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Abstract

In this paper, we consider the Fokker-Planck equation (FPE) and the Fokker-
Planck equation with space- and time-fractional derivatives. The Fokker-Planck
equation arises in various fields in chemistry, natural science, including astrophysics
problems, biological applications, chemical physics and other fields. Transforming
the Fokker-Planck equation into optimization problem and using polynomial basis
functions, we obtain the system of algebraic equation. Then, we solve the system
of nonlinear algebraic equation and we have the coefficients of polynomial basis
functions expansion. We extensively discuss the convergence of the method. Illus-
trative examples are included to demonstrate the validity and applicability of the
technique.

1 Introduction

The Fokker-Planck equation was introduced by Fokker and Planck to describe the Brow-

nian motion of particles [1]. The Fokker-Planck equation arises in various fields in chem-

istry, natural science, including astrophysics problems, biological applications, chemical

physics, economics, electron relaxation in gases, nucleation, optical bistability, polymer

dynamics, quantum optics,reactive systems and numerous other applications [1].
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The chemical Fokker-Planck equation is commonly used approximations of the chemical

master equation. This equation is derived from an uncontrolled, second-order trunca-

tion of the Kramers-Moyal expansion of the chemical master equation and hence their

accuracy remains to be clarified. The chemical Fokker-Planck equation turns out to be

more accurate than the linear-noise approximation of the chemical master equation (the

linear Fokker-Planck equation) which leads to mean concentration estimates accurate to

order Ω−1/2 and variance estimates accurate to order Ω−3/2. This higher accuracy is par-

ticularly conspicuous for chemical systems realized in small volumes such as biochemical

reactions inside cells. A formula is also obtained for the approximate size of the relative

errors in the concentration and variance predictions of the chemical Fokker-Planck equa-

tion, where the relative error is defined as the difference between the predictions of the

chemical Fokker-Planck equation and the master equation divided by the prediction of

the master equation [2, 3].

A FPE describes the change of probability of a random function in space and time; hence

it is naturally used to describe solute transport. The general FPE for the motion of a

concentration field u(x, t) of one space variable x at time t has the form

u(x, t)

∂t
= [− ∂

∂x
A(x) +

∂2

∂x2
B(x)]u(x, t), (1)

with the initial condition

u(x, 0) = f(x), x ∈ R, (2)

where B(x) > 0 is the diffusion coefficient and A(x) is the drift coefficient. The drift and

diffusion coefficients may also depend on time.

u(x, t)

∂t
= [− ∂

∂x
A(x, t) +

∂2

∂x2
B(x, t)]u(x, t), (3)

with the initial condition (2). (3) is a linear second-order partial differential equation of

parabolic type. There is a more general form of FPE which is called nonlinear Fokker-

Planck equation. Nonlinear FPE has important applications in various areas such as chem-

ical physics, chemistry, plasma physics, population dynamic, biophysics, neuroscience,

polymer physics, psychology and marketing. In one variable case, the nonlinear FPE is

written in the following form

u(x, t)

∂t
= [− ∂

∂x
A(x, t, u) +

∂2

∂x2
B(x, t, u)]u(x, t), (4)

with the initial condition (2). The general nonlinear FPE with space- and time-fractional

derivatives for the motion of a concentration field u(x, t) of the one space variable x at
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time t has the form [4]

∂αu(x,t)
∂tα

= [− ∂β

∂xβ
A(t, x, u) + ∂2β

∂x2β
B(t, x, u)]u(x, t),

x ∈ [0, 1], t ∈ (0, T ), 0 < α, β ≤ 1,

(5)

with the initial condition

u(x, 0) = f(x), x ∈ [0, 1] , (6)

where α and β are parameters describing the order of the fractional time- and space

derivatives, respectively. The function u(x, t) is assumed to be a causal function of time

and space, i.e., vanishing for t < 0 and x < 0. The fractional derivatives are considered

in the Caputo sense [5, 6],

∂αu(x, t)

∂tα
=

1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s

1

(t− s)α
ds. (7)

The general response expression contains parameters describing the order of the fractional

derivatives that can be varied to obtain various responses. In the case of α = 1 and β = 1,

the fractional equation reduces to the classical nonlinear FPE (4).

The fractional Fokker-Planck equation has been used in various areas of chemistry,chemical

physics, engineering and physics. The fractional nonlinear Fokker-Planck-like equations

[7, 8] have been used to analyze several physical situations that present anomalous dif-

fusion, that usually contain a mix of nonlinear terms and fractional derivatives. In fact,

nonlinear diffusion equation and fractional diffusion are successfully applied to several

situations due to their wide application in chemistry and engineering such as frequency-

dependent damping behavior of materials, viscoelasticity, diffusion processes etc [9–12].

Much study [13–15] has been devoted to fractional nonlinear Fokker-Planck equations.

Liang and co-workers [16] have studied the solutions of a generalized anomalous diffusion

equations with fractional derivatives. Deng in [17] developed a finite element method for

the numerical resolution of the space and time fractional FPE and then proved that the

convergence order is O(k2−α + hµ), where k and h are the time step size and the space

step size, respectively. An FPE of fractional order with respect to time is suggested by

Jumarie in [18] by combining the maximum entropy principle and method of lines which

could be related to dynamical systems subject to fractional Brownian motion. Chen et

al. [19] examined the finite difference approximation and energy method to solve a class

of initial-boundary value problems for the fractional FPE on a finite domain. Hashemi

in [20] has applied the Lie symmetry analysis method for the nonlinear time fractional

Fokker-Planck equation with Riemann–Liouville derivative.

-451-



2 Numerical approach for the fractional

Fokker-Planck equation

We consider the linear and nonlinear Fokker–Planck equation with space- and time-

fractional derivatives of the form:

∂αu(x,t)
∂tα

= [− ∂β

∂xβ
A(t, x, u) + ∂2β

∂x2β
B(t, x, u)]u(x, t),

x ∈ [0, 1], t ∈ (0, 1), 0 < α, β ≤ 1,

(8)

with the initial condition

u(x, 0) = f(x), x ∈ [0, 1] . (9)

The method consists in the conversion of the Fokker-Planck equation with space- and

time-fractional derivatives to an optimization problem and expanding the solution by

polynomial basis functions unknown of coefficients.

We approximate u(x, t) as

u(x, t) ∼= ukk′(x, t) =
k∑
i=0

k′∑
j=0

cijtφi(x)φj(t) + f(x), (10)

where φi(x), φj(t) are polynomial basis functions, coefficients of cij are unknown.

We substitute(10) in (8) and define

J [c00, ..., c0k′ , ..., ck0, ..., ckk′ ] =∫ 1

0

∫ 1

0

(
∂αu(x,t)
∂tα

− [− ∂β

∂xβ
A(t, x, u) + ∂2β

∂x2β
B(t, x, u)]u(x, t)

)2
dxdt.

(11)

If cij are determined by the minimizing function J , then by (10) we achieve functions

which approximate the minimum value of J in (11) and also satisfy initial condition.

According to the necessary conditions of minimization for the function (11), we have

∂J

∂cij
= 0, i = 0, . . . k , j = 0, ..., k′. (12)

Equations (12) gives a system of (k + 1) × (k′ + 1) nonlinear equations. The method

presented here is based on the Ritz method. We refer the interested reader to [21–23] for

more information.

3 On the convergence of the method

In this section, we discuss the convergence of the method presented in Section 2. We will

show that the approximate solution that has obtained by value of minimum tends to the
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exact solution with the increase of k, k′ in (10). We show this fact in Theorem 2. Now,

we define our function space and provide some needed lemmas and theorem

Consider the Banach space
(
C(2,1)(U), ‖.‖(2,1)

)
as follows

C(2,1) (U) =

{
u : U → R | ∂2u(x, t)

∂x2
∈ C(U),

∂u(x, t)

∂t
∈ C(U)

}
,

where

U = [0, 1]× [0, 1] ,

and we define

‖u‖∞ = sup |u(x, t)|(x,t)∈U ,

‖u(x, t)‖(2,x) = ‖u(x, t)‖∞ +

∥∥∥∥∂u(x, t)

∂x

∥∥∥∥
∞

+

∥∥∥∥∂2u(x, t)

∂x2

∥∥∥∥
∞
,

‖u(x, t)‖(1,t) = ‖u(x, t)‖∞ +

∥∥∥∥∂u(x, t)

∂t

∥∥∥∥
∞
,

‖u(x, t)‖(2,1) = ‖u(x, t)‖(2,x) + ‖u(x, t)‖(1,t) ,

and

E (U) =
{
u(x, t) ∈ C(2,1)(U)|u(x, 0) = f(x)

}
. (13)

Theorem 1 : Suppose {fn(x)} is sequence of functions, differentiable on [a, b] and such

that {fn(x0)} converges for some point x0 on [a, b]. IF {f ′n(x)} converges uniformly on

[a, b], then {fn(x)} converges uniformly on [a, b], to a function f(x), and

f ′(x) = lim
n→+∞

f ′n(x), (a ≤ x ≤ b). (14)

Proof: [24]

Now, we give a lemma which plays an important role in our study. The lemma shows

that functions of the metric space E (U) are dense in that space.

Lemma 1 : Let u(x, t) ∈ E (U). There exists a sequence of functions

{zl(x, t)}l∈N ⊂ E(U) such that zl(x, t)→ u(x, t) with respect to ‖.‖(2,1) .

Proof: We have

u(x, t)− u(x, 0) =

∫ t

0

∂u(x, s)

∂s
ds, (15)

whereas ∂u(x,s)
∂s

∈ C(U), according to Weierstrass theorem, there exist a sequence of

polynomials {kl(x, t)}l∈N such that kl → ∂u(x,s)
∂s

. We have

pl(x, t) =

∫ t

0

kl(x, s)ds,
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where pl(x, 0) = 0 and also pl(x, t)→ u(x, t)− u(x, 0).

Now consider the sequence of functions zl(x, t) as follows

zl(x, t) = pl(x, t) + f(x), (16)

where zl(x, 0) = f(x).

According Theorem 1, ∂zl(x,t)
∂t
→ ∂u(x,t)

∂t
, ∂zl(x,t)

∂x
→ ∂u(x,t)

∂x
and also ∂2zl(x,t)

∂x2
→ ∂2u(x,t)

∂x2
with

norm ‖.‖∞ and hence sl → u with respect ‖.‖(1,t) and ‖.‖(2,x). Therefore, we have zl → u

with respect ‖.‖(2,1) . �

Consider the functional space Gkk′(U) as follows

Gkk′(U) = E(U) ∩
(〈
{φj(x)}j=kj=0

〉
×
〈
{φj(t)}j=k

′

j=0

〉
+ f(x)

)
,

where
(〈
{φj(x)}j=kj=0

〉
×
〈
{φj(t)}j=k

′

j=0

〉)
is the Banach subspace of C(2,1)(U) generated by

the basis polynomials of degree at most k, k′. Of course Gkk′(U) is a metric subspace of

E(U).

Let u(x, t) ∈ C(2,1)(U). For the Caputo fractional derivative of order α, we have
∂αu(x,t)
∂tα

∈ C(U) [25]. We also have

∂αu(x, t)

∂tα
=

1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s
(t− s)−αds∣∣∣∣∂αu(x, t)

∂tα

∣∣∣∣ ≤ 1

Γ(1− α)

∫ t

0

∣∣∣∣∂u(x, s)

∂s

∣∣∣∣ (t− s)−αds
≤

∥∥∥∂u(x,t)∂t

∥∥∥
∞

Γ(1− α)

∫ t

0

(t− s)−αds

=

∥∥∥∂u(x,t)∂t

∥∥∥
∞
t(1−α)

Γ(1− α)(1− α)

≤

∥∥∥∂u(x,t)∂t

∥∥∥
∞

Γ(2− α)
,

so ∥∥∥∥∂αu(x, t)

∂tα

∥∥∥∥
∞
≤

∥∥∥∂u(x,t)∂t

∥∥∥
∞

Γ(2− α)
. (17)

Similarly for β and 2β, we have

∥∥∥∥∂βu(x, t)

∂xβ

∥∥∥∥
∞
≤

∥∥∥∂u(x,t)∂x

∥∥∥
∞

Γ(2− β)
, (18)

∥∥∥∥∂2βu(x, t)

∂x2β

∥∥∥∥
∞
≤

∥∥∥∂2u(x,t)∂x2

∥∥∥
∞

Γ(3− 2β)
. (19)
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Now consider the functional J in (11) as an operator J :
(
C(2,1)(U), ‖.‖(2,1)

)
→ R.

Lemma 2 below shows that the functional J is continuous on its domain. We use this

important property later in Theorem 3 and state a theorem from real analysis which we

need in the proof of Lemma 2 .

Theorem 2 : Let f be a continuous mapping of a compact metric space X into a metric

space Y , then f is uniformly continuous.

Proof: [26]

Lemma 2 : The functional J is continuous on the Banach space
(
C(2,1)(U), ‖.‖(2,1)

)
.

Proof : We are going to show that J : (C(2,1)(U), ‖.‖(2,1)) is continuous, where

J(u) =

∫ 1

0

∫ 1

0

F 2dxdt,

and F (u) is considered as follows

F (u) =
∂αu(x, t)

∂tα
− [− ∂β

∂xβ
A(t, x, u) +

∂2β

∂x2β
B(t, x, u)]u(x, t).

Let u∗ ∈ C(2,1)(U) and ε > 0. Consider r > 0 and

I = U × [−L− r, L+ r]× [−L− r, L+ r]× [−L− r, L+ r],

where

L = max

{
‖u∗‖∞ ,

∥∥∥∥∂αu∗∂tα

∥∥∥∥
∞
,

∥∥∥∥∂βu∗∂xβ

∥∥∥∥
∞
,

∥∥∥∥∂2βu∗∂x2β

∥∥∥∥
∞

}
.

Obviously for x ∈ [0, 1] and t ∈ [0, 1], we have

Y ∗ =

(
x, t, u∗,

∂αu∗

∂tα
,
∂βu∗

∂xβ
,
∂2βu∗

∂x2β

)
∈ I.

Let δ > 0 and ‖u− u∗‖(2,1) < δ; hence we have ‖u − u∗‖∞ < δ,
∥∥∂u
∂t
− ∂u∗

∂t

∥∥
∞ < δ,∥∥∂u

∂x
− ∂u∗

∂x

∥∥
∞ < δ, ‖uxx − u∗xx‖∞ < δ and according to (17),(18) and (19)∥∥∥∥∂αu(x, t)

∂tα
− ∂αu∗(x, t)

∂tα

∥∥∥∥
∞
≤ 1

Γ(2− α)

∥∥∥∥∂u∂t − ∂u∗

∂t

∥∥∥∥
∞
<

δ

Γ(2− α)
,

∥∥∥∥∂βu(x, t)

∂xβ
− ∂βu∗(x, t)

∂xβ

∥∥∥∥
∞
≤ 1

Γ(2− β)

∥∥∥∥∂u∂x − ∂u∗

∂x

∥∥∥∥
∞
<

δ

Γ(2− β)
,

∥∥∥∥∂2βu(x, t)

∂x2β
− ∂2βu∗(x, t)

∂x2β

∥∥∥∥
∞
≤ 1

Γ(3− 2β)
‖uxx − u∗xx‖∞ <

δ

Γ(3− 2β)
.
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So for small enough value of δ we have

Y =

(
x, t, u,

∂αu

∂tα
,
∂βu

∂xβ
,
∂2βu

∂x2β

)
∈ I,

since F is continuous on I with respect to all its arguments and I is a compact set,

according to Theorem 2, F is uniformly continuous on I. So if δ > 0 be sufficiently small,

then ‖Y − Y ∗‖ < δ implies that|F (Y )− F (Y ∗)| < ε and

|J(u(x, t))− J(u∗(x, t))| < ε. �

Now we can show the convergence of the approximating method.

Theorem 3 :Let ηkk′ be the minimum of the functional J on Gkk′(U), then we have

limk,k′→∞ηkk′ = 0.

Proof: For any given ε > 0, let u∗ ∈ E(U) such that J (u∗) < ε (such u∗ exist by the

properties of minimum). According to Lemma 2, J is continuous on (C(2,1)(U), ‖.‖(2,1))
so we have

|J (u)− J (u∗)| < ε, (20)

provided that ‖u− u∗‖ < δ. According to Lemma 1 for large enough value of k, k′ there

exist χkk′ ∈ Gkk′(U) such that ‖χkk′ − u∗‖(2,1) < δ. Moreover let ukk′ be the element of

Gkk′(U) such that J [ukk′ ] = ηkk′ , then using (20) we have

0 ≤ J(ukk′) ≤ J(χkk′) < 2ε.

Since the ε > 0 is arbitrary, it follows that

limk,k′→∞ηkk′ = limk,k′→∞J(ukk′) = 0. �

4 Illustrative examples

To demonstrate the effectiveness of the method, here we consider some fractional differ-

ential equations.

Example 1

Consider the linear time–fractional FPE

∂αu(x, t)

∂tα
=
∂u(x, t)

∂x
+
∂2u(x, t)

∂x2
, 0 < α ≤ 1, 0 < x < 1, 0 < t < 1, (21)
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with initial conditions: u(x, 0) = x.

For α = 1, the exact solution is

u(x, t) = x+ t. (22)

A Ritz approximation to (21) is constructed as follows. The approximation ukk′(x, t) is

sought in the form of the truncated series

ukk′(x, t) =
k∑
i=0

k′∑
j=0

tφi(x)φj(t) + x,

where φi(x) and φj(t) are Legendre Polynomials. We obtain

u(x, t) =
(
t+ 1.16× 10−15t2 − 4.996× 10−16t3 + ...

)
+

(
1 + 1.221× 10−15t− 1.776× 10−15t2 + 6.661× 10−16t3 + ...

)
x+ ...

that converge to the exact solution.

Fig. 1 shows the numerical solutions of this problem obtained by the present method with

k = 1, k′ = 2. In Fig. 1, we can see that the present method provides accurate results.
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ç
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çç
çç
çç
çç
çç
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çç
çç
çç
çç
ç

0.0 0.2 0.4 0.6 0.8 1.0
t0.0

0.5

1.0

1.5

uH0.5, t L

Fig.1. Exact(—) for α = 1 and approximate solution u(0.5, t) for

(• • •)α = 0.6,(ooo)α = 0.8,(∗ ∗ ∗)α = 1.

The following table shows the values of minimum ηkk′ for different values of approxima-

tions.

k = 1, k′ = 1 k = 1, k′ = 2 k = 1, k′ = 3
α = 1, ηkk′ 1.91× 10−16 −1.29× 10−16 −7.111× 10−17

α = 0.6, ηkk′ 0.024 0.012 0.007
α = 0.8, ηkk′ 0.0072 0.0036 0.0021

Example 2

Consider the linear space fractional FPE [15]

∂u(x, t)

∂t
= [− ∂β

∂xβ
x+

∂2β

∂x2β
x2

2
]u(x, t), 0 < β ≤ 1, 0 < x < 1, 0 < t < 1, (23)
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with initial condition: u(x, 0) = x.

For β = 1, the exact solution for this problem be

u(x, t) = xet. (24)

We applied the method presented for different values of β and solved Equation(23). We

determine

ukk′(x, t) =
k∑
i=0

k′∑
j=0

tφi(x)φj(t) + x,

where φi(x) and φj(t) are Legendre Polynomials. Fig. 2 shows the absolute error of

this problem obtained by the present method with k = 1, k′ = 3. Fig. 3 represents the

approximate solutions of u(0.5, t) for β = 0.6, 0.8, 1 with k = 1, k′ = 3 in comparison

with the exact solution u(0.5, t). Numerical results are presented to demonstrate the

effectiveness of the proposed method.

Fig.2. The absolute Error between exact and numerical solution for β = 1, k = 1, k′ = 3.

**
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**
**
**
**
**
**
**
**
**
**
**
**
**
*
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*
*
*
*
*
*
*
*
*
*
*

ççççççççççç
çççççççç

çççççç
çççççç

ççççç
ççççç

çççç
çççç

çç

0.0 0.2 0.4 0.6 0.8 1.0
t0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

uH0.5, t L

Fig.3. Exact(—) for β = 1 and approximate solution u(0.5, t) for

(• • •)β = 0.6,(ooo)β = 0.8,(∗ ∗ ∗)β = 1 with k = 1, k′ = 3.

The following table shows the values of minimum ηkk′ for different values of approxima-

tions.
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k = 1, k′ = 1 k = 1, k′ = 2 k = 1, k′ = 3
β = 1, ηkk′ 0.0012 9.18× 10−6 3.63× 10−8

β = 0.6, ηkk′ 0.0035 .00035 0.000131
β = 0.8, ηkk′ 0.00524 0.00522 0.00013

Example 3

Next, we consider the linear space- and time-fractional FPE [15]

∂αu(x, t)

∂tα
= [− ∂β

∂xβ
(
x

6
)+

∂2β

∂x2β
(
x2

12
)]u(x, t), 0 < α, β ≤ 1, 0 < x < 1, 0 < t < 1, (25)

with initial condition: u(x, 0) = x2.

For α = 1, β = 1 the exact solution is:

u(x, t) = x2e
t
2 . (26)

We utilized the method presented for different values of α, β and solved Equation(25).

We consider

ukk′(x, t) =
k∑
i=0

k′∑
j=0

tφi(x)φj(t) + x2

where φi(x) = xi, φj(t) = tj. Fig. 4 shows the absolute error of this problem obtained

by the present method with α = 1, β = 1 and k = 2, k′ = 2. Fig. 5 represents the

approximate solutions of u(0.5, t) with k = 2, k′ = 2 and for α, β = 0.6, 0.8, 1 in compari-

son with the exact solution u(0.5, t). Numerical results are presented to demonstrate the

effectiveness of the proposed method.

Fig.4. The absolute Error between exact and numerical solution for α = 1, β = 1 and

k = 2, k′ = 3.
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Fig.5. Exact(—) for α, β = 1 and approximate solution u(0.5, t) for

(• • •)α, β = 0.6,(ooo)α, β = 0.8,(∗ ∗ ∗)α, β = 1 with k = 2, k′ = 2.

The following table shows the values of minimum ηkk′ for different values of approxima-

tions.

k = 1, k′ = 1 k = 1, k′ = 2 k = 2, k′ = 2
α = 1, β = 1, ηkk′ 0.00138 0.00138 1.26× 10−8

α = 0.6, β = 0.6, ηkk′ 0.00024 0.00023 0.00003
α = 0.8, β = 0.8, ηkk′ 0.0009 0.0008 0.00005

Example 4

Consider the nonlinear time–fractional FPE [15]

∂αu(x, t)

∂tα
= [− ∂

∂x
(
4u

x
− x

3
) +

∂2

∂x2
u]u(x, t), 0 < α ≤ 1, 0 < x < 1, 0 < t < 1, (27)

with initial conditions: u(x, 0) = x2.

For α = 1, the exact solution is

u(x, t) = x2et. (28)

We applied the method presented for different values of α and solved Equation(27). The

approximation ukk′(x, t) is sought in the form of the truncated series

ukk′(x, t) =
k∑
i=0

k′∑
j=0

txφi(x)φj(t) + x2,

where φi(x) and φj(t) are Legendre Polynomials. Fig. 6 shows the absolute error of this

problem obtained by the present method with k = 1, k′ = 4. From Fig. 6, we can see that

the present method provides accurate results. In order to show the accuracy of method,

we compare numerical solutions for α = 0.6, 0.8, 1 and x = 0.5. The numerical results are

shown in Fig. 7.
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Fig.6. The absolute Error between exact and numerical solution for α = 1, k = 1, k′ = 4.
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Fig.7. Exact(—) for α = 1 and approximate solution u(0.5, t) for

(ooo)α = 0.6,(• • •)α = 0.8,(∗ ∗ ∗)α = 1 with k = 1, k = 3.

The following table shows the values of minimum ηkk′ for different values of approxima-

tions.

k = 1, k′ = 1 k = 1, k′ = 2 k = 1, k′ = 3
α = 1, ηkk′ 0.000154 1.379× 10−6 6.96× 10−9

α = 0.6, ηkk′ 0.0028 0.0015 0.00102
α = 0.8, ηkk′ 0.001 0.0004 0.0003

Example 5

Consider the nonlinear time–fractional FPE

∂αu(x, t)

∂tα
= [− ∂

∂x
(
7u

2
) +

∂2

∂x
u]u(x, t), 0 < α ≤ 1, 0 < x < 1, 0 < t < 1, (29)

with initial conditions: u(x, 0) = x.

For α = 1, the exact solution is

u(x, t) =
x

t+ 1
. (30)

We applied the present method for different values of α and solved Equation(29). we

consider

ukk′(x, t) =
k∑
i=0

k′∑
i=0

tφi(x)φj(t) + x,
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where φi(x) and φj(t) are Legendre Polynomials. Fig. 8 shows the absolute error of this

problem obtained by the present method with k = 1, k′ = 4. From Fig. 8, we can see that

the present method provides accurate results. In order to show the accuracy of method,

we compare numerical solutions for α = 0.6, 0.8, 1 and x = 0.5 in Fig. 9.

Fig.8. The absolute Error between exact and numerical solution for α = 1, k = 1, k′ = 4.
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Fig.9. Exact(—) for α = 1 and approximate solution u(0.5, t) for

(ooo)α = 0.6,(• • •)α = 0.8,(∗ ∗ ∗)α = 1 with k = 1, k′ = 3.

The following table shows the values of minimum ηkk′ for different values of approxima-

tions.

k = 1, k′ = 1 k = 1, k′ = 2 k = 1, k′ = 3
α = 1, ηkk′ 0.001 0.00005 2.4× 10−6

α = 0.6, ηkk′ 0.015 0.007 0.004
α = 0.8, ηkk′ 0.007 0.002 0.001

5 Conclusion

This paper presents a simple and effective approach to solve Fokker-Planck equation

with space- and time–fractional derivatives. The desired approximate solution can be

determined by solving the resulting system of equations, which can be effectively computed

using symbolic computing codes on any personal computer. Illustrative examples show

that this method has high accuracy and is easily implemented.

-462-



References

[1] H. Risken, The Fokker–Planck Equation: Method of Solution and Applications ,

Springer, Berlin, 1989.

[2] R. Grima, P. Thomas, A. V. Straube, How accurate are the nonlinear chemi-

cal Fokker–Planck and chemical Langevin equations?, J. Chem. Phys. 135 (2011)

084103.
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