vertices in the inner dual. This path corresponds to a smallest set S = {f =

f1, f2, . . . , fm = f ′} of faces so that for 1 ≤ i ≤ m − 1 face fi shares an edge with

fi+1 in G. We choose f, f ′ so that m is as small as possible, which implies that

no faces in {f2, . . . , fm−1} share vertices that are not on the connecting edges –

otherwise choosing those as f, f ′ if the common edge is not in G, resp. a shortcut

from f to f ′ through this edge if it is in G would give a corresponding set with

fewer elements. In the dual lattice, this path of length m together with the edge

connecting the centers of f and f ′ forms a cycle. The interior of this cycle must

contain faces as otherwise one can easily prove that the two overlapping vertices

also agree in G. There is only one component of such faces as otherwise faces in

{f2, . . . , fm−1} would share vertices. This component is a generalized fusene and has

at least k vertices of degree 2 in the boundary. At each such vertex the third edge

sticking out is an edge shared by two k-gons in S, so S induces a cycle of length at

least k in the dual lattice. One of the edges is the overlapping edge, but the others

are also edges in the fusene, so the inner dual of the fusene contains a shortest path

with at least k vertices and these are at distance at least k − 1. �
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Testing

In order to test the program based on this algorithm, we implemented a second, very

simple (and very inefficient) program. For a given set of n faces, this program first

generates all generalized fusenes with one of this faces. When a list of all generalized

fusenes with m < n of the given faces is generated, each of the graphs in the list is read

and each of the remaining faces are added in every possible way to the graph. The new

graphs are piped through an isomorphism tester to make the new list with m + 1 faces.

This approach is as simple as inefficient, but well suited for testing.

We compared the results for all combinations of n ≤ 8 faces where each face had

a size of at most n (so e.g., all combinations of 7 faces where each face is at least a

triangle and at most a heptagon). Furthermore we compared the lexicographically first

1099 combinations of 9 faces with maximum face size 9. The first one had the face vector

(9, 0, 0, 0, 0, 0, 0) and the last one had the face vector (2, 2, 1, 1, 1, 2, 0). All results agreed.

The internal routine for restricting the structures to those with a Kekulé-structure was

tested by once applying the internal routine and once applying an independent external

filter. All combinations of n ≤ 9 faces with maximum size 9 were tested. There was

complete agreement.

The routine testing whether the structure is embeddable in the corresponding regular

tiling was tested by comparing the results for up to 21 hexagons with the known numbers

for benzenoids. There was complete agreement.

Results

In this section we will give some results of the program for the probably most interesting

parameter sets.

In the tables we will omit the case of only triangles, where there are unique structures

for 1, 2 and 3 faces and otherwise none and the case of only 4-gons where there are 2

possible structures for 3, 4 and 5 faces and otherwise a unique structure. In these cases

also embeddability and the existence of a Kekulé-structure can easily be seen.

Examples for generation rates on an Intel Xeon CPU E5-2690 0 with 2.90GHz running

a large number of other jobs in parallel are 19.3 million graphs per second for face vector

(0, 0, 0, 0, 15), 16.8 million graphs per second for face vector (0, 0, 2, 11, 2), and for face

vector (1, 1, 1, 1, 1, 1, 1, 1, 1) 26.9 million graphs per second.
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faces 5-gons 7-gons 8-gons 9-gons 10gons
1 1 1 1 1 1
2 1 1 1 1 1
3 2 3 4 4 5
4 4 10 14 19 24
5 7 44 85 136 215
6 18 249 598 1226 2256
7 35 1513 4837 12259 26925
8 87 10002 41570 130435 339523
9 206 68455 372830 1441755 4456349
10 527 482571 3436289 16390266 60149731
11 1337 3470782 32373742 190484723 830492066
12 3524 25391403 310407548 2254489731 11681979493
13 9262 188353848 3020894755 27096464528 166929456330
14 24772 1414150643 29776585115 329995577356 2417719752083
15 66402 10728851795 296777846799 4065180800962 35429035715975
16 179589 82151290333 2986882651510 50584233942184
17 487435 634203702080 30321553394791
18 1330708 4931994064073
19 3645754 38607981904156
20 10031143 304032521364835
21 27691894
22 76708835
23 213122892
24 593851624
25 1659104995
26 4646951873
27 13046181167
28 36708619646
29 103505545079
30 292430771955
31 827749791118
32 2347201206583
33 6667102499129
34 18968089092814

Table 1: Generalized fusenes with only one type of face.

For generalized Kekuléan fusenes on the same machine the generation rate for face

vector (0, 0, 1, 15) is 604.000 graphs per second and for (0, 0, 2, 10, 2) it is 622.000 graphs

per second. When testing embeddability in the lattice, a sample generation rate is 3.3

million graphs per second for face vector (0, 0, 0, 0, 14).

To code the graphs (e.g. in planarcode format) and to write them to a pipe slows

down the program. The factor depends on the parameters. In case the filter for Kekuléan

structures is used, this factor can be close to 1, while in cases where the structures are

not filtered the factor can be 10 or more. In each case the generation is so fast that for

any possible application that actually has to deal with the graphs the construction of the

graphs will not be the bottleneck.
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faces 5-gons 7-gons 8-gons 9-gons 10gons
1 1 1 1 1 1
2 1 1 1 1 1
3 2 3 4 4 5
4 4 10 14 19 24
5 6 44 85 136 215
6 11 249 598 1226 2256
7 6 1512 4837 12259 26925
8 4 9990 41569 130435 339523
9 2 68279 372812 1441754 4456349
10 1 480508 3435918 16390242 60149730
11 1 3448337 32367494 190484033 830492034
12 0 25163082 310312435 2254474176 11681978319
13 0 186124663 3019551558 27096152001 166929422342
14 0 1393029504 29758541952 329989812650 2417718888714
15 0 10532933254 296543993549 4065080418871
16 0 80362322284 2983929583401
17 0 618059615229
18 0 4787611202172

Table 2: Generalized fusenes with only one type of face that are embeddable into the
corresponding regular tiling.

hexagons 1 pentagon 1 heptagon 1 pentagon 2 pentagons
and 1 heptagon and 2 heptagons

0 1 1 1 28
1 1 1 6 480
2 4 5 47 6220
3 15 20 315 65360
4 69 103 2063 609073
5 332 529 13063 5225332
6 1682 2849 81195 42303469
7 8682 15388 497640 328040556
8 45618 83967 3021681 2461330660
9 242111 459722 18224512 17994323957

10 1296961 2528448 109392728 128830158673
11 6998238 13953686 654339964 906650684335
12 38008177 77274705 3903951850 6289829698942
13 207593408 429300728 23247519162
14 1139584340 2392234756 138238618771
15 6284089975 13368323192 821140061024
16 34794611081 74904618427 4873672024640
17 193369623973 420750474440
18 1078270552052 2368954994268
19 6031209604370 13367204082634

Table 3: Generalized fusenes with hexagons and few pentagons and heptagons.
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hexagons 1 pentagon 1 heptagon 1 pentagon 2 pentagons
and 1 heptagon and 2 heptagons

0 0 0 1 21
1 0 0 5 311
2 1 1 34 3747
3 4 5 204 37056
4 25 35 1245 333102
5 132 204 7454 2783184
6 722 1197 44625 22118058
7 3876 6785 265422 169075450
8 20910 38167 1574098 1254316891
9 112612 212687 9307150 9083594842
10 607677 1180305 54920628 64499257088
11 3283523 6529878 323535108 450517084307
12 17778908 36073732 1903402511
13 96466121 199152674 11185215834
14 524583808 1099465971 65664366284
15 2859087380 6072329926 385153421764
16 15617401965 33561177471
17 85494407414 185657286262
18 469015356870 1028104183734

Table 4: Generalized Kekuléan fusenes with hexagons and few pentagons and heptagons.
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